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Abstract

identifying diagnostic polymorphisms.

candidate sites with a high degree of confidence.

Background: High-throughput sequencing is a cost effective method for identifying genetic variation, and it is
currently in use on a large scale across the field of biology, including ecology and population genetics. Correctly
identifying variable sites and allele frequencies from sequencing data remains challenging, in large part due to
artifacts and biases inherent in the sequencing process. Selecting variants that are diagnostic is commonly done
using diversity statistics like Fs7, but these measures are not ideal for the task.

Results: Here, we develop a method that directly calculates the expected amount of information gained from
observing each variant site. We then develop and implement a conservative estimator that takes into account
uncertainity introduced by sampling bias and sequencing error. This estimator is applied to simulated and real
sequencing data, and we discuss how it performs compared to the commonly used existing methods for

Conclusion: The expected information content gives an easy to interpret measure for the usefulness of variant
sites. The results show that we achieve a clear separation between true variants and noise, allowing us to select

Background

SNP Selection

A large part of the genetic variation in a species come in
the form of single nucleotide polymorphisms (SNPs) [1].
Technological advances in high-throughput sequencing
have made it possible to detect variations on genome-
wide scales, also for non-model species. With current
developments in high resolution genotyping technologies
like SNP arrays and high-throughput mass spectrometry,
SNP analysis is quickly becoming an indispensable tool
in many fields of biology.

In spite of improvements to technology, SNP analysis is
still limited by genotyping cost and capacity. It therefore
remains an important challenge to find a set of SNP mar-
kers that is as effective and efficient as possible. To be pre-
cise, we want to identify the minimal set of SNPs that
must be examined in order to draw conclusions with an
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acceptable certainty - viz., the SNPs that are most informa-
tive for the task at hand. For instance, when selecting
SNPs that are diagnostic (i.e., that can be used to identify
individuals as belonging to one of two or more groups),
we would like to pick a small set of sites that provide the
most information about the individual’s group affiliation.
Although one could achieve the same certainty (at a some-
what higher cost) using a larger set of individually less
informative SNPs, this would also increase the risk of over-
fitting the model to the data. Careful selection of SNPs is
therefore not just an issue of economy and expedience,
but also of accuracy.

Diagnostic SNP identification
In practice, diagnostic SNPs are usually identified and
ranked or selected using some variation of the following
procedure:

First, samples are collected from individuals from
the populations of interest, and DNA is extracted and
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sequenced to a depth deemed reasonable in terms of
cost and benefit. Sequencing each sample individually is
advantageous for reliably detecting rare alleles and to
ensure a more complete SNP discovery [2], and is less
sensitive to variation in molarity in the samples [3,2]. In
spite of these advantages, collecting multiple samples
in pools before sequencing can still be more cost effec-
tive, in particular for novel SNP discovery in less well-
studied species and when sample material is abundant
[4]. The sequence data is typically filtered for quality
and contamination, mapped to a reference genome
sequence using a short read alignment program, and
putative SNPs are identified when reads differ from each
other or from the reference.

The set of putative SNPs are then evaluated using some
diversity statistic (e.g., Fs7), or statistical confidence in
allele frequency difference (e.g., using Fisher’s exact test,
[5]). Often several measures are used, and candidates are
typically filtered on one criterion (e.g., p-values), and then
ranked using the other (e.g., Fsr). Sites can also be
excluded based on coverage and more specific error esti-
mates using base quality or mapping quality.

In practice, some additional care is often taken in the
selection of candidate sites. For instance, one might
require a certain minimum distance between sites in the
genome in order to avoid unwanted correlations, or
exclude sites in regions with low average mapping quality.

Challenges with this approach

There are many statistics that could be used to identify
diagnostic SNPs (the properties of several such statistics
are reviewed by Rosenberg [6], other options are discussed
by Zhou et al. [7]), but Fsr is perhaps most commonly
used [8], and is readily calculated from identified allele
frequencies.

Unfortunately, Fsr is less than ideal for several reasons.
It is a population genetics statistic, and must be calculated
using some estimator. There exist several different options
(e.g., reviews by Weir and Hill [9] and Holsinger and Weir
[10], others are suggested by Karlsson et al. [11] and
Fumagalli et al. [8]) which can give different results, and
thus Fgr statistics may not be directly comparable between
studies. Fsr is not robust to errors in the data, something
that becomes a challenge with the relatively high number
of errors and large number of candidate sites that typically
arise from sequencing data. When coverage is low, a low
number of sequencing errors can shift statistics substan-
tially, and the highest Fs7 scores tend to come from sites
with low coverage. To counter this, coverage thresholds
can be used, but this excludes a substantial fraction of can-
didate sites. And, although commonly used in this role,
Fqr is controversial as a measure of differentiation. In par-
ticular, where heterozygosity within populations is high,
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Fsr will be lowered, regardless of the differences between
populations [12].

An alternative (or complimentary) approach is to use p-
values for allele difference, usually calculated using Fisher’s
exact test, but other options are also possible [7]. One
challenge here is that although we are usually interested in
the magnitude of the allele differences, this is only taken
indirectly into account by p-values. Variation in sequen-
cing coverage means that sites with high coverage will
tend to have higher confidence, even if the actual allele dif-
ference is small [13]. Even with no difference between
population, sampling will introduce artificial differences,
which will result in significant p-values if the coverage is
sufficiently high. In addition, Fisher’s exact test does not
generally take into account the possibility of errors - the
observation of a single allele will exclude an underlying
frequency of zero for the observed allele, even if that may
well be the case if the observation is an error.

Outline

In the following, we derive a method for calculating the
expected information to be gained from genotyping a spe-
cific site, and argue that this is a more intuitive and useful
measure for evaluating diagnostic SNPs than the com-
monly used alternatives. We will first describe how to cal-
culate the expected informatino given a priori knowledge
of allele frequency, we will then proceed to develop a
method to make a conservative estimate for this statistic,
taking into account sampling bias and uncertainty in the
data. Finally, we provide an implementation, and discuss
the results from applying it to both simulated and real
data sets.

Methods
Expected site information
Given the drawbacks to using Fsr discussed above, it is
perhaps tempting to instead use some other measures, like
nucleotide diversity or absolute difference in allele fre-
quency. However, it is easy to see that nucleotide diversity
per site (defined as the probability of samples having dif-
ferent alleles, i.e., p(1 — q) + (1 — p)q where p and g are
the major allele frequencies in the two populations) fails
to measure divergence when one of the populations has
an allele frequency of 0.5 - substituting p = 0.5 in the for-
mula above results in 0.5(1 - g) + (1 - 0.5)g, and it is easy
to see that nucleotide diversity will be 0.5 regardless of g.
Absolute difference in allele frequencies (|p - ¢g|) is per-
haps better, but consider populations where one allele’s
frequencies in the two populations are 0.4 and 0.6, respec-
tively. Assigning an individual to a population based on
observing this allele not inspire a lot of confidence in the
result, they are roughly equally likely. Although the differ-
ence between allele frequency is the same for a site with
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allele frequencies 0.05 and 0.25, observing this allele is
here five times as likely in one population as in the other,
intuitively making this a much more useful site to observe.

For diagnostic SNP, what we really would like to know
is the amount of information observing each site contri-
butes. Using Bayes theorem, observing an allele a in
some individual N, gives us the following posterior
probability for N belonging to some population A4,
where the allele frequency, P(a|A), is known:

P(alA)

P(Ala) = P(a)

P(A)
Here, P(A) is our prior probability of N belonging to
A, which after observing a is modified by a factor of

P(alA)
P(a)

In order to assign N to one of several populations
(either A or B, say), we are interested in the relative prob-
abilities for the two hypotheses. In other words, we would
like to know the odds for N belonging to one population
or the other. Given the probabilities of P(a|A) and P(a|B),
and initial odds P (A)/P(B), we get

P(Ala) _ PalA)P(A)/P(a)
P(Bla) ~ P(alB)P(B)/P(a)

Canceling out P(a), we find that the prior odds are
modified by:

P(alA)
P(alB)

That is, the ratio of this allele’s frequencies in each of
the populations. For practical reasons, we take the loga-
rithm of the odds. This gives us scores that are additive
and symmetric (so that switching the two populations
gives us the same score with the opposite sign). Specifi-
cally, base two logarithms will give us the score in bits.

When observing a site, we may of course also encounter
the alternative allele. By the same reasoning as above, we
find that this allele modifies the prior odds by

1 — P(alA)
1 — P(alB)

Lacking any specific information about priors, we
can consider each population equally likely, and the
likelihood of observing a particular allele is the average
of the likelihood in each population. The information
gain from each possible allele is then averaged,
weighted by this average likelihood. For a biallelic site
with major allele frequencies p and g (and consequen-
tially, minor allele frequencies of 1 — p and 1 - ¢) in
the two populations, the expected added information
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from the site then becomes:

p+q
2

_p+q

1
+( )

I(p. q) =

p 1-p
1Og2q‘

) |1oga -

Note that we are here only interested in the amount of
information gained, regardless of which hypothesis it
favors, and thus we take the absolute values. For a site
with multiple alleles enumerated by i and with frequency
vectors p and q in the two populations, this generalizes to:

pi + i pi
I(p,q)——jg: )

i

log,

Returning to the example at the start of the section,
we now find that a site with allele frequencies of 0.4
and 0.6 contributes 0.58 bits of expected information,
while 0.05 and 0.25 contributes 2.32 bits. Unlike mea-
sures like Fs7, measures of [ is additive (assuming inde-
pendence between sites), so the information gained
from observing multiple sites is readily calculated, and
observing with an ESI of 2.32 bits is equivalent to obser-
ving four sites with ESI 0.58.

It may also be instructive to compare this procedure to
sequence alignment and position specific score matrices
(PSSMs). In sequence alignment, a sequence of nucleotides
or amino acids are scored by comparing its match to a tar-
get sequence to its match to some base model using log
odds scores. The base model to compare against is often
implicit (typically using sequences of random composition),
but more elaborate models is also possible ([14]). Similarly,
position specific frequency matrices are often converted to
position specific score matrices using log odds. Calculating
the information value from a set of observed alleles is then
analogous to scoring an “alignment” of the set of observed
alleles to two different sets of allele frequencies.

Allele frequency confidence intervals
In order to apply the above method in practice, we need
to measure the allele frequencies in the population. This
is problematic for two reasons: First, we do not have
precise knowledge of the allele frequencies, we can only
estimate them from our sample, which introduces a
sampling bias. Second, the sequencing process intro-
duces additional artifacts that add nose and bias to the
data. For instance, sequencing errors often result in sub-
stitutions, which are observed as apparent alleles. In
addition, sequences can be incorrectly mapped, contain
contamination, the reference genome can contain col-
lapsed repeats, and the chemistry of the sequencing pro-
cess is usually also biased - for instance, coverage is
often biased by GC content. These artifacts often give
the false appearance of variant positions.

One challenge with calculating site information from
sequencing data (as opposed to using allele frequencies
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directly), is that such errors in the data can vastly over-
estimate the information content. For instance, an allele
that appears to be fixed in one population means that
any other observed allele will assign the individual to
the alternative population - regardless of any other
alleles. It is easy to see that an allele frequency of zero
results in the odds going either to zero or infinity, and
thus the log odds will go to either positive or negative
infinity.

For diagnostic SNP discovery, it is more important to
ensure that identified SNPs are informative, than to pre-
cisely estimate the information content. Thus, we take a
conservative approach and use upper and lower limits
for the allele frequencies by calculating confidence inter-
vals using the method by Agresti and Coull [15]. In
addition, the limits are also adjusted by a factor €, cor-
responding to sequencing error rate. In the following,
we will refer to the resulting measure as conservative
site information, or CSI.

Results

Simulated data

A set of simulated reads were generated using FlowSim
[16], using a procedure adapted to populations genetics
studies [17]. A section of 10 megabases, comprised of
the four largest scaffolds, was extracted from the salmon
louse (Lepeophtheirus salmonis) draft genome assembly.
Random substitutions were introduced at a rate of 1/
200 bases to generate three different haplotypes, which
where then admixed in proportions 1:2:3 and 3:2:1 to
generate two population, P; and P, with variant allele
frequencies of 0.17, 0.33 and 0.50, as shown in Table 1.

Simulated reads were then generated with genome cov-
erages of 10x, 20x, and 40x from each of the populations,
using substitution rates of 0.002, 0.01 and 0.02. To simplify
analysis, the indel rate was held constant at 0.001.

The reads were mapped to the reference genome
using the BWA short read mapper [18], and analyzed
using Samtools’ mpileup command [19]. In addition to
the methods described here, Popoolation [20] was used
to calculate Fs7 and p-values from Fisher’s exact test.
CSl scores for divergent and non-divergent sites
In Figure 1 we see that CSI clearly separates the divergent
and non-divergent sites. At low CSI scores, the separation
is approximately a factor of 10, and it increases with
increasing CSI scores to a factor of about 100. Here, the

Table 1 Statistics for the variants from haplotypes H1,
H2, and H3, as mixed in populations P' and P>.

haplotype MAF, P, MAF, P, Fsr ESI
H1 0.17 0.50 0.125 16
H2 033 033 0 0

H3 0.50 0.17 0.125 1.6
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number of divergent and non-divergent sites are approxi-
mately equal. The actual CSI value for the divergent sites
are 1.6, we see that the program provides a conservative
estimate, and only three sites score higher. The error rate
does not seem to affect scores to a large degree.

Figure 2 shows how the scores are affected by varying
the coverage. Although false positive scores aren’t mark-
edly affected by variations in coverage, the scores for
divergent sites increase substantially as coverage
increases. This indicates that, at least for the coverages
and error rates studied here, controlling variation in
coverage (and sampling bias) is more important than
substitution errors.

Comparing CSI and traditional statistics

The relationship between CSI and p-values is shown in
Figure 3. Although all sites are non-divergent, we obtain
many higher p-values at higher coverage, indicating that
Fisher’s exact test is upwardly biased as coverage increases.

In Figure 4, the relationship between CSI and Fsy is
explored. Especially, at low coverage, many sites show a
very high Fsr value. As coverage increases, both the
variation and expectation of Fgr is reduced, and also the
correlation between CSI and Fgr improves.

It is also instructive to contrast Fg; values with
p-values (Figure 5). Since most polymorphic sites result
in a non-zero p-values and Fsr, the diagram is notice-
ably denser than Figures 3 or 4. There is also a clear
banding effect; as coverage increases, Fs7 values tend to
decrease, and p-values increase, and the bulk of the data
is rotated in a clockwise direction.

Comparing CSI and Fy for divergent and non-divergent
sites

Adding the divergent sites in Figure 6, we see that the dis-
tribution for the divergent sites extend the general distribu-
tion for the non-divergent sites.

Real data
One important use for SNPs, is to assign individuals to
their respective populations or subpopulations. For
instance, the quantity of Norwegian farmed salmon
exceeds the wild river populations by a large factor. As sal-
mon occasionally escape from sea farms, the ability to
effectively identify escapees is important both to identify
the farms responsible, as well as quantifying the ecological
effects of introgression. Here SNPs will play an important
role by providing a low-cost, high resolution data [21].
Below, we examine pooled salmon sequencing data from
rivers Flekkeelva and Suldalselva, and investigate the
resulting CSI distributions. From each of the rivers, two
pools were sequenced using Illumina HiSeq, resulting in
datasets Fy, F,, S; and S5, each containing between 346
and 397 million aligned reads, corresponding to coverages
of 11.5x to 13.2x, assuming a genome size of 3 gigabases.
The data sets were then merged by river (combining F;
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Figure 1 Expected site information (CSI) calculated on divergent and non-divergent sites in simulated reads with an expected
coverage of 20x and error rates of 0.002, 0.01, and 0.02.

with F, and S; with S,), and by replicate (combining F;
with S; and F, with S,, to provide a model for false
discoveries).

Comparison

It can be seen from Figure 7 that, as expected, we identify
a larger number of sites when comparing between rivers
than between the mixed replicates, and although the
separation is not as clear as for the simulated data, the
slope is similar. The difference increases (and thus identifi-
cation accuracy) with increasing scores, but there remain
several high-scoring sites also in the replicates comparison.
Filtering by coverage

A closer examination of the data reveals that many of the
high scoring sites have a coverage substantially higher
than the expected combined coverage of approximately
50x. This can be due to collapsed repeats in the genome
assembly or other artifacts of the assembly, sequencing, or
mapping processes. To investigate this, sites were filtered
by coverage, retaining only sites with a total coverage of
50 + 20 (which corresponds to roughly three standard

deviations of a Poisson distribution). The results are
shown in Figure 8, for comparison the unfiltered results
from Figure 7 are retained with dashed lines.

We see from Figure 8 that filtering on coverage elimi-
nates some of the noise, most noticeable for higher CSI
values. The effect of filtering also tends to reduce the
scores between the replicate pools more than the river
pools, this observation is also supported by the total num-
ber of identified SNP, as summarized in Table 2. In all
cases a large number of sites are removed, 30% (rivers)
and 33% (replicates) of the identified sites.

Discussion

Statistics, coverage, and sequencing errors

It is striking that p-values for the non-divergent sites
increase with coverage. For instance, out of the 36000
non-divergent sites, we expect approximately 36 sites by
chance to have a p-value less than 107, For 10x coverage,
we find 9, for 20x, we find 35, and for 40x we find 70. This
indicates that p-values are biased upwards with increasing
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Figure 2 Expected site information (CSI) calculated on divergent and non-divergent sites in simulated reads using various coverages.
The error rate is 0.01.
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Figure 4 Comparing the expected site information (CSI) with Fsr values at various coverages and with a substitution rate of 0.01. All
sites are non-divergent, i.e. the real Fsr and CSI are both 0.
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Figure 6 Comparing the expected site information (CSI) with Fs; for divergent and non-divergent sites, using a 20x coverage and a
substitution rate of 0.01.
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Figure 8 Comparing the expected site information (CSI) between pools mixed from both rivers, and single-river pools, filtered by
coverage. The right axis shows the ratio of between-river scores to between-replicates scores for the coverage-filtered sites.

coverage, and must be consequently be interpreted with
care [13]. The expectation and variance of Fg7 similarly
depends on coverage. In contrast, low coverage in combi-
nation with sequencing errors and incorrectly mapped
reads here result in a large number of high-scoring non-
divergent sites. Using a combination of these measures
may be effective, but also effectively narrows the data set,
much like a stringent filtering for coverage.

Simulated data is by definition a simplification of rea-
lity. For instance, here the data assumes uniform prob-
ability of reads across the genome, and unbiased and

context independent sequencing errors. Also, divergent
and non-divergent positions occur in similar numbers in
the simulated data, in reality, there will be a continuous
spectrum of allele frequencies, and it will depend globally
on the degree of divergence between populations, and
locally on selection and other non-random evolution pres-
sures. Results from simulated data must, as always, be
interpreted as optimistic. In practice, coverage will vary
substantially across a sequenced genome. In general, high
variance regions tend to have lower mapping [22], but
other factors are bias caused by GC-content, misassembly

Table 2 The number of sites with non-zero expected site information, both in absolute numbers and in percent of an

estimated 3 gigabase genome, before and after filtering for coverage.

Comparison # sites % genome
Between rivers 699970 0.023
Between rivers, filtered 493163 0.016
Between replicates 450814 0.015
Between replicates, filtered 303972 0.010
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and collapsed repeats, copy-number and other structural
variations, incorrect mapping, sampling bias (including
from variation of molarity in DNA samples). Real data sets
must therefore be expected to contain a wide range of cov-
erages, mapping reliability, and sequencing error rates.

Other information theoretic measures

Although not commonly applied, information theoretic
measures have been used previously in analyzing genetic
variation. Expected site information is related to Kull-
back-Leibler divergence [23], but differs in that it is sym-
metric and extended to multiple alleles. Rosenberg [6]
gives a summary of several alternative statistics, and also
develops an information theoretic measure that contrasts
individual populations with an average of all population.
This measure is then used to infer ancestry, and applied
to microsatellite data. Here, we develop an information
theoretic measure in a Bayesian context, and apply it to
high-throughput sequencing data.

Dealing with sequencing errors and artifacts

Based on the assumption that most sequencing errors will
be singletons, Achaz [24] developed variants of several esti-
mators for ® which avoids taking singletons into account.
Achaz’ formulas were later adapted to high-throughput
sequencing experiments, and given a more generalized (but
approximate) form that allowed an arbitrary lower bound
on number of observed alleles [4]. However, much of the
genetic diversity is in the form of low frequency alleles, and
as singletons also have a high impact on many statistics
[24], these estimators have lower power [24,2]. It is also
possible to attempt to quantify the errors more precisely by
leveraging characteristics of the data [5].

Future work

Here, we have focused on the expected information con-
tent. As this is an additive measure, it is straightforward to
sum over multiple sites to get the expected information
for a set of SNPs. Since rare alleles yield more information
than common ones, a natural extension might be to con-
sider instead the minimum information content from a set
of loci, ensuring that we can reach a conclusion even if we
are unlucky with the actual alleles observed. Yet another
option is to calculate a confidence interval for the
information.

Conclusions

When selecting diagnostic SNPs, we want to find sites that
provide the most information regarding our current pro-
blem. Although this is commonly measured using statistics
like Fgr, these are indirect measurements, proxies for the
actual information. In addition, we have seen that it and
other commonly used statistics have intrinsic biases when
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applied to sequencing data, due to coverage variation,
sequencing artifacts, and mapping errors.

As an alternative, we have derived a direct calculation of
the expected site information from allele frequencies, using
a Bayesian framework. In addition to being a direct mea-
surement of the value of interest, it has a clear interpreta-
tion, and desirable properties, like additivity. We have
further developed a conservative estimator for this sta-
tistic, and provide an implementation.

Availability

The method as described above was implemented in a
program, ‘varan’, which parses read alignments in the stan-
dard “mpileup” format as output by the samtools mpileup
command. It can currently output several different statis-
tics and estimators, including conservative expected site
information (CSI). The software is distributed under the
General Public License, and the source code can be down-
loaded from http://malde.org/~ketil/biohaskell/varan.
Further information and documentation is available from
http://biohaskell.org/Applications/Varan.

Simulation data, tables, and scripts used in this paper
is available from http://malde.org/~ketil/papers/varan.
The salmon louse genome used to generate the simu-
lated reads is available from http://sealouse.imr.no/.
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