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Abstract

Background: Reliable prediction of stability changes in protein variants is an important aspect of computational
protein design. A number of machine learning methods that allow a classification of stability changes knowing
only the sequence of the protein emerged. However, their performance on amino acid substitutions of previously
unseen non-homologous proteins is rather limited. Moreover, the performance varies for different types of
mutations based on the secondary structure or accessible surface area of the mutation site.

Results: We proposed feature-based multiple models with each model designed for a specific type of mutations.
The new method is composed of five models trained for mutations in exposed, buried, helical, sheet, and coil
residues. The classification of a mutation as stabilising or destabilising is made as a consensus of two models, one
selected based on the predicted accessible surface area and the other based on the predicted secondary structure
of the mutation site. We refer to our new method as Evolutionary, Amino acid, and Structural Encodings with
Multiple Models (EASE-MM). Cross-validation results show that EASE-MM provides a notable improvement to our
previous work reaching a Matthews correlation coefficient of 0.44. EASE-MM was able to correctly classify 73% and
75% of stabilising and destabilising protein variants, respectively. Using an independent test set of 238 mutations,
we confirmed our results in a comparison with related work.

Conclusions: EASE-MM not only outperformed other related methods but achieved more balanced results for
different types of mutations based on the accessible surface area, secondary structure, or magnitude of stability
changes. This can be attributed to using multiple models with the most relevant features selected for the given
type of mutations. Therefore, our results support the presumption that different interactions govern stability
changes in the exposed and buried residues or in residues with a different secondary structure.

Background

A non-synonymous single nucleotide polymorphism
(SNP) in a coding region of DNA results in a single
amino acid polymorphism (a mutation) in a protein
sequence. The ability to predict how such an amino acid
substitution affects the stability of a protein is an impor-
tant aspect of computational protein design. Moreover, it
has been shown that disease-associated protein variants
are often characterised by mutation-induced stability
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changes [1]. Therefore, an improved prediction of stabi-
lity changes may help us deepen our understanding of
the relationship between protein mutations and inherited
diseases.

With the immense amounts of data about protein var-
iants coming from the genome sequencing projects, com-
putational methods, being fast and inexpensive, became
convenient tools to study stability changes. These compu-
tational approaches can be categorised as energy-based
and training-based methods. While energy-based methods
use physical, statistical, or empirical energy functions to
estimate the stability change from the protein’s three-
dimensional structure [2-9], training-based methods are
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trained on the experimental data from the ProTherm data-
base [10] employing machine learning algorithms [11-26].
Interestingly, a number of the training-based methods
allow for a prediction knowing only the sequence of a pro-
tein [17-26]. Since there is a large gap between the num-
ber of known protein sequences and experimentally
determined three-dimensional structures, we devote our
interest to these sequence-based methods in this work.

While a number of the sequence-based methods were
able to report a high prediction accuracy, the results from
an assessment study showed that the performance of three
evaluated methods was much lower on an independent
test set [27]. There, only the mutations from new additions
to the ProTherm database were used for testing. This find-
ing correlates with the results reported in our recent work
[26]. We found that the prediction performance of three
methods in our comparison was relatively low when evalu-
ated solely on mutations in proteins with low sequence
similarity to the training set. To improve prediction per-
formance on non-homologous proteins, we proposed a
method based on evolutionary and structural encodings
with amino acid parameters. While the new method was
able to outperform related work, the analysis revealed that
the performance for exposed residues was considerably
lower than for buried ones. Similarly, mutations in coil
residues appeared to be more difficult to predict than the
ones in a-helices and -sheets.

In this work, we followed the observation that prediction
performance differs among various types of mutations
based on the accessible surface area or secondary struc-
ture. By employing feature selection, we built specialised
feature-based multiple models, each dedicated to a specific
type of mutations. Our results show that this methodology
improves two-class prediction of stability changes.
Moreover, a consensus approach combining two methods
with multiple models (one based on the accessible surface
area and the other on the secondary structure) yielded
further improvements. Analysis of our results revealed
that the new method delivers more balanced predictions
than our previous work for mutations in residues with a
different secondary structure and solvent accessibility as
well as for different magnitudes of stability changes.
Finally, our new method achieved a favourable perfor-
mance in a comparison with related work using an inde-
pendent test set of 238 mutations. We refer to the new
method as Evolutionary, Amino acid, and Structural
Encodings with Multiple Models (EASE-MM).

Methods

Feature-based multiple models

We built and compared four different machine learning
methods for the two-class (stabilising and destabilising)
prediction of stability changes. The first one (referred to as
EASE-AA,) was an extension of our previous work
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(EASE-AA: Evolutionary And Structural Encodings with
Amino Acid parameters [26]). EASE-AA, employed a sin-
gle support vector machine (SVM) model with predictive
features selected using a greedy feature selection algo-
rithm. We used a range of features describing evolutionary
conservation, amino acid parameters, and structural prop-
erties. Next, we developed two methods, each composed
of several SVM models. The motivation here was to make
each model specialised for different types of mutations.
The first method (EASE-ASA) was composed of two
models based on different accessible surface area (ASA)
categories (exposed and buried). The second method
(EASE-SS) was composed of three models based on differ-
ent secondary structure (SS) types (a-helix, B-sheet, and
coil). Finally, we built a consensus method combining the
predicted probabilities of the two methods with multiple
models. We refer to the consensus method as EASE-MM.

Figure 1 illustrates the design of EASE-SS, however, the
same applies to EASE-ASA. First, we partitioned the train-
ing data according to the secondary structure (accessible
surface area) of the mutation site. Second, we used feature
selection to select a relevant combination of features for
the given data partition. Next, the SVM parameters were
optimised and the model was trained for classification of
stability changes. Since we aimed to design strictly
sequence-based methods, the secondary structure and two
categories of accessible surface area were predicted with
SPINE-X [28] and ACCpro [29], respectively. A solvent
accessibility threshold of 25% was used for classifying resi-
dues as exposed or buried. This threshold resulted in a
well-balanced partitions of 785 exposed and 891 buried
mutations. Further discussion on the solvent accessibility
thresholds can be found in the next section (Results and
discussion).

Figure 2 illustrates how a prediction is performed using
EASE-SS (the same applies to EASE-ASA). Given the
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Figure 1 Design of feature-based multiple models. The design
of EASE-SS is shown, however, the same applies to EASE-ASA. First,
the data was divided according to the predicted secondary
structure (accessible surface area). Then, relevant predictive features
were selected using a greedy feature selection algorithm. SVM
parameters were optimised using a grid search. Finally, the
predictive models were trained.
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Figure 2 Classification with feature-based multiple models. The
prediction process is shown for EASE-SS, however, the same applies
to EASE-ASA. First, the secondary structure (accessible surface area)
is predicted. Next, the relevant model is selected and used for
prediction. That is, if the mutation is in a helical (exposed) residue,
only the helix (exposed) model is used.

inputs (protein sequence and amino acid substitution),
the secondary structure (accessible surface area) is pre-
dicted first. Then, the relevant model is selected. That is,
if the mutation is in a helical (exposed) residue, only the
helix (exposed) model is used. The output is a predicted
probability of the mutation to be stabilising. Finally, for
the case of the consensus method (not shown in the
figure), prediction probability P is the average of the
probabilities predicted with EASE-ASA and EASE-SS:

Prass—mm = 5 (Pease—asa + Peasp—ss) 1)

Predictive features

For machine learning classification of stability changes,
each mutation needs to be encoded with a number of
predictive features. We considered a range of features
describing the evolutionary conservation, amino acids
parameters, and structural properties.

Evolutionary features

We used two evolutionary features: SIFT score (also
employed in our previous work [25,26]) and the difference
of mutation and conservation likelihood (AM). SIFT [30]
predicts whether a mutation affects the function of a pro-
tein. It is calculated from a scaled probability matrix of
possible amino acid substitutions generated from a multi-
ple sequence alignment of related sequences. SIFT scores
range from O to 1 where scores below 0.05 are predicted
as deleterious mutations. We ran SIFT using the Swiss-
Prot and TrEMBL databases with sequences more than
90% identical to the query removed.

Feature AM expresses the difference of likelihoods of the
introduced and deleted amino acids to appear in the align-
ment of homologous sequences of the target protein. To
calculate this feature, three iterations of PSI-BLAST [31]
in default configuration were used to search the NCBI
non-redundant database. Then, the likelihood scores were
extracted from the last position specific scoring matrix
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(PSSM). The scores were divided by 10 for normalisation
so that most values fell within the range of -1 and 1.
Amino acid parameters

A variety of different amino acid parameters were intro-
duced for the prediction of stability changes [12,14,16,
20,23]. In our previous work [26], we adopted seven repre-
sentative parameters including hydrophobicity, volume,
polarisability, isoelectric point, helix tendency, sheet ten-
dency, and a steric parameter (graph shape index). These
parameters were first introduced in [32] and later applied
to prediction of secondary structure [28]. In this work, we
included another 4 parameters: flexibility [33], compressibil-
ity, bulkiness, and equilibrium constant with reference to the
ionisation property of COOH group [34]. We included these
parameters because they were found as one of the best
determinants to stability changes in the study of 48 physi-
cal-chemical, energetic, and conformational amino acid
properties [12,14]. We normalised all 11 parameters to fall
within the range of —0.9 and 0.9. The normalised values of
the 11 parameters are available in Additional file 1.

We encoded each of the amino acid parameters as two
distinct predictive features. The first one was equal to the
difference between the amino acid parameters for the
introduced and deleted amino acids (denoted as A). The
other predictive feature described the mutation site envir-
onment as the mean, minimum, and maximum of the
parameter values for a window of six neighbouring resi-
dues. We considered neighbourhood windows of up to a
length of 18 and found that six neighbours performed
optimally.

Structural features

Since structural information is not available in the case of
sequence-based prediction of stability changes, we
employed predicted structural features. We used the mul-
tistep neural network method SPINE-X [28] for the pre-
diction of secondary structure probabilities. Also, the real
value of the relative accessible surface area of each muta-
tion site was predicted with SPINE-X. For the prediction
of the disorder probability, we used the neural network
method SPINE-D [35]. These three predicted structural
features were also used in our previous work [25,26].

Feature selection

We considered a range of predictive features and applied
feature selection to design specialised models for 1)
exposed and buried residues (EASE-ASA), and 2) helical,
sheet, and coil residues (EASE-SS). Also, the single-model
method (EASE-AA,) was designed employing the same
feature selection procedure. We used sequential forward
floating selection (SFES) [36] which is a variation of a com-
monly adopted sequential forward selection (SES) [37]. SES
works by iteratively adding the best-performing feature to
a set of features S. Initially, S is empty. Every iteration, the
best-performing feature fis selected as the one for which
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S U {f} achieves the highest prediction performance. The
SFES algorithm starts with SFS but at the end of every
iteration, features are iteratively removed if this can further
improve prediction performance. Thus, the number of fea-
tures in S is not monotonously increasing because the
search is ‘floating’ up and down. We ran SFFS until 10 fea-
tures were added to S and stored all visited combinations
of features. Finally, we selected the ultimately best-per-
forming of the visited combinations. As a measure of pre-
diction performance, the area under the receiver operating
characteristic curve (commonly denoted as AUC) was
used.

To verify the significance of the features selected with
SFES, we performed feature selection also with the
stability selection algorithm [38]. In stability selection, the
data sample of size # is randomly sub-sampled to size n/2.
Then, an ‘inner’ feature selection algorithm is applied. The
whole procedure is repeated k-times, each time with a dif-
ferent data sample. Features which are repeatedly selected
contribute towards the final set of predictive features. We
used SES as the ‘inner’ algorithm and set k = 100.

Support vector machines
Support vector machines (SVM) [39] are machine learn-
ing algorithms which can approximate non-linear func-
tions by mapping the inputs to a high-dimensional
feature space using a kernel function and then, solving a
linear problem by finding a maximum margin separating
hyperplane. We used the radial basis kernel function and
implemented our method with the LIBSVM library [40].
To optimise the SVM performance, the regularisation
parameter C and the radial basis kernel width parameter
¥ need to be set. If the number of positive and negative
examples in the data set is unbalanced, SVM can be
further optimised by setting the weight (w) of the penalty
for a training error on positive examples. We optimised
these SVM parameters by running a grid search using
10-fold cross-validation. In the grid search, we consid-
ered all possible combinations of C € {272,273, ..., 27},
ye{27,27%, ..., 2% andwe {1, 15,2, 25, 3}.

Data sets

We compiled a data set of free energy stability changes
from the ProTherm database [10] (February 2013). There,
a stability change is defined as the difference in the unfold-
ing free energy: AAG, [kcal mol Y] = AG,(mutant) - AG,
(wild-type). Hence, we designated the positive and
negative examples of the classification problem as the
stabilising (AAG,, = 0) and destabilising (AAG, < 0)
mutations, respectively.

We extracted 3,329 mutations with listed stability
changes and cross-checked all the sources where the mea-
surements came from. We found that incorrect values
(mostly the sign of AAG,) had been entered from at least
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18 sources. We corrected stability changes for all relevant
(> 230) mutations in the extracted data set. Next, we
removed all duplicate entries of the same amino acid sub-
stitutions (different concentrations of chemicals, stability
changes of the protein intermediate state, etc.). If several
measurements of the same mutation under the same
experimental conditions were present, we averaged the
stability changes and kept only a single entry. If several
measurements of the same mutation under different
experimental conditions were present, we kept only the
measurement closest to the physiological pH 7.

Finally, we identified 74 clusters of proteins with more
than 25% sequence similarity using BLASTCLUST [41].
If there were several measurements of the same amino
acid substitution within a single cluster, we kept only the
measurement closest to the physiological pH 7. This pro-
cess yielded a non-redundant data set containing 1,914
mutations of 95 different proteins grouped into 74 non-
homologous clusters.

To perform an independent comparison with related
work, we separated all proteins with less than 25%
sequence similarity to the data set used for the training of
[-Mutant2.0 [17]. This procedure yielded 25 proteins with
238 mutations which we kept as an independent test set
(5238). The remaining data of 1,676 mutations in 70 dif-
ferent proteins (S1676) were used for the development of
our methods. Both 5238 and S1676 data sets are available
in Additional file 2.

Evaluation

We used unseen-protein 10-fold cross-validation on the
S$1676 data set to design our methods, select relevant fea-
tures, and perform a comparison with our previous work
(EASE-AA) [26]. In the unseen-protein cross-validation,
we ensured that all mutations of any cluster of homolo-
gous proteins were contained within a single fold. Also,
we kept the ratio of stabilising and destabilising examples
reasonably similar among the folds. We repeated our
experiments 100 times (each time with randomly gener-
ated folds) and averaged the results.

The unseen-protein cross-validation was previously
used for the evaluation of a method for the prediction of
deleterious mutations [42]. A similar procedure, unseen-
residue cross-validation, was used for the evaluation of a
three-state stability changes prediction method [21]. In
our recent work [26], we compared both unseen-residue
and unseen-protein cross-validation with the commonly-
used random cross-validation. There, we concluded that
the unseen-protein cross-validation provides the most
robust estimate of the prediction performance. This is
because predictive features cannot be selected as ‘proxies’
to specific residues or proteins.

For an independent comparison with related work, we
used the S238 data set. This data was not used for the
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SVM parameters optimisation nor feature selection.
Importantly, the sequence similarity between S1676 and
S238 was less than 25%. To achieve a fair comparison
with related work, we optimised prediction thresholds of
all compared methods to yield a maximum Matthews
correlation coefficient (MCC). MCC is a measure of pre-
diction performance that provides more relevant infor-
mation than classification accuracy (Q,) in cases when
the data set is severely biased towards one class of
examples. Since destabilising mutations prevail in the
available experimental data, 72% and 81% of mutations
were destabilising in the S1676 and S238 data sets,
respectively.

Regarding evaluation measures, we assessed the overall
prediction performance in terms of the receiver operat-
ing characteristic (ROC) curves and the area under the
ROC curve (AUC). A ROC curve plots the true positive
rate (sensitivity) as a function of the false positive rate
(100% - specificity) at different prediction thresholds.
Furthermore, we calculated Matthews correlation coeffi-
cient (MCC), classification accuracy (Q,), sensitivity
(Se), specificity (Sp), positive predictive value (PPV), and
negative predictive value (NPV):

TPxTN—-FPxFN

MCC = 2)
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
Q TP+TN 100 3)
= X
2" TP+FP+TN+FN
TP
Se = x 100 (4)
TP+FN
TN
Sp = 100 5
P=rN+Fp * ©)
PPV = x 100 (6)
TP+FP
TN
NPV = x 100, (7)
TN+FN

where TP, TN, FP, and EN refer to the number of true
positives, true negatives, false positives, and false nega-
tives, respectively.

Results and discussion

Our main interest was to asses whether a method with
feature-based multiple models can improve prediction per-
formance compared to methods employing only a single
model. To explore different ideas, we designed two meth-
ods with multiple models: EASE-ASA (composed of two
models for exposed and buried residues) and EASE-SS
(composed of three models for helical, sheet, and coil
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residues). We also built a consensus method (EASE-MM)
of the former two. The most relevant features for each
model were chosen using sequential forward floating
selection (SFFS). We compared the 10-fold cross-valida-
tion performance (data set S1676) of the three methods
with multiple models and two single-model methods
(EASE-AA and EASE-AA,). While EASE-AA is our pre-
vious work [26], EASE-AA, was designed using the same
feature selection procedure as the methods with multiple
models. Next, we analysed the significance of the selected
features and investigated performance of our methods for
different types of mutations. Finally, we performed a com-
parison with related work on an independent test set of
238 mutations.

Cross-validation performance
We performed 100 replications of 10-fold cross-valida-
tion on the S1676 data set. Table 1 summarises the aver-
aged results. Our previous work, EASE-AA, yielded the
lowest prediction performance with a Matthews correla-
tion coefficient (MCC) of 0.35. EASE-AA, achieved only
a marginal absolute improvement of 0.03 in MCC reach-
ing a value of 0.38. We observed more notable improve-
ments for the methods employing multiple models.
EASE-ASA and EASE-SS reached MCC values of 0.40
and 0.42, respectively. These results constitute respective
relative improvements of 14% and 20% (absolute
improvements of 0.05 and 0.07) compared to our
previous work (EASE-AA). The consensus method com-
bining the predicted probabilities of EASE-ASA and EASE-
SS yielded further improvements. EASE-MM achieved an
MCC of 0.44 which represents a relative improvement of
26% (an absolute improvement of 0.09) compared to
EASE-AA. Compared to EASE-AA,, the relative (absolute)
improvement was 16% (0.06). While EASE-MM did not
improve on EASE-AA,’s specificity (the accuracy on nega-
tive examples), negative predictive value was improved.
This means that EASE-MM did not ‘over-predict’ destabi-
lising mutations as much as EASE-AA,.

The receiver operating characteristic (ROC) curves in
Figure 3 compare the true positive rate of the five meth-
ods as a function of the false positive rate at different

Table 1 Cross-validation performance (data set S1676) of
our previous work, the single-model method, and the
three methods with multiple models.

Method AUC MCC Q, Se Sp PPV NPV
EASE-AA 0.76 0.35 67.11 7493 6422 4368 8737
EASE-AA, 0.77 0.38 7267 6554 7531 4958 8551
EASE-ASA  0.80 040 7262 7107 7319 4955 8723
EASE-SS 0.80 042 7357 7213 7411 50.79  87.77
EASE-MM 0.82 044 74.71 7314 7528 5230 8833

EASE-MM is a consensus method of EASE-ASA and EASE-SS
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Figure 3 ROC curves performance of the three methods with
multiple models, the single-model method, and our previous
work. The true positive rate is shown as a function of the false
positive rate at different prediction thresholds. These are cross-
validation results with the S1676 data set. EASE-MM, EASE-SS,
EASE-ASA, EASE-AA,, and EASE-AA achieved the area under the ROC
curve (AUC) of 0.82, 0.80, 0.80, 0.77 and 0.76, respectively.

prediction thresholds. The figure demonstrates the ben-
efit in terms of the number of correctly predicted posi-
tive examples upon employing the methods with
multiple models. EASE-ASA, EASE-SS, and EASE-MM
achieved the area under the ROC curve (AUC) of 0.80,
0.80, and 0.82, while EASE-AA and EASE-AA, yielded
an AUC of 0.76 and 0.77, respectively. This represents a
relative improvement of 6% (an absolute improvement
of 0.05) for EASE-MM compared to EASE-AA,.

We estimated the statistical significance of the
improvements yielded by the methods with multiple
models over the 100 replications of cross-validation using
a student ¢-test. The null hypothesis stated that there was
no statistical difference in the MCC (AUC) for EASE-
MM (EASE-ASA, EASE-SS) compared to EASE-AA,
(EASE-AA). The p-values associated with this null
hypothesis were all less than 0.0001. Also, EASE-MM’s
improvements compared to EASE-ASA (EASE-SS) were
statistically significant (p-values < 0.0001).

Significance of the selected predictive features

We used the sequential forward floating selection (SFES)
to automatically select the combinations of the most rele-
vant predictive features. While seven and nine features
were selected for the exposed and buried models of
EASE-ASA, respectively, each model of EASE-SS (helix,
sheet, and coil) was composed of eight features. Figure 4
shows the area under the ROC curve (AUC) as a function
of the number features selected with the SFFS algorithm.
This figure illustrates the motivation for our work well.
While at the early stages of feature selection, there is a
notable gap between the prediction performance for
mutations in the exposed and buried residues, as feature
selection progresses, the performance becomes balanced
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Figure 4 Feature selection progress. The area under the ROC
curve (AUQ) is shown as a function of the number features selected
during feature selection. The prediction performance of the different
models became more balanced as the feature selection progressed.

These are cross-validation results with the S1676 data set.

for both categories. A similar trend, however not as pro-
nounced, can be seen for the case of EASE-SS. Additional
file 3 lists the final combinations of features implemented
in EASE-ASA, EASE-SS, and EASE-AA,.

We analysed which features were most often selected
across the five different models of EASE-ASA and EASE-
SS. SEES selected feature SIFT score for each of the five
models. Feature A hydrophobicity was selected in all but
the sheet model. The third most often occurring feature
was the relative accessible surface area. It is of interest to
inspect which features were the most specific for each of
the models. For instance, amino acid attributes A helix
tendency and A sheet tendency were chosen for the helix
and sheet models, respectively. These features are indeed
relevant specifically to the two models because they
express the change in the preference of the given second-
ary structure type. Feature A volume was selected for both
helix and sheet but not for the coil model. We conjecture
that an increase in the side-chain volume may induce
strain in the backbone of the protein in regions with a
well-defined secondary structure but can be better toler-
ated in a coil region. Regarding the two models of EASE-
ASA, features A isoelectric point and A polarisability were
selected for the buried but not for the exposed model.

While SFFS was effective in finding the most relevant
combination of predictive features, it does not provide a
ranking of the individual features. This is because, as the
feature selection progresses, even a significant feature
can be removed if it does not perform well in combina-
tion with the others. We employed stability selection to
analyse the significance of individual features. We imple-
mented stability selection as 100 replications of the basic
sequential forward selection (SFS) each time executed on
a randomly sub-sampled S1676 data set (data was not
partitioned for different types of mutations in this
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experiment). From the 100 results, we estimated the sig-
nificance of each feature as the probability of being
selected. Table 2 lists the nine most significant features.
Evolutionary feature SIFT score, amino acid parameter A
hydrophobicity, and structural property relative accessible
surface area seem to be the most significant. This finding
agrees with the most often occurring features across the
five models of EASE-ASA and EASE-SS.

Evaluation of different types of mutations

The design of the three methods combining feature-based
multiple models was motivated by the observation that the
prediction performance of our previous work (EASE-AA)
varied considerably for different types of mutations. We
found that EASE-ASA (combining two models), EASE-SS
(three models), and EASE-MM (consensus of the former
two) can predict stability changes more accurately than
both single-model methods EASE-AA and EASE-AA,
(Figure 3). Next, we were interested what the improve-
ments were for different types of mutations based on the
secondary structure and accessible surface area of the
mutated residue. Secondary structure and solvent accessi-
bility were calculated using DSSP [43] from the experi-
mentally determined structures deposited in the Protein
Data Bank (PDB) [44]. We also investigated prediction
performance for ‘small’ (AAG, € [- 1, 1]) and ‘large’
(JAAG,| > 1) stability changes.

Figure 5 compares the cross-validation performance
(MCC) of EASE-AA,, EASE-ASA, EASE-SS, and EASE-
MM for different types of mutations. We analysed the per-
formance of the methods with multiple models relative to
EASE-AA, because while EASE-AA, encompasses only a
single model, it was designed using the same feature selec-
tion procedure. Also, EASE-AA, performed marginally bet-
ter than EASE-AA.

Regarding the different secondary structure types, EASE-
MM achieved an MCC of 0.49, 0.42, and 0.37 for the
mutations in helical, sheet, and coil residues, respectively.

Table 2 The nine most significant features according to
stability selection on the S1676 data set.

Feature Significance
SIFT score 1.00
A hydrophobicity 097
relative accessible surface area 0.86
disorder probability 0.81
A compressibility 0.80
A polarisability 0.58
volume (mean, min, max) 0.54
A isoelectric point 0.53
secondary structure probabilities 047

A refers to the change between the introduced and deleted amino acids;
(mean, min, max) was calculated for a window of six neighbouring residues;
significance denotes the probability of being selected with stability selection
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The respective relative (absolute) improvements compared
to EASE-AA, were 11% (0.05), 2% (0.01), and 48% (0.12).
All four methods yielded the lowest performance for the
category of coil residues. However, both relative and abso-
lute improvements of all three methods with multiple
models were the highest in this category. Thus, the meth-
ods with multiple models yielded a more balanced perfor-
mance for the different secondary structure types than the
single-model method. This is most apparent from the
performance of EASE-SS which achieved an MCC of
0.43, 0.40, and 0.39 for helical, sheet, and coil residues,
respectively.

Next, we analysed our results for two categories of
accessible surface area (ASA) based on a threshold of 25%.
We found again that EASE-MM not only outperformed
EASE-AA, but achieved a more balanced performance
yielding an MCC of 0.44 and 0.41 for residues with ASA <
25% and > 25%, respectively. These results constitute
respective relative (absolute) improvements of 5% (0.02)
and 37% (0.11) compared to EASE-AA,. The performance
of EASE-MM in Figure 5 appears to be well balanced
when we analysed only the two categories of ASA employ-
ing a threshold of 25% (the same threshold as for the
design of the two models of EASE-ASA). Therefore, we
were interested whether the performance varied if we con-
sidered a greater variety of ASA categories. Figure 6 shows
the MCC of the compared methods as a function of four
categories of ASA. The figure reveals that the performance
of EASE-MM for residues more than 60% exposed to a
solvent is on average 63% lower than for the other three
categories covering ASA of 0-60%. While the performance
of EASE-ASA was also very low in the > 60% exposed
category (an MCC of 0.05), there was a considerable
improvement in the 20-40% category. Thus, it seems that
the feature selection for the EASE-ASA’s exposed model
selected mainly features which are relevant to ‘partially
exposed’ residues. This is likely because residues with ASA
> 60% contribute only to 7% of the S1676 data set. For the
same reason (the lack of experimental data), it would not
be possible to design EASE-ASA with three models
including a model trained specifically for residues with
ASA > 60%. An alternative way of improving the consen-
sus method (EASE-MM) would be assigning a higher
weight to the predicted probability by EASE-SS for muta-
tions in residues predicted as > 60% exposed to a solvent.
EASE-SS yielded an MCC of 0.25 in this ASA category.

Finally, we analysed performance for ‘small’ (AAG, €
[-1, 1]) and ‘large’ (|JAAG,| > 1) stability changes
(Figure 5). For all four methods, the category of ‘small’
changes was more difficult to predict. EASE-MM reached
an MCC of 0.36 and 0.48 for the ‘small’ and ‘large’
stability changes, respectively. The reason for this unba-
lanced performance can be twofold. Firstly, it is naturally
harder to differentiate among subtle changes. Secondly,
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structure type of the mutated residue, relative accessible surface area of the mutated residue, and magnitude of the stability change. These are

Stability change

as suggested elsewhere [21,20], the strict classification of
the ‘small’ stability changes as stabilising or destabilising
can be misleading since the experimental data is affected
by the error of measurement which can be as large as
+0.48 kcal mol™' [45]. Nevertheless, the relative (as well
absolute) improvement of EASE-MM (compared to
EASE-AA,) was larger for the ‘small” stability changes
(33% while it was 4% for the ‘large’ stability changes).
Overall, EASE-ASA, EASE-SS, and EASE-MM yielded
a more balanced performance for all categories of differ-
ent types of mutations than the single-model method
EASE-AA,. This result supports our hypothesis that
building specialised models for different types of muta-
tions can yield a more balanced performance. When
comparing the performance of the consensus method

t= 0.6
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Figure 6 Prediction performance of the single-model method
and the three methods with multiple models for different
categories of solvent accessibility. Matthews correlation
coefficient (MCC) of EASE-AA,, EASE-ASA, EASE-SS, and EASE-MM is
shown as a function of four different categories of mutated
residue’s relative accessible surface area. These are cross-validation
results with the S1676 data set.

(EASE-MM) with EASE-ASA, we found improvements
in all seven categories (Figure 5). However, compared to
EASE-SS, EASE-MM performed less accurately for
mutations in coil residues and for ‘small’ stability
changes. This can be attributed to relatively low perfor-
mance of EASE-ASA for these two types of mutations.
Because the predicted probabilities from EASE-ASA and
EASE-SS contribute equally to predictions made by
EASE-MM, a low performance of one of the two meth-
ods directly influences the consensus. A possible
improvement would be to consider the confidence of
the predicted secondary structure and use it for weigh-
ing the contribution of the probabilities predicted with
EASE-SS and EASE-ASA.

Independent test performance

We found that EASE-MM yielded the highest cross-vali-
dation prediction performance of the five compared
methods (Figure 3). However, it is important to inspect
its prediction performance on an independent test set to
see if the feature selection did not result in features
which do not generalise well. Using the S238 data set,
we compared the performance of three currently avail-
able methods (MUpro [18], MuStab [23], and I-
Mutant2.0 [17]), our previous work (EASE-AA [26]), the
single-model method (EASE-AA,), and the three meth-
ods with multiple models (EASE-ASA, EASE-SS, and
EASE-MM). Table 3 summarises the results from the
independent comparison. EASE-MM was able to consid-
erably outperform the three currently available methods.
The absolute increase in the MCC ranged from 0.20 to
0.23. The ROC curves in Figure 7 compare the true
positive rate as a function of the false positive rate at
different prediction thresholds. The absolute improve-
ments in terms of the AUC for EASE-MM compared to
MUpro, MuStab, and I-Mutant2.0 were 0.20, 0.18, 0.15,
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Table 3 Independent test performance (data set $238)
of three currently available methods, our previous work,
the single-model method, and the three methods with
multiple models.

Method AUC MCC Q; Se Sp PPV NPV
MUpro 065 024 7941 2889 91.19 4333 8462
MuStab 067 026 7731 4000 8601 4000 8601
-Mutant20 070 027 6597 6889 6528 3163 90.00
EASE-AA 083 045 8235 6000 8756 5294 9037
EASE-AA, 072 036 82.77 3556 9378 57.14 86.19
EASE-ASA 0.81 043 83.19 51.11 9067 56.10 8883
EASE-SS 082 048 83.19 6222 8808 5490 9091
EASE-MM 085 047 8109 6889 8394 5000 9205

EASE-MM is a consensus method of EASE-ASA and EASE-SS

respectively. The performance of the three currently
available methods was in agreement with the findings
reported in our previous work [26]. There, we described
how the evaluation is influenced when different muta-
tions of proteins from the training set are used for test-
ing. Since sequence similarity of the S238 data set and
the data used for developing MUpro, MuStab, and
I-Mutant2.0 was less than 25%, the performance of
these three methods was rather low.

The three methods with multiple models (EASE-ASA,
EASE-SS, EASE-MM) yielded the AUC (MCC) of 0.81
(0.43), 0.82 (0.48), and 0.85 (0.47), respectively (Table 3).
All three methods were able to considerably outperform
the single-model method EASE-AA,. However, when
compared to our previous work (EASE-AA), only EASE-
MM was able to improve the AUC value (from 0.83 to
0.85). Figure 7 compares EASE-MM and EASE-AA in
terms of ROC curves. For the false positive rate of
15-45%, our new method achieved a notable improvement.

100
0 +
o 80
€ 70+t '
2 s
% S0r % £
o .
g- ol @"%'E EASE-MM —e— |
= X[ gF EASE-AA — ¥ -
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10 e MuStab --©- |
iy i ! i ; | Ml‘Jpro‘-—--A‘l_‘.

0
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False positive rate

Figure 7 ROC curves performance of EASE-MM, our previous
work, and three currently available methods. The true positive
rate is shown as a function of the false positive rate at different
prediction thresholds. These are independent test results with the
S238 data set. EASE-MM, EASE-AA, I-Mutant2.0, MuStab, and MUpro
achieved the area under the ROC curve (AUC) of 0.85, 0.83, 0.70,
0.67 and 0.65, respectively.
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This is reflected in a 2% and 4% relative increase in the
AUC and MCC, respectively.

We analysed why the improvements to our previous
work (EASE-AA) on the S238 test set (Table 3) were not
as high as for the cross-validation on the S1676 data set
(Table 1). We found that there was a relative decrease of
19% in MCC on residues with accessible surface area
(ASA) < 25% for EASE-MM compared to EASE-AA.
Coincidently, the accuracy of the predicted accessible
surface area with ACCpro (decides which of the two
models of EASE-ASA would be used) was 5 percentage
points lower for the buried residues [a decrease from
85% (S1676) to 80% (S238)]. We conjecture that this
might be one of the contributing factors to the relatively
low prediction accuracy of EASE-MM on the residues
with ASA < 25%. For the residues with ASA > 25%,
EASE-MM provided a relative improvement of 50%
which is in good agreement with a 46% improvement
yielded in cross-validation. However, the abundance of
the residues with ASA > 25% was considerably lower in
S238 (34%) compared to S1676 (48%). Therefore, despite
the improvement for the > 25% exposed residues, the
overall relative increase in EASE-MM’s MCC was only
4% on the S238 data set.

To confirm the significance of the improvements yielded
by our new method on the 5238 test set, we randomly
sub-sampled the data to 119 mutations and classified the
stability changes with EASE-MM and EASE-AA. We repli-
cated this experiment 100 times. The student ¢-test’s null
hypothesis stated that there was no statistical difference in
the MCC (AUC) between EASE-MM and EASE-AA. The
p-values associated with this null hypothesis were less
than 0.0001 for both MCC and AUC.

Conclusions

In this work, we followed the observation that the predic-
tion performance of our previous work [26] varies for dif-
ferent types of mutations based on the accessible surface
area and secondary structure. We proposed a sequence-
based machine learning method, EASE-MM, which
predicts stability changes as a consensus of predicted
probabilities of two participating methods, EASE-ASA
and EASE-SS. While EASE-ASA combines two models
for exposed and buried residues, EASE-SS is composed
of three models for mutations in a-helices, B-sheets, and
coils. Feature selection and a range of diverse features
were used to design each model.

Our cross-validation results show that EASE-MM pro-
vides a notable improvement to our previous work
reaching a Matthews correlation coefficient of 0.44
(Table 1). EASE-MM was able to correctly classify 73%
and 75% of stabilising and destabilising protein variants,
respectively, and yielded the area under the ROC curve
of 0.82 (Figure 3). Using an independent test set of 238
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mutations, we confirmed our results in a comparison
with related work (Figure 7).

EASE-MM not only outperformed our previous work
and other related methods, it achieved a more balanced
results for different types of mutations based on the acces-
sible surface area, secondary structure, and magnitude of
stability changes (Figures 5 and 6). This can be attributed
to using multiple models with the most relevant features
selected for the given type of mutations. Therefore, our
results support the presumption that different interactions
govern stability changes in the exposed and buried residues
[8] or in residues with a different secondary structure.
Similar observations have been made about pathogenic
protein variants [46]. Therefore, we aim to extend the con-
cept of the feature-based models to prediction of disease-
associated mutations [42,47-55] in our future work.
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