
RESEARCH Open Access

Identifying gene clusters by discovering common
intervals in indeterminate strings
Daniel Doerr1,2*, Jens Stoye1,2, Sebastian Böcker3, Katharina Jahn1,2,4

From Twelfth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics
Cold Spring Harbor, NY, USA. 19-22 October 2014

Abstract

Background: Comparative analyses of chromosomal gene orders are successfully used to predict gene clusters in
bacterial and fungal genomes. Present models for detecting sets of co-localized genes in chromosomal sequences
require prior knowledge of gene family assignments of genes in the dataset of interest. These families are often
computationally predicted on the basis of sequence similarity or higher order features of gene products. Errors
introduced in this process amplify in subsequent gene order analyses and thus may deteriorate gene cluster
prediction.

Results: In this work, we present a new dynamic model and efficient computational approaches for gene cluster
prediction suitable in scenarios ranging from traditional gene family-based gene cluster prediction, via multiple
conflicting gene family annotations, to gene family-free analysis, in which gene clusters are predicted solely on the
basis of a pairwise similarity measure of the genes of different genomes. We evaluate our gene family-free model
against a gene family-based model on a dataset of 93 bacterial genomes.

Conclusions: Our model is able to detect gene clusters that would be also detected with well-established gene
family-based approaches. Moreover, we show that it is able to detect conserved regions which are missed by gene
family-based methods due to wrong or deficient gene family assignments.

Background
Gene clusters are sets of functionally associated genes in
prokaryotic and fungal genomes that are located close to
each other over a longer period of evolutionary time,
despite the genome undergoing significant rearrangements.
Consequently, gene clusters may be found in several
related species by means of comparative gene order analy-
sis. Over the past years several such methods have been
proposed and subsequently improved in their sensitivity.
Initial gene cluster models considered only completely con-
served genomic segments that retain gene order and orien-
tation [1,2]. Later models still required gene clusters to be
contiguous and complete but dropped the requirement for
co-linearity [3-5]. The most powerful class of approaches

can handle imperfect conservation of gene content by
allowing to some extent either inserted [6-8] or both
inserted and deleted genes [9-11].
All above methods require prior knowledge of homology

relations between genes, using either a one-to-one map-
ping between the gene sets of different genomes [3,6,5], or
a general partitioning into gene families [4,7-11]. In the
latter, a genome is modeled as a set of sequences over the
alphabet of gene families, where each sequence corre-
sponds to a particular chromosome of the organism.
Most commonly, gene families are predicted computa-

tionally on the basis of sequence similarity. Various data-
bases exist that offer information of precomputed gene
families [12-14]. Furthermore, several software tools are
freely available that allow for direct computation of gene
family assignments in a dataset of interest [15-17]. Typi-
cally, these approaches assume that gene families naturally

* Correspondence: daniel.doerr@cebitec.uni-bielefeld.de
1Genome Informatics, Faculty of Technology, Bielefeld University, Bielefeld,
Germany
Full list of author information is available at the end of the article

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

© 2014 Doerr et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:daniel.doerr@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

cluster into densely connected subgraphs in the gene simi-
larity network. However, multi-domain proteins can have
strong ties not only to their own family but also to other
families they share a domain with. Some of these proteins
may not be at all traceable back to a single gene family.
While some recent approaches can deal with the ambigu-
ities caused by multi-domain proteins [18,19], it is still a
major challenge to define cut-offs in the clustering process
that at the same time eliminate spurious edges and keep
gene families at a reasonable granularity[20,21].
In this paper, we present a new dynamic model and

efficient computational approaches for gene cluster pre-
diction suitable in scenarios ranging from traditional
gene family-based gene cluster prediction, via multiple
conflicting gene family annotations, to gene family-free
analysis, in which gene clusters are predicted solely on
the basis of a pairwise similarity measure between the
genes of different genomes. We do this by introducing
the concept of common intervals to indeterminate
strings, which are a class of strings that can have more
than one character at every position. We then extend
this concept to allow for a limited number of insertions
and deletions. Furthermore, we present algorithms that
solve related discovery problems of finding all weak
common intervals and approximate weak common inter-
vals in indeterminate strings. Finally, we propose a new
method for gene family-free discovery of gene clusters
based on (approximate) weak common intervals in inde-
terminate strings.

Methods
Definitions
Indeterminate strings, also known as degenerate strings
are formally defined as [22]:
Definition 1 (indeterminate string) For a given finite

alphabet
∑

, let P(
∑

)be the power set of
∑

. An inde-
terminate string is a sequence of character sets, which
are elements of P(

∑
)\(∅).

In other words, for an indeterminate string S with n
index positions must hold that for every i, 1 ≤ i ≤ n,

S[i] ⊆
∑

and S[i] �= ∅, where S[i] denotes the character

set associated with the i-th position in S. In the special
case where every position of indeterminate string S holds
a singleton set, S is equivalent to an ordinary string. We
denote the length of an indeterminate string S with n
index positions by |S| ≡ n and its cardinality, i.e. the num-

ber of all elements in S, by ‖ S ‖≡
∑n

i=1
|S[i]|. Two posi-

tions a and b, 1 ≤ a ≤ b ≤ |S|, induce the indeterminate
substring S[a, b] ≡ S[a] S[a + 1] . . . S[b]. To distinguish
intervals in different indeterminate strings, we indicate the
affiliation of an interval [i, j] to indeterminate string S by
the subscript notation [i, j]S.

Example 1 S = {a, d, g}{c}{a, d}{e, f }{b}{c, g}is an inde-
terminate string of length |S| = 6and cardinality
||S|| = 11over alphabet

∑
= {a, b, c, d, e, f , g}. The third

element of S is given by character set S[3] = {a, b}. Inter-
val [2, 4]induces the substring S[2, 4] = {c}{a, d}{e, f }.
In this work, we generalize the concept of common

intervals, which were initially introduced on permuta-
tions [23] and subsequently extended to strings [24].
The idea behind common intervals is to compare
strings, or rather substrings, based on their character
sets. The character set of an ordinary string S is defined
as C(S) ≡ {S[i] | 1 ≤ i ≤ |S|}. The equivalent concept on
indeterminate strings is the following:
Definition 2 (character set) The character set of an

indeterminate string S is defined by C(S) ≡
⋃n

i=1
S[i].

In two ordinary strings S and T over a finite alphabet
Σ, two intervals, [i, j] in S and [k, l] in T, are called com-
mon intervals if C(S[i, j]) = C(T[k, l])). The analogon for
indeterminate strings is:
Definition 3 (strict common intervals) Given two

indeterminate strings Sand T, two intervals, [i, j]in Sand
Tin T, are said to be strict common intervals if and only
if their character sets C(S[i, j])and C(T[k, l])are equal.
A weaker definition based on the intersection relation

between character sets is:
Definition 4 (weak common intervals) Given two

indeterminate strings Sand T, two intervals, [i, j]in Sand
Tin T, are weak common intervals with common char-
acter set C = C(S[i, j]) ∩ C(T[k, l])if for each x, i ≤ x ≤ j,
it holds that C ∩ S[x] �= ∅and for each y, k ≤ y ≤ l, it
holds that C ∩ T[y] �= ∅.
In all our use cases, in particular when dealing with

conflicting gene family assignments as well as gene
family-free gene cluster detection, the concept of weak
common intervals appears to be more appropriate.
Thus, in the following, we restrict ourselves to the study
of weak common intervals.
Furthermore, continuing a previous line of research

initially proposed by Schmidt and Stoye in [4], we
further extend weak common intervals by allowing a
limited number of insertions and deletions:
Definition 5 (approximate weak common intervals)

Given two indeterminate strings Sand Tand a threshold
δ ∈ N0, two intervals, [i, j]in Sand [k, l]in T, are approxi-
mate weak common intervals with common character
set C = C(S[i, j]) ∩ C(T[k, l])if the number of positions
with no intersection with C is limited by δ, i.e.
|{x | i ≤ x ≤ j : S[x] ∩ C = ∅}| + |{y | k ≤ y ≤ l : T[y] ∩ C = ∅}| ≤ δ. These
positions are called indels.
Generally, algorithms for discovering common intervals

of ordinary strings only report pairs of intervals that both
are maximal, whereby maximality is defined as follows:
An interval [i, j] in string X is called maximal if its

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 2 of 12

immediate left and right neighboring characters, X[i − 1]
and X[j + 1] (if such exist), are not contained in C(X[i, j]).
In other words, interval [i, j] cannot be extended to its left
or right without expanding the character set of the
interval.
In terms of weak common intervals, we introduce the

following property derived from [11]:
Definition 6 (C-closed) Given an indeterminate string

S, an interval [i, j], and a character set C ⊆
∑

, interval
Cis C-closed if S[i], S[i] ⊆ C, and if i = 1or
S[i − 1] ∩ C = ∅, and if j = nor S[j + 1] ∩ C = ∅.
A reasonable balance between omitting expedient and

including apparently redundant weak common intervals
is found by the subset of those that are mutually-closed,
as defined as follows:
Definition 7 (mutually-closed) Given a pair of inter-

vals ([i, j]S, [k, l]T)of indeterminate strings S and T,
[i, j]Sand [i, j]Sare mutually-closed if ([i, j]S, [k, l]T)is
C(T[k, l]) -closed and [i, j]SC(S[i, j])-closed.
We consequently restrict the enumeration of weak

common intervals and approximate weak common
intervals to those that are mutually-closed.
Combinatorial complexity. The maximal number of

mutually-closed weak common intervals of two indeter-
minate strings S and T of length n and m, respectively,
is bounded by nm. This result follows from the fact that
the number of intervals [k, l] in T that are mutually-
closed weak common intervals with any interval with
fixed left bound i in S is bounded by m. Likewise, the
maximal number of mutually-closed approximate weak
common intervals of indeterminate strings S and T is
bounded by (δ + 1)2nm.
Gene family-free analysis. In absence of gene family

assignments, each gene in the dataset is represented by
a unique character, linearly ordered along a chromoso-
mal string. Therefore, the n characters of a chromoso-
mal string can be identified by their integer index set {1,
2, . . . , n}. Relating characters of one chromosomal
string to characters of another, we presume that we are
given a symmetric similarity measure sAB : A × B ®
ℝ≥0 for any two index sets A and B.
In gene family-free gene cluster analysis we aim at

finding pairs of intervals in two chromosomal strings,
whose characters are similar. We can reduce this pro-
blem to finding (approximate) weak common intervals
between two indeterminate strings. To this end, we con-
struct an index mapping BA:

BA[y] =
{ {x | x ∈ A : σAB(x, y) > 0} if any x ∈ A exists s.t. σAB(x, y) > 0

{∞} otherwise.

Thus, BA is an indeterminate string over alphabet
{1, 2, . . . , |A|,∞}. Let IA = {1}{2} · · · {|A|} represent the
indeterminate string of A, a position in IA shares a charac-
ter with a position in BA if and only if the similarity of the

two corresponding characters is non-zero. Thus, finding
intervals in chromosomal strings A and B, whose charac-
ters are similar, is equivalent to finding (approximate)
weak common intervals of indeterminate strings IA and
BA. Note that the set of (approximate) weak common
intervals of IA and BA is identical to the one of IB and AB.
The (approximate) weak common intervals differ in size
and, most substantially, in the similarities between charac-
ters within the interval pairs. Therefore, we introduce a
simple scoring scheme by which the solution space can be
arranged into a landscape of highs and lows of (approxi-
mate) weak common intervals, ranked by taking into
account the number and the similarities of the contained
characters. We define a score function µxy over an index x
in index set X and an interval [a, b]Y in index set Y as

μXY(x, [a, b]Y) =

⎧⎪⎪⎨
⎪⎪⎩

max
y ∈ [a, b]Y

σXY(x, y)

max
z ∈ Y

σXY(x, z))
if max

z ∈ Y
σXY(x, z) > 0

0 otherwise

so that µxy takes values between 0 and 1, being 1 if the
gene with highest similarity to x lies within interval [a, b]Y.
The overall score of two interval pairs ([i, j]A, [k, l]B) is then

score(([i, j]A, [k, l]B)) =
j∑

x = i
μAB(x, [k, l]B) +

l∑
y = k

μBA(y, [i, j]A)

We now describe three algorithms to compute all
mutually-closed weak common intervals and all mutually-
closed approximate weak common intervals with at most
δ indels in two indeterminate strings. Note that mutually-
closed weak common intervals are a special subclass of
mutually-closed approximate weak common intervals for
δ = 0.
In the following, we consider two indeterminate

strings S of length n and T of length m.

Discovering weak common intervals
We now describe the algorithm Weak Common Intervals
on Indeterminate Strings (WCII) as presented in Figure 1.
It solves the following problem:
Problem 1 Given two indeterminate strings Sand T, dis-

cover all mutually-closed weak common intervals of S and T.
To tackle this problem we make use of the following

constructs:
Definition 8 (index string) Given an indeterminate

string Sof length n, IS ≡ {1}{2} · · · {n} denotes the index
string of S.
Definition 9 (index mapping) Given two indetermi-

nate strings Sand T of lengths n and m respectively, the
index mapping of S onto T is given by (TS[y])y=1,...,m, where

TS[y] =
{ {x | x = 1, . . . , n : S[x] ∩ T[y] �= ∅} if T[y] ∩ C(S) �= ∅

{∞} otherwise.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 3 of 12

Note that index strings and index mappings are again
indeterminate strings. The key idea of WCII arises from
the following observation:
Observation 1 Given two indeterminate strings Sand

Twith index string ISand index mapping TS, two intervals
Sin Sand [k, l]in Tare weak common intervals if and only
if [i, j]ISand [k, l]TSare weak common intervals.

This equivalence holds because any two positions, x in
S and y in T intersect if and only if IS[x] and TS[y] inter-
sect. Since it holds that IS[x] = {x} for all x = 1, . . . , n,
we simplify the notation of single character set IS[x] to
just x and character set C(IS[i, j]) to just [i, j]. Note that
character c ∈ C(IS[i, j]) serves subsequently both as char-
acter c � [i, j] as well as index in IS.

Figure 1 WCII algorithm. WCII adapts the search strategy of Didier’s Algorithm [24] for common intervals in strings to the computation of
weak common intervals in indeterminate strings.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 4 of 12

WCII is an adaptation of Didier’s Algorithm [24] of
enumerating maximal common intervals in ordinary
strings. Didier’s strategy can be described as follows:
The algorithm iterates over all positions i in S as possi-
ble left interval bounds. In each iteration all mutually-
closed weak common interval pairs are reported that
share the same left bound i in IS. For each possible right
bound j ≥ i, the algorithm iterates through the set of
positions in TS that contain j in their character set. To
this end, we make use of an array POS, where POS[j], 1 ≤
j ≤ n, is a sorted list of positions in TS containing character
j. Each position y � POS[j] is associated with an interval
[k, l]TS, k ≤ y ≤ l, called the min-rank interval of character
j for position y. It is the largest interval around y for which
every position in [k, l]TS contains at least one character in
[i, j]. Obviously, [k, l]TS is [i, j]-closed. It remains to be
checked if [i, j]IS is closed w.r.t. C(TS[k, l]) and that every
position in [i, j]IS and [k, l]TS contains a character from
C = C(IS[i, j]) ∩ C(TS[k, l]). To show the latter, it is suffi-
cient to show that [i, j] ⊆ C(TS[k, l]), because the character
set of each position in IS corresponds to the single element
set of its index. The details of both tests are explained
below, after relevant data structures are introduced. If
both conditions are satisfied, a mutually-closed weak com-
mon interval pair is found and subsequently reported.
Like in Didier’s Algorithm, we employ two tricks that

improve the performance: precomputing min-rank inter-
vals and following paths of rank-nearest successors.
Precomputing min-rank intervals. In order to identify

min-rank intervals, it is sufficient to observe the smallest
character c ≥ i in each position. To this end, we make
use of the following construct:
Definition 10 (i-reduced string) Given index map-

ping TS, (Ti
S[y])y = 1,...,mis the i-reduced string of TS of the

ith iteration, where Ti
S[y] = min({c | c ∈ TS[y] ∪ {∞} : c ≥ i}).

Min-rank intervals in Ti
S are identical to rank intervals

as initially defined by Dider et al. [24]. Interestingly,
rank intervals in Ti

S correspond directly to min-rank
intervals in TS:
Lemma 1 The set of min-rank intervals in TSis identical

to the set of rank intervals in Ti
S.

Proof: Didier et al.[24] show that rank intervals in a
string are nested and that their number is bounded by
the length of the string.
Observe that for any position y in Ti

S the rank interval of
character j = Ti

S[y] is identical to the min-rank interval of j
at position y in TS. Let y be a position in TS and j � TS[y]
such that j > Ti

S[y]. Further, let [k, l]TS be the min-rank
interval of j at TS[y], j′ = max({c | c ∈ C(Ti

S[k, l]) : c ≤ j}),
and [k′, l′]TS be the min-rank interval of j’ at its corre-
sponding position in TS. Because j’ ≤ j it consequently
holds that [k′, l′]TS ⊆ [k, l]TS. Now, according to the defini-
tion of min-rank intervals, Ti

S[k′ − 1] > j′, if such position

exists. Since j’, is the largest character in Ti
S[k, l] that is

smaller than or equal to j, it must also hold that
Ti
S[k′ − 1] > j. The same argument holds for Ti

S[l′ + 1] if
such position exists, therefore [k, l]TS = [k′, l′]TS is the min-
rank interval of both characters j’ and j. We conclude that
all min-rank intervals for any character in TS at iteration i
are contained in the set of rank intervals of Ti

S. □
Consequently, all min-rank intervals in TS in the ith

iteration (i.e. for a fixed left bound i in IS) can be pre-
computed in O(m) time using the algorithm given by
Didier et al. [24]. They are stored in table INT. For a
currently processed character j at position y in TS, INT
[y] contains its corresponding min-rank interval. Unlike
Didier’s Algorithm, INT must be updated after each
iteration such that all positions in INT accessed in the
following (j + 1)th iteration contain the corresponding
min-rank intervals of character j + 1. Details of the
update step can be found in Additional file 1 Section
1.1.
Following paths of rank-nearest successors. The second

trick in the algorithm consists in increasing the right
bound j in IS while walking through positions and char-
acters of TS. Thereby the algorithm jumps from a cur-
rent position y that contains character j to its rank-
nearest successor, which is the position y’ containing
character j + 1 with the smallest min-rank distance to y
as defined as follows:
Definition 11 (min-rank distance) The min-rank dis-

tance of any two positions k and l in indeterminate string
TS for the ith iteration is given by:

diTS(k, l) ≡ max({Ti
S[p] | k ≤ p ≤ l})

If several co-optimal positions are available, the tie is
broken by choosing the leftmost one as rank-nearest
successor. In case no position with character j + 1
exists, or the smallest min-rank distance is ‘∞’, j has no
successor. For the ith iteration, all rank-nearest succes-
sors are precomputed and stored in table SUCC which
is explained in more detail in Additional file 1 Section
1.2.
Connecting characters larger than or equal to i at

their corresponding positions in TS with their rank-near-
est successors through directed edges results in a forest
of rooted trees. Nodes (across all trees) sharing the
same character are said to reside on the same level. In
lines 8-28 of Figure 1, the algorithm traverses along
paths through this forest in a bottom-up procedure,
from one level to the next, starting at those leaves with
character i. Besides the currently visited nodes of the
level, the algorithm keeps track of the path bounds,
which are the outermost positions in TS a path has vis-
ited thus far. The currently visited nodes of the paths
and their corresponding path bounds are stored in a list

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 5 of 12

labeled LIST. Only after all nodes of the same level j are
processed, the algorithm follows all current paths to
nodes of the next level j + 1, thereby ensuring that each
character in TS is processed at most once. To this end,
for all positions containing character j that have the
same rank-nearest successor y’, the algorithm discon-
tinues the paths of all but the leftmost one with shortest
min-rank distance to y’ (line 19). Traversing along paths
of rank-nearest successors in WCII differs from Didier’s
Algorithm by the fact that a position in TS may be vis-
ited by the same path several times on different levels.
For any given min-rank interval [k, l]TS there cannot be

more than one weak common interval partner in IS
starting at position i. Therefore it is sufficient to track
at least one path in each min-rank interval to find all
mutually-maximal intervals of IS and TS. Positions in
POS are sorted, thus paths leading to the same weak
common interval pair appear adjacent to each other in
LIST and the common interval pair is reported only for
the first (lines 15-17).
For each node in LIST, associated with character j and

position y, the algorithm checks if the min-rank interval
[k, l]TS of j encloses the path bounds up to position y
(see condition in line 15). If validated, a weak common
interval pair has been found, given by ([i, j]IS , [k, l]TS).
To ensure mutual closedness, the interval pair is only
reported if i − 1 is not contained in the character set
C(TS|k, l|) and the successor of y is not within the cur-
rent bounds of its path (see conditions in lines 13 and
15). Checking for the former can be achieved in O(1)
time after O(m) time preprocessing by performing a
range minimum query on an array of size O(m) where
each position containing character i − 1 is assigned 0
and 1 otherwise.
The overall complexity of the algorithm can be sum-

marized as follows: Each position in IS is regarded
exactly once as left bound i for all weak common inter-
vals that are reported in one iteration. Once Ti

S is com-
puted for i = 1 it can be up-dated using array POS,
taking overall O(||TS||) time for all left bounds i = 1, . . .
, n. Further, for each left bound the algorithm performs
O(m) steps to precompute all min-rank intervals and
O(||TS||) steps to precompute all rank-nearest succes-
sors. The subsequent bottom-up procedure and the
reporting of weak common intervals requires again
O(||TS||) time. Therefore we have:
Theorem 1 Given two indeterminate strings Sand T,

Algorithm WCII finds all pairs of mutually-closed weak
common intervals of Sand Tin O(n||TS||) time.

Discovering approximate weak common intervals
We now present the algorithm Approximate Weak
Common Intervals on Indeterminate Strings (AWCII) as
presented in Figure 2, thus line numbers mentioned in

this subsection refer to Figure 2. AWCII solves the fol-
lowing problem:
Problem 2 Given two indeterminate strings Sand Tand

indel threshold δ ∈ N0, discover all mutually-closed
approximate weak common intervals of Sand Twith no
more than δ indels.
Following a strategy similar to WCII, AWCII solves

Problem 2 for index mappings IS and TS, instead of S
and T. As before, in each iteration the algorithm main-
tains a fixed left bound i in IS. For each character j � [i,
n] all positions y in TS are processed that contain char-
acter j (lines 5-25). Thereby character j at position y in
TS can be associated with several different intervals
around y that are candidates of mutually-closed approxi-
mate weak common interval partners for interval [i, j]IS.
Only intervals surrounding one (or several) positions y
can be mutually-closed. However, for an interval [k, l]TS
containing indels, it no longer holds that the minrank
distance of any two positions within the interval is
always smaller than the min-rank distance from any
position inside to any position outside the interval. As a
result, neither precomputed min-rank intervals nor fol-
lowing paths of ranknearest successors can be used for
improving the algorithm’s performance. Instead we pur-
sue a different approach, thereby making AWCII an
adaptation of the RGC algorithm of Jahn [11].
For each dk = 1,..., δ (lines 7-23) AWCII identifies the

leftmost position k in TS such that at most dk indels are
contained in interval [k, y]TS and TS[k] ∩ [i, j] ≠ ∅. Let
d′
k ≤ dk be the observed number of indels in [k, l]TS (see
line 9), the algorithm then finds for each dl = 1,..., δ −
d’k (lines 14-21) the rightmost position l such that again
TS[l] ∩ [i, j] ≠ ∅ and the number of indels in [y, l]TS
does not exceed dl. Each (k, l) of the at most (δ + 1)2

combinations of leftmost and rightmost positions gives
rise to a candidate pair of mutually-closed approximate
weak common intervals ([i, j]IS , [k, l]TS). For each candi-
date pair it is checked that the number of characters in
[i, j] not contained in C(TS[k, l]) plus the already con-
sumed number of indels in [k, l]TS does not exceed δ.
Finally, it is tested if [i, j]IS is C(TS[k, l])-closed. If both
conditions are satisfied, a mutually-closed approximate
weak common interval pair is found and is subsequently
reported (line 18).
Runtime improvements are achieved by precomputing

right and left bounds of candidate intervals [k, l]TS for
each character j in TS. These bounds are computed
within O((δ + 1)||TS||) time for a fixed left bound i in IS
and stored in tables L and R respectively. Further, for
each such candidate interval [k, l]TS the number of char-
acters that are within [i, j] can also be precomputed.
This number is used to determine δS in line 16. The
construction of the corresponding table, called RANGE-
CONTENT, is achieved within O((δ + 1)2||TS||) time for

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 6 of 12

a fixed left bound i. The details of constructing tables L,
R, and RANGECONTENT can be found in Additional
file 1 Section 2. Note that RANGECONTENT differs
significantly from the data structure NUM used in RGC
to count characters in intervals.
In terms of overall runtime, for each fixed bound i in

IS the algorithm spends O((δ + 1)2||TS||) time on com-
putation of the above mentioned auxiliary tables. There-
after, AWCII requires O((δ + 1)2||TS||) time to iterate
through all combinations of candidate intervals in L and
R and to identify approximate weak common intervals.
Testing for C(TS[k, l])-closedness of interval [i, j]IS can

be achieved in O(1) time by precomputing a table for
all candidate intervals in TS of the ith iteration, where
each entry indicates if a character i − 1 or j + 1 is con-
tained in the corresponding candidate interval. Such a
table can be constructed within O((δ + 1) · ||TS||) time

using again a simple sweep algorithm. We conclude
with the following theorem:
Theorem 2 Given two indeterminate strings Sand

Tand indel threshold δ ∈ N0, algorithm AWCII computes
all pairs of mutually-closed approximate weak common
intervals of Sand Tin O((δ + 1)2 · n2||TS||)time.

A runtime heuristic for discovering approximate weak
common intervals
Our third algorithm, ACSI (see Figure 3) represents a
runtime heuristic that solves Problem 2 exactly and in
practice outperforms both WCII and AWCII in gene
family-free analysis by orders of magnitude.
Just as the two algorithms before, ACSI operates on

index string IS and index mapping TS instead of indeter-
minate strings S and T directly. For every fixed interval
[i, j] in IS, ACSI identifies mutually-closed approximate

Figure 2 AWCII algorithm. AWCII is a search algorithm for approximate weak common intervals in indeterminate strings. It is an adaptation of
RGC [11], an algorithm for computing approximate common intervals in strings.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 7 of 12

weak common interval partners [k, l] in TS. To this end,
it iterates through elements of POS[i], i.e. positions in TS

that contain character i (lines 3-7 of Figure 3). For each
such position y � POS[i] the algorithm calls a recursive
procedure, denoted EXTEND (line 5). This recursive pro-
cedure requires 5 parameters, corresponding to fixed
bounds [i, j]IS, the currently processed interval [k, l] in TS,
and the current number of allowed indels, d. In the initial
call, interval [k, l]TS is set to [y, y]TS and d = δ. EXTEND
then increases interval [k, l]TS to both sides until [i, j] ∩ TS

[k − 1] = ∅ and [i, j] ∩ TS[l + 1] = ∅ (line 10). If in this
process the algorithm observes characters i − 1 or j + 1
in C(TS[k, l]), EXTEND returns to the previous call (lines
11-13). Otherwise, it verifies if ([i, j]IS , [k, l]TS) is a
mutually-closed approximate weak common interval pair
by testing if the number of characters in [i, j] that are
missing in C(TS[k, l]) is less than or equal to the current
d and if i ∈ C(TS[k, l]) (line 14). The interval pair is

reported if both conditions are validated. EXTEND then
increases [k, l]TS to the left, thereby consuming indel posi-
tions as long as their overall number remains less than or
equal to the current d (line 17). If a position k’ < k − 1
has been found such that [i, j] ∩ T[k’] ≠ ∅, EXTEND is
called recursively with parameter values [i, j]IS, [k′, l]TS,
and the remaining number of allowed indels, given by d
+ k’ + 1 − k (lines 18-20). This step is also symmetrically
executed for the right side of [k, l]TS (lines 21-24).
The actual heuristic speed-up of the algorithm is

achieved by calling procedure EXTEND in line 5 not
for all intervals [i, j] in IS but only for those that have
chances of success for being a weak common intervals
pair with an interval [k, l] around a position y � POS
[i]. Thus, the neighborhood around position y is
scanned for suitable values of j prior to the execution
of EXTEND. The details are described in Additional
file 1 Section 3.

Figure 3 ACSI algorithm. ACSI is a runtime heuristic that computes all approximate weak common intervals in indeterminate strings.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 8 of 12

Results and discussion
In the following, we highlight the benefit of our dynamic
model in comparison with present approaches. Although
conflicting gene family assignments are extremely com-
mon in practice, this scenario is difficult to evaluate.
Assuming the existence of an ultimately true gene
family assignment, conflicts arise by incorrect gene
family assignments. Therefore an evaluation would
inevitably result in benchmarking gene family prediction
tools, rather than scrutinizing our model.
Instead, we decided to evaluate our gene family-free

model against the traditional gene family-based approach.
To this end, we chose a genomic dataset of bacterial gen-
omes that has been used in a prior gene cluster study [8]
and was originally obtained from [25]. The dataset features
133 chromosomal sequences, of which we removed all
sequences originating from plasmids.
In practice ACSI outperforms both WCII and AWCII

as shown by Figure 4. Thus, in all subsequent results, we
used ACSI to compute mutually-closed (approximate)
weak common intervals.
Gene family-based dataset. Genes in this dataset are

annotated with COG (Clusters of Orthologous Groups)
identifiers [12] which are used to establish homology
relationships between genes. The set of genes in the data-
set was revised by the latest available gene information
under the accession numbers of the respective genomes
at NCBI. To this end, genes that are meanwhile marked
as pseudo genes were removed from the dataset. No
genes were added, since COG annotations of new genes
are not available. We further omitted all genomes from
subsequent analyses of which more than 10 pseudo genes
were removed in this process. 93 genomes remained,
comprising on average 2726 genes (minimum/ maximum
number of genes: 784/8317).
Gene family-free dataset. Pairwise similarities between

genes in the dataset were obtained using the relative
reciprocal BLAST score (RRBS) [26]. Genes were com-
pared on the basis of their encoding protein sequence
using BLASTP+ [27] with an e-value threshold of 0.1
and disabled composition-based score adjustments.

For evaluation purposes, we produced different
degrees of pruned gene similarity sets by filtering spur-
ious gene similarities. For this, we employed an undir-
ected variant of the stringency criterion (parameterized
by f � [0, 1]) for gene similarities proposed in [28],
which is described in more detail in Additional file 1
Section 4.1.
To evaluate the gene family-free model, we ran an

implementation of ACSI for δ = 0 on the unpruned
gene similarity graph of our dataset and compared the
4015841 interval pairs with respect to the contained
COG identifiers. We discarded all pairs for which at
least one interval contained less than two genes with a
COG identifier. In the remaining 1194036 interval pairs,
we observed that the similarity in the set of COG identi-
fiers depends strongly on the intervals’ score (Table 1).
Among the clusters with a score greater or equal 10,
95% have the same set of identifiers in both intervals.
While this number decreases for smaller scores, still a
quarter of the interval pairs with a score lower than 1
do not differ in their COG identifiers. This shows that
our approach is able to detect gene clusters that would
also be detected with well-established gene family based
approaches.
This is not a surprise, as weak common intervals are

in fact a generalization of the classic common intervals
model: A run of ACSI on a dataset where similarity
scores are only set between members with the same
COG identifiers finds the exact same set of clusters as
the common intervals based approach.
To evaluate the predictive power of our approach, we

compare the output of our program to gene clusters
predicted by the reference gene cluster algorithm (RGC)
[11]. While this algorithm is capable of multiple genome
comparison and the detection of faint conservation pat-
terns, we use it in this context for pairwise genome
comparison to detect interval pairs (I1,I2) whose gene
sets have a symmetric set distance of at most 2. It has
been previously observed that the generalization to
approximate conservation underlying the reference gene
cluster approach is not only a way to find imperfectly

Figure 4 Runtimes of presented algorithms in practice. Running times of ACSI and AWCII with δ = 0 and WCII, measured in a sample of
24 arbitrarily chosen pairwise comparisons of genomes that are contained in the studied dataset. All algorithms produced identical output (as
expected). Running times are plotted against the number of pairwise gene similarities (equivalent to the size of ||TS||) contained in the pairwise
comparison.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 9 of 12

conserved clusters, but also a means to add robustness
against errors in gene family assignment. For example,
an interval pair may appear to have a set distance of
two because besides the shared genes, there is one gene
unique to I1 and one gene unique to I2. However a clo-
ser inspection of the genes reveals that these genes are
in fact homologs that were not recognized in the pre-
ceding partitioning of genes into homology families. We
ran RGC on all pairs of the 93 genomes setting para-
meters δ = 2 (maximal tolerated symmetric set distance)
and s = 3 (the minimum cluster size). The program
returned among others 192900 “single-mismatch clus-
ters”, i.e. clusters that have exactly one extra gene in
each interval. In 47453 (24.60%) of the single-mismatch
clusters, we observe a similarity score between the two
extra genes in our BLAST dataset. ACSI found 89.84%
of the single-mismatch clusters and for 75.24% the extra
genes turned out to be pairwise best hits. Moreover we
observe that in 18143 among the single-mismatch gene
clusters predicted by RGC the two extra genes have
exactly the same annotation string. (Annotations con-
taining the word “hypothetical” were ignored.) ACSI
finds 90.19% of these clusters. Surprisingly, 4.59% of the
single-mismatch clusters in which the two extra genes
had best hits to each other were not found by ACSI.
This is because for one or more of the other genes in
the cluster our BLAST results did not return any simi-
larity score to a gene in the other interval. Apparently
the elements of a cluster of orthologous groups can be
very faintly related in terms of sequence similarity.
Comparison with RegulonDB data. Among other

information about transcriptional regulation, RegulonDB
[29] provides a list of operon locations in Escherichia
coli K12. While the majority of operons in RegulonDB
are computationally predicted, some are also experimen-
tally confirmed. From 2649 operons reported in Regu-
lonDB, 846 span two or more genes. We mapped these
operons to the annotation of the E. coli K12 genome in
our data set. However, 104 operons contain genes that

are not annotated in our dataset and thus were omitted
from subsequent analysis. The remaining 742 operons
span between 2 and 16 genes, 71.83% of which span 2
or 3 genes. The number of detected gene clusters
depends strongly on the degree of evolutionary related-
ness between the E. coli K12 genome and other gen-
omes in the dataset. While ACSI and RGC predicted
many occurrences in other close related g-proteobacteria
in our dataset, for the majority of genomes only few
occurrences of operons were reported. Additional file 1
Section 4.2, gives an overview of the number of found
gene clusters in the dataset. The sets of reported oper-
ons found by ACSI and RGC are not entirely overlap-
ping. Instead, ACSI finds operons which RGC does not
find and vice versa. A complete overview of unique find-
ings for algorithms and parameter settings is shown in
Table 2.

Conclusions
In this work we introduced a new model to detect gene
clusters based on the study of (approximate) weak com-
mon intervals in indeterminate strings. In context of
gene family-free analysis, we presented a scoring scheme
for (approximate) weak common intervals which rates
both interval size and the degree of similarity between
the contained genes of an (approximate) weak common
interval pair. We use our gene family-free model to pre-
dict gene clusters between pairs of genomes. This
approach is evaluated in comparison with the common
intervals-based reference gene cluster model.
In addition to the use case of detecting gene clusters,

our algorithms can also be helpful to identify synteneous
blocks in a gene family-free analysis. The hierarchical nat-
ure of common intervals is maintained in our weak com-
mon intervals model, which makes it ideal for studying
potential synteneous blocks of arbitrary resolution. The
basic concept of common intervals in strings has seen
many generalizations in the past years which have greatly
increased its utility for biological studies, in particular the

Table 1 Statistics of overlaps between the COG identifier sets of pairs of weak common intervals.

score

overlap in % <1 [1 − 2] [2 − 3 [3 − 4] [4 − 5] [5 − 6] [6 − 7] [7 − 8] [8 − 9] [9 − 10] ≥ 10

100 28.1 22.0 46.7 78.4 90.2 75.6 84.6 63.2 86.5 78.4 95.0

[80 − 100[0.0 0.0 0.1 0.2 0.4 1.8 2.0 10.4 8.2 18.5 4.9

[60 − 80[1.7 1.7 2.7 2.1 2.7 13.6 8.4 17.4 4.0 2.6 0.2

[40 − 60[12.0 14.7 18.5 9.9 2.4 2.5 2.1 5.0 0.7 0.3 0.0

[20 − 40[0.1 0.1 0.3 0.7 1.1 3.4 1.5 1.8 0.1 0.2 0.0

[0 − 20[58.1 61.4 31.8 8.8 3.2 3.1 1.4 2.7 0.6 0.2 0.0

Total 30002 239077 289450 253643 199372 49254 58889 17952 23603 4568 28226

Columns stand for bins of weak common interval scores, rows for bins of overlap sizes of the COG identifier sets of weak common interval pairs. Values are
given in percent with respect to the total number of pairs per score bin given in the last row.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 10 of 12

simultaneous consideration of more than two strings,
requiring common intervals to occur in all or at least a
certain number of them. This generalization of (approxi-
mate) weak common intervals in indeterminate strings is
undoubtedly an interesting direction for future work.

Additional material

Additional file 1: Supporing Information

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors were involved in the early conception of the project. DD, KJ and
JS developed the methods and designed the analysis. DD and KJ performed
the evaluation and wrote the manuscript; all authors discussed the results,
commented on the manuscript, and read and approved its final version.

Acknowledgements
DD receives a scholarship from the CLIB Graduate Cluster Industrial
Biotechnology. KJ is funded by DFG grant ST 431/5-1.

Declarations
We acknowledge support for the Article Processing Charge by the German
Research Foundation and the Open Access Publication Fund of Bielefeld
University Library.
This article has been published as part of BMC Genomics Volume 15
Supplement 6, 2014: Proceedings of the Twelfth Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/15/S6.

Authors’ details
1Genome Informatics, Faculty of Technology, Bielefeld University, Bielefeld,
Germany. 2Institute for Bioinformatics, Center for Biotechnology (CeBiTec),
Bielefeld University, Bielefeld, Germany. 3Lehrstuhl für Bioinformatik, Friedrich-
Schiller-Universität Jena, Jena, Germany. 4Computational Biology Group,
Department of Biosystems Science and Engineering, ETH Zürich, Basel,
Switzerland.

Published: 17 October 2014

References
1. Tamames J, et al: Evolution of gene order conservation in prokaryotes.

Genome Biol 2001, 2(6):1-0020.
2. Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of

the entire yeast genome. Nature 1997, 387:708-713.
3. Heber S, Stoye J: Algorithms for finding gene clusters. Proceedings of WABI

2001 LNCS 2001, 2149:252-263.
4. Schmidt T, Stoye J: Quadratic time algorithms for finding common

intervals in two and more sequences. Proc of CPM 2004 LNCS 2004,
3109:347-358.

5. Heber S, Mayr R, Stoye J: Common intervals of multiple permutations.
Algorithmica 2011, 60(2):175-206.

6. Bergeron A, Corteel S, Raffinot M: The algorithmic of gene teams.
Proceedings of WABI 2002 LNCS 2002, 2452:464-476.

7. He X, Goldwasser MH: Identifying conserved gene clusters in the
presence of homology families. J Comp Biol 2005, 12(6):638-656.

8. Ling X, He X, Xin D: Detecting gene clusters under evolutionary
constraint in a large number of genomes. Bioinformatics 2009, 25(5):571.

9. Rahmann S, Klau GW: Integer linear programs for discovering approximate
gene clusters. Proceedings of WABI 2006 LNBI 2006, 4175:298-309.

10. Böcker S, Jahn K, Mixtacki J, Stoye J: Computation of median gene
clusters. J Comput Biol 2009, 16(8):1085-1099.

11. Jahn K: Efficient computation of approximate gene clusters based on
reference occurrences. J Comput Biol 2011, 18(9):1255-1274.

12. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV,
Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S,
Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database:
an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.

13. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R,
Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P: eggNOG v3.0:
orthologous groups covering 1133 organisms at 41 different taxonomic
ranges. Nucleic Acids Res 2012, 40(Database):284-9.

14. Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV: OrthoDB:
the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res
2011, 39(Database):283-8.

15. Shi G, Peng MC, Jiang T: MultiMSOAR 2.0: an accurate tool to identify
ortholog groups among multiple genomes. PLoS one 2011, 6(6):20892.

16. Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.

17. Ostlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O,
Sonnhammer ELL: InParanoid 7: new algorithms and tools for eukaryotic
orthology analysis. Nucleic Acids Res 2010, 38(Database):196-203.

18. Song N, Sedgewick RD, Durand D: Domain architecture comparison for
multidomain homology identification. J Comput Biol 2007, 14(4):496-516.

19. Joseph JM, Durand D: Family classification without domain chaining.
Bioinformatics 2009, 25(12):45-53.

20. Frech C, Chen N: Genome-wide comparative gene family classification.
PLoS one 2010, 5(10):13409.

21. Liu J, Rost B: Domains, motifs and clusters in the protein universe.
Current Opinion in Chemical Biology 2003, 7(1):5-11.

22. Holub J, Smyth WF: Algorithms on indeterminate strings. Proc of AWOCA
2003 2003, 36-45.

23. Uno T, Yagiura M: Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica 2000, 26(2):290-309.

24. Didier G, Schmidt T, Stoye J, Tsur D: Character sets of strings. J Discr Alg
2007, 5(2):330-340.

25. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward
automatic reconstruction of a highly resolved tree of life. Science 2006,
311(5765):1283-1287.

26. Pesquita C, Faria D, Bastos H, Ferreira AE, Falcão AO, Couto FM: Metrics for
GO based protein semantic similarity: a systematic evaluation. BMC
Bioinformatics 2008, 9(Suppl 5):4.

27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

28. Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ:
Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinformatics 2011, 12:124.

29. Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-
Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I,
Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-

Table 2 Unique findings (with 100% overlap) of operons by
ACSI and RGC with minimum cluster size s = 2 and varying
parameters.

Unique to. . . RGC RGC ACSI ACSI ACSI ACSI

δ = 0 δ = 2 δ = 0, δ = 0, δ = 2, δ = 2,

f = 0.0 f = 0.9 f = 0.0 f = 0.9

RGC δ = 0 - 118 133 119 190 175

RGC δ = 2 0 - 56 49 80 72

ACSI δ = 0, f = 0.0 4 45 - 0 61 52

ACSI δ = 0, f = 0.9 11 59 21 - 82 62

ACSI δ = 2, f = 0.0 0 8 0 0 - 0

ACSI δ = 2, f = 0.9 5 20 11 0 20 -

Each column shows the number of unique findings of an algorithm and
parameter setting indicated by the column heading in comparison to
algorithms and parameter settings specified in the rows.

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1471-2164-15-S6-S2-S1.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/15/S6
http://www.ncbi.nlm.nih.gov/pubmed/9192896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9192896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19158161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19158161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19689215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19689215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21896618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21896618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21896618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17572026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17572026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12547420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16513982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16513982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21526987?dopt=Abstract

Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-
Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-
Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A,
Morett E, Collado-Vides J: RegulonDB v8.0: omics data sets, evolutionary
conservation, regulatory phrases, cross-validated gold standards and
more. Nucleic Acids Res 2013, 41(Database):203-13.

doi:10.1186/1471-2164-15-S6-S2
Cite this article as: Doerr et al.: Identifying gene clusters by discovering
common intervals in indeterminate strings. BMC Genomics 2014
15(Suppl 6):S2.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Doerr et al. BMC Genomics 2014, 15(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/15/S6/S2

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/23203884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23203884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23203884?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Definitions
	Discovering weak common intervals
	Discovering approximate weak common intervals
	A runtime heuristic for discovering approximate weak common intervals

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

