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Abstract

Background: Computational prediction of major histocompatibility complex class Il (MHC-I) binding peptides can assist
researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although
many computational methods have been proposed, the performance of these methods are far from satisfactory. The
difficulty of MHCHI peptide binding prediction comes mainly from the large length variation of binding peptides.

Methods: We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHCHI
binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in
the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9
amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As
such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances
between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions.

Results: Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is
significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing
amino acids at key positions in the instance. The results are consistent with those reported in the literature on
MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen,
the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the
binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-
the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In
addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL is
freely available at http://datamining-iip.fudan.edu.cn/service/MHC2MIL/index.html.

Background

Major Histocompatibility Complex (MHC) molecules
play important roles in adaptive immune response. An
important function of MHC molecules is to bind peptide
fragments derived from pathogens and to display them
on the cell surface for being recognized by appropriate
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T cells [1]. This stimulates subsequent immune response
in order to fight against these pathogens. The MHC gene
family is mainly divided into two subgroups: class I
(MHC-I) and class II (MHC-II). Peptides presented by
MHC-I originate from proteins produced within a cell,
while those by MHC-II are from the outside of the cell.
T helper cells (one type of T cells), which are activated
by the peptides presented by MHC-II molecules, control
or help the immune response. Therefore, accurate
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identification of MHC-II binding peptides is crucial in
understanding the mechanism of immune systems, as
well as in developing peptide-based vaccines for treating
some serious diseases, such as hepatitis, EB virus, autoim-
munity, and cancer [2]. Compared to biochemical experi-
ments with high costs in both time and finance,
computational methods are more economic in that they
can be quickly deployed to select a small number of pro-
mising peptides for further biochemical experimental
verification.

Computational methods for predicting MHC-I binding
peptides are reported to produce considerable results of
AUC (Area Under ROC Curve) between 0.85 and 0.95
[2]. This is because the prediction of MHC-I binding
peptides is relatively easy, where the binding groove of
MHC-I molecules is closed at both ends and the bind-
ing peptides usually have a length between 8 and 11
amino acids [1]. However, the prediction of MHC-II
binding peptides is more challenging. One main reason
for this is that the binding groove of MHC-II molecules
is open at both ends, which leads that the MHC-II bind-
ing peptides typically vary from 11 to 20 amino acids in
length [3]. Usually MHC peptide binding core is of 9
amino acids that fit into 9 pockets of MHC binding
groove. Although a number of computational methods
has been developed to predict MHC-II binding peptides
in the last few years [4-18], recent experimental results
on various benchmark datasets show that the perfor-
mance of these methods needs to be improved [2,19].
These computational methods can be divided into two
groups: allele-specific and pan-specific methods [2]. In
the allele-specific methods, both training and test pep-
tides are for a same MHC molecule. In contrast, pan-
specific methods can predict the binding peptides of
MHC molecules that have very few or even no training
data [2,20,21]. In this work, we focus on allele-specific
methods that are the basis of pan-specific methods.

According to underlying techniques used, the allele-
specific methods can be roughly divided into four groups:
position specific score matrix (PSSM) based methods,
artificial neural network (ANN) based methods, kernel
based methods, and multiple instance learning based
methods. Although TEPITOPE [10], ARB [8], CombLib
[9], TEPITOPEpan [17] and SMM-align [4] are all PSSM
based methods, they differ significantly in the way of gen-
erating the score matrices. TEPITOPE is the first PSSM
method in which the score matrix is obtained by examin-
ing the binding specificities of target MHC molecule in
each pocket using biochemical experiments. The PSSM
of ARB is modeled by the difference of average binding
affinity among 6 residue groups. The CombLib method
derives the matrix from a positional scanning combina-
torial libraries consisting of 180 peptides for each MHC
molecule. TEPITOPEpan extends TEPITOPE by covering
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all HLA-DR molecules instead of only 51 HLA-DR mole-
cules. In SMM-align, a Metropolis Monte Carlo proce-
dure is employed to search for an optimal score matrix
from the binding affinity data [4]. Unlike these PSSM
based methods, NN-align [5] is an ANN based method.
It first estimates the peptide binding core, then this part
and flanking region are co-encoded and input into ANN
in order to learn a prediction model. Finally, an ensemble
of ANN is used to improve the robustness of the method.
To avoid the difficulty of estimating the binding core,
several kernel based methods have been proposed to
directly measure the similarities among peptides of differ-
ent lengths. Local alignment (LA) kernel [7] makes use of
the alignment method for similarity calculations, while
GS [22] and MHC2SK [18] are two alignment free meth-
ods that use a series of substrings to measure peptide
similarities. One notable difference between GS and
MHC2SK is that MHC2SK emphasizes long substrings
while GS considers a substring whose length is as short
as 1. Several recent methods resort to a multiple instance
learning (MIL) framework to handle the length variation
of peptides. In this framework, each pepitde is regarded
as a bag, and some substrings of the peptide as the
instances in the bag. Two MIL based methods, MHCMIR
[16] and MultiMHCII [13], have been proposed to tackle
the problem of MHC-II peptide binding prediction. Both
of them create bags with 9 amino acids (AA) long
instances and use Support Vector Regression (SVR) as
the predictor. MultiMHCII uses a normalized set kernel
as its kernel function and MHCMIR is an adaption of
MILES [23].

Although both MHCMIR and MultiMHCII can deal
with the length variation of binding peptides, some
important peptide information has been ignored in their
modeling process. First, in addition to the binding core
region (9 amino acids), the peptide flanking region also
contributes the binding process. However, both
MHCMIR and MutliMHCII consider only instances of
9 AA, where the effect of the peptide flanking region
could not be modeled. Second, it has been reported that
the amino acids at some specific positions (e.g. 1, 4, 6,
7, 9) of the peptide binding core are more crucial for
the binding process [10]. This kind of important domain
knowledge is not well incorporated into MHCMIR and
MultiMHCII for improving the prediction performance.
To address these concerns, we develop a novel MHC-II
multiple instance learning based method, MHC2MIL,
that makes use of these important domain knowledge.
Unlike MHCMIR and MultiMHCII, both length 9 and
11 instances are considered in our MHC2MIL so as to
integrate useful information in both potential binding
cores and peptide flanking region. We use a benchmark
data covering 26 HLA DR, DP, and DQ molecules to
evaluate the performance of MHC2MIL. Experimental
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results demonstrate the effectiveness of incorporating
peptide flanking region, as well as the importance of
some crucial pepitde positions. Interestingly, the experi-
mental results show that position 2 may also play some
roles in HLA-DR peptide binding process. Furthermore,
the performance of MHC2MIL is compared with two
state-of-the-art methods of MHC2SK and NN-align.
MHC2MIL outperforms both MHC2SK and NN-align
with being statistically significant on 12 HLA DP and
DQ molecules. In addition, it achieves the comparable
performance to MHC2SK and NN-align on 14 HLA DR
molecules.

Materials and methods

Data

We use a benchmark dataset (Wang dataset) described in
[9] to compare the performance of different computational
methods. This dataset is of high quality, which has been
widely used in the evaluation of different computational
methods. As shown in Table 1, the dataset consists of
24382 peptides with binding affinities covering 26 different
HLA DR, DP and DQ molecules. Each HLA molecule has

Table 1 Statistics for Wang SR. Peptides with IC50 less
than 1000 being deemed as binders

Allele Count Binder Non-Binder
HLA-DPA1_01-DPB1_0401 540 150 390
HLA-DPA1_0103-DPB1_0201 603 203 400
HLA-DPA1_0201-DPB1_0101 604 245 359
HLA-DPA1_0201-DPB1_0501 586 163 423
HLA-DPA1_0301-DPB1_0402 602 210 392
HLA-DPB1_0301-DPB1_0401 549 161 388
HLA-DQA1_0101-DQB1_0501 584 141 443
HLA-DQA1_0102-DQB1_0602 593 287 306
HLA-DQAT1_0301-DQB1_0302 596 178 418
HLA-DQA1_0401-DQB1_0402 585 146 439
HLA-DQA1_0501-DQB1_0201 589 159 430
HLA-DQA1_0501-DQB1_0301 602 355 247
HLA-DRB1_0101 3504 2347 1157
HLA-DRB1_0301 1136 440 696
HLA-DRB1_0401 1221 695 526
HLA-DRB1_0404 474 317 157
HLA-DRB1_0405 1049 585 464
HLA-DRB1_0701 1175 726 449
HLA-DRB1_0802 1017 426 591
HLA-DRB1_0901 1042 569 473
HLA-DRB1_1101 1204 682 522
HLA-DRB1_1302 1070 471 599
HLA-DRB1_1501 1171 645 526
HLA-DRB3_0101 987 317 670
HLA-DRB4_0101 1011 489 522
HLA-DRB5_0101 1198 710 488
All 24382 11817 12475
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the sufficient number of peptides with binding affinity,
ranging from 474 (HLA-DRB1_0404) to 3504 (HLA-
DRB1_0101). The dataset has also been divided into five
folds with the similar size.

Method

Multiple instance learning

Multiple Instance Learning (MIL) is first introduced in
1997 [24]. Differing from classic learning methods, MIL
uses “bags” instead of “instances”. A bag consists of one or
more instances. Note that a bag is positive if at least one
of its instances is positive, and negative, otherwise. We
denote B as a set of bags, B; as the ith bag in B, and Bj; as
the jth instances in B;. Function Label maps a bag or a
instance into {-1, +1}. Then the label of a bag is as follows:

Label(B;) = —1 if f. VBjj, Label(Bij) =—1 (1)

Label(B;) =1 3Bjj, Label(Bi;) = 1 2)

where i ff. stands for “if and only if”. If a bag is posi-
tive, we would not know which instance (instances) is
(are) positive.

The MIL method of Axis-Parallel Rectangles (APR)
[24] tries to find a rectangle that contains at least one
instance from each positive bag while no instances from
negative bags are included. Unfortunately, this kind of
rectangle may not always exist. The famous MIL algo-
rithm of Diverse Density (DD) [25] attempts to find a
concept ¢t with the highest “diverse density” instead of a
rectangle. Such ¢ is close to positive bags and far from
negative bags. If we use B{ to stand for the ith positive
bag, and B; for the ith negative bag, then DD maxi-
mizes the equation:

DD(1) = [ [ Prt—B7) []Prt—B;) 3)

Multiple-instance learning via embedded instance
selection (MILES) extends DD by considering that the
DD framework appears to be rather restrictive because
it always seeks for one and only one feature in feature
selection. DD can be improved by searching for multiple
features [23]. In MILES, all instances from bags are
shuffled to a meta-space C for mapping each bag into a
feature:

C={xt:k=1,2,..,n) (4)

where x* is a re-indexed instance from all of the bags
and # is the total number of instances. Based on the
meta-space, the probability of generating x* from B; is

o2

L 4ky(2
PT(xk|Bi) = s(xk, Bl) = max exp (_ ||B1] X || > (5)
J
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where s(x*, B;) can be interpreted as a measure of the
similarity between x* and B;. The similarity is deter-
mined by the closest instance to x*in B, Then bag B; is
mapped to a vector of features:

m(B;) = [s(x', B;), s(x?, B;), ..., s(x", B;})]" (6)

MILES maps each bag into the feature space and
applies SVM as the classifier. The essence of MILES is
that if examples cannot be separated in the low dimen-
sion, they are mapped into high dimension space. If x*
has a high similarity to some positive bags and a low
similarity to some negative bags, it would provide useful
information in the classification.

MHCMIR

Based on the general assumption that the peptide bind-
ing core is of 9 AA, MIL can be applied to the predic-
tion of MHC-II binding peptides by creating a bag with
9-long instances. We denote p as an original peptide,
p(i) as the ith amino acid in the p, and len(p) as the
total number of amino acids. A bag B; corresponding to
p is generated as follows:

B; = {sls = p(i)p(i + 1)..p(i + 8), 1 < i < len(p) — 8}(7)

MHCMIR adapts MILES to this problem after creating
bags, by (1) replacing SVM with SVR; and (2) using
matrix BLOSUMG62 to compute the similarity between a
bag and an instance [23]. Equation 5 is rewritten as:

s(x*, B;) = min dis(x", Bj;) (8)
j

where dis function is computed as follows:

d(x,xr) = iBLOS UMG62(x(i), x7(i)) 9)
i=1
! d 0
dis(x, xr) = § d(x, xr)’ (2 27) > (10)
1, d(x,x) <0

x(i) in Equation 9 is the ith amino acid of instance x.
The distance between two 9-long instances is computed
by two steps: calculating the sum of the corresponding
positions in BLOSUMG62, and scaling the value obtained
in step one to (0, 1] according to its sign.

MHC2MIL

The critical drawback of MHCMIR is that important
domain knowledge, such as the effect of peptide flanking
region and the importance of key positions in binding
core, are ignored in the modelling. To address this
shortcoming, we extends MHCMIR to MHC2MIL by
taking into account two facts:
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(1) A bag can have instances with different lengths;
and

(2) Key positions of an instance should be emphasized.

Specifically, we create bags to include both 9-long
and 11-long instances. The assumption is that the
information from the left and right amino acids of the
9-long instance is useful, and meta-space is expanded
by adding 11-long instances, both of which are benefit
to the prediction. In addition, according to related lit-
erature on MHC-II peptide binding, positions 1, 4, 6, 7
and 9 are the most influential for binding process.
Therefore we use the amino acids at these positions
instead of all positions to measure the distance
between two instances.

Thus Equation 9 is modified as:

> ickp, BLOS UMG62(x(i), x/(i)), len(x) = len(x/) = 9;
d(x,x7) = § D ickpn BLOS UM62(x(i), x/(i)), len(x) = len(x/) = 11;
0, otherwise.

(11)

where KPy = {1, 4, 6, 7, 9} is the key positions for 9-
long instances and KP;; = {1, 2, 5, 7, 8, 10, 11} for 11-
long instances. According to our assumption, an 11-long
instance is its middle 9-long instance with the left and
right amino acids, so the first, last positions and
1,4,6,7,9 positions of the middle 9-long instance are
taken into consideration. For the sake of simplicity, we
assign oo for the distance between instances with differ-
ent lengths.

Results and discussion

Experimental procedure and evaluation metric

According to [9], Wang’s dataset was divided into 5 par-
titions, and the peptide with the binding affinity of less
than 1000 nM was deemed as a binder. We thus vali-
dated our model by 5-fold cross validation. For training
MHC2MIL, similar to [5], the binding value was trans-
formed by 1 - log(IC50)/log(50, 000), where IC50 is
binding affinity measured in nM. libsvm [26] was used
for our implementation of SVR in MHC2MIL and
MHCMIR. The parameters ¢ and g of SVR were set as
the default values where ¢ = 1 and g = 1/#f eatures (#f
eatures is the total number of the input features). We
implemented MHC2SK according to the related paper
[18]. AUC was used as the evaluation metric to compare
different models. In addition, for comparing two predic-
tors, we used one-tailed per-allele binomial test to mea-
sure their performance differences, where p - value <
0.05 is considered to being statistically significant. In the
following, we denote MHC2MIL as MHC2MIL(fl) that
considers instances of flexible length (both 9-long and
11-long instances), and MHC2MIL as MHC2MIL(fl+kp)
that considers both instances of flexible length and key
positions.
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Effect of adding 11-long instances

First, we examined the effect of incorporating both 9-long
and 11-long instances into bags. Comparisons were done
among MHCMIR(9), MHCMIR(11), and MHC2MIL(fl),
where MHCMIR(#) stands for filling bags with n AA long
instances. The results are given in Table 2. In all 26 alleles,
the best performance is achieved by MHCMIR(9) on 2
alleles, MHCMIR(11) on 7 alleles, and MHC2MIL(fl) on
20 alleles. MHC2MIL(fl) achieved the highest average
AUC of 0.777, outperforming both MHCMIR(9) (AUC of
0.770) and MHCMIR(11) (AUC of 0.771) with being sta-
tistically significant (binomial test, p - value < 0.05). From
this we can see that addition of 11-long instances into
bags provides useful information to improve the predic-
tion performance. This is consistent with previous studies

Table 2 Performance of MHC2MIL(fl) compared to
MHCMIR(9) and MHCMIR(11). For each allele, the largest
value is displayed in boldface.
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in that not only the binding core but also peptide flanking
region contribute to the binding process.

Effect of first position limitation on HLA DR

Second, we explored the effect of adding first position
limitation on generating instances for HLA DR mole-
cules. Previous work suggests that a 9-long peptide in
HLA DR could become a binding core only when ali-
phatic (I, L, M, V) and aromatic (F, W, Y) amino acids
appear in its first position [10]. We can reduce the
instances in a bag by adding a constraint that the first
position of the instance should be in (I, L, M, V, F, W,
Y). The comparison results are shown in Table 3, where
MHC2MIL(fl+fpl) denotes the method that creates bags
by utilizing first position limitation based on MHC2MIL
(fl). Compared with MHC2MIL(fl), MHC2MIL(fl+{pl)
performed worse in all alleles. The average AUC was
reduced greatly from 0.777 to 0.734. This suggests that
reducing too many negative instances may lose some
important information for discriminating binders from
non-binders.

allele MHCMIR MHCMIR MHC2MIL
(9) (11) (1)

HLA-DPA1_01-DPB1_0401 0.772 0.780 0.778 Effect of utilizing key positions
HLA-DPA1_0103-DPB1_0201 0782 0.792 0.790 Finally, we examined the effect of emphasizing some key
HLA-DPA1_0201-DPB1_0101 0810 0811 0.817 positions of instances. According to Equation 11,
HLA-DPA1_0201-DPB1_0501 0.784 0.790 0.791 MHC2MIL(fl+kp) computes the distance between two
HLA-DPA1_0301-DPB1_0402 0.820 0.832 0.832 instances based on only key positions. Table 4 compares
HLA-DPB1_0301-DPB1_0401 0.785 0782 0.791 the performance of MHC2MIL(fl+kp) to that of
HLA-DQA1_0101- 0.763 0.761 0.768 MHC2MIL(fl). MHC2MIL(fl+kp) achieved a higher aver-
DQB1_0501 age AUC of 0.784, while MHC2MIL(fl) achieved a lower
BEAB_P%QSEO]O} 0.751 0.760 0.763 average AUC of 0.777. Overall, MHC2MIL(fl+kp) outper-

y formed MHC2MIL(fl) in 19 out of all 26 alleles, with
HLA-DQA1_0301- 0.666 0.665 0.672 . c . . e . .
DOBT_0302 being statistically significant (binomial test, p - value <
HLA-DQA1_0401- 0.732 0.721 0.737
DQB1_0402

Table 3 Performance of MHC2MIL(fl) compared to

BEABP_ %%1—050]’ 0772 0758 0.779 N!HCZMIL(fI_pr). For each allele, the largest value is
HLA-DQA1_0501- 0.804 0.800 0.809 displayed in boldface.
DQB1_0301 allele MHC2MIL(fl) MHC2MIL(fl_fpl)
HLA-DRB1_0101 0.770 0.789 0.786 HLA-DRB1_0101 0.786 0.745
HLA-DRB1_0301 0.793 0.805 0.808 HLA-DRB1_0301 0.808 0.765
HLA-DRB1_0401 0.738 0.735 0.741 HLA-DRB1_0401 0.741 0.697
HLA-DRB1_0404 0.793 0.773 0.791 HLA-DRB1_0404 0.791 0.771
HLA-DRB1_0405 0.790 0.784 0.792 HLA-DRB1_0405 0.792 0.737
HLA-DRB1_0701 0.809 0.819 0.819 HLA-DRB1_0701 0.819 0.783
HLA-DRB1_0802 0.700 0.717 0.712 HLA-DRB1_0802 0.712 0.688
HLA-DRB1_0901 0.730 0.723 0.733 HLA-DRB1_0901 0.733 0.692
HLA-DRB1_1101 0.831 0.825 0.834 HLA-DRB1_1101 0.834 0.757
HLA-DRB1_1302 0.736 0.741 0.745 HLA-DRB1_1302 0.745 0.708
HLA-DRB1_1501 0.752 0.767 0.765 HLA-DRB1_1501 0.765 0.718
HLA-DRB3_0101 0.749 0.740 0.756 HLA-DRB3_0101 0.756 0.709
HLA-DRB4_0101 0.787 0.776 0.787 HLA-DRB4_0101 0.787 0.760
HLA-DRB5_0101 0.796 0.792 0.803 HLA-DRB5_0101 0.803 0.746
average AUC 0.770 0.771 0.777 average AUC 0.777 0.734
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Table 4 Performance of MHC2MIL(fl) compared to
MHC2MIL(fl+kp). For each allele, the largest value is
displayed in boldface.

allele MHC2MIL(fl) MHC2MIL(fl+kp)
HLA-DPA1_01-DPB1_0401 0.778 0.791
HLA-DPA1_0103-DPB1_0201 0.790 0.808
HLA-DPA1_0201-DPB1_0101 0.817 0.834
HLA-DPA1_0201-DPB1_0501 0.791 0.805
HLA-DPA1_0301-DPB1_0402 0.832 0.846
HLA-DPB1_0301-DPB1_0401 0.791 0.790
HLA-DQA1_0101-DQB1_0501 0.768 0.781
HLA-DQA1_0102-DQB1_0602 0.763 0.769
HLA-DQA1_0301-DQB1_0302 0672 0.706
HLA-DQA1_0401-DQB1_0402 0.737 0.774
HLA-DQA1_0501-DQB1_0201 0.779 0.810
HLA-DQA1_0501-DQB1_0301 0.809 0.817
HLA-DRB1_0101 0.786 0.787
HLA-DRB1_0301 0.808 0.803
HLA-DRB1_0401 0.741 0.732
HLA-DRB1_0404 0.791 0.782
HLA-DRB1_0405 0.792 0.785
HLA-DRB1_0701 0.819 0.823
HLA-DRB1_0802 0.712 0.716
HLA-DRB1_0901 0.733 0.735
HLA-DRB1_1101 0.834 0.838
HLA-DRB1_1302 0.745 0.734
HLA-DRB1_1501 0.765 0.763
HLA-DRB3_0101 0.756 0.757
HLA-DRB4_0101 0.787 0.792
HLA-DRB5_0101 0.803 0.808
average AUC 0.777 0.784

0.05). This indicates that those key positions are more
influential than other positions in the binding process.
Furthermore, a close analysis of results indicates that,
compared with HLA DR molecules, HLA DP and DQ
molecules benefit more from utilizing these key positions.
Out of all 12 HLA DP and DQ molecules, the prediction
performances of 11 were improved by emphasizing key
positions. On the other hand, MHC2MIL(fl+kp) outper-
formed MHC2MIL(fl) in only 8 out of all 14 HLA DR
molecules. We hypothesize that some other positions may
play some roles in the HLA DR binding process. We
added the left 2,3,5,and 8 positions to Equation 11 respec-
tively to see the effect of these positions on HLA DR. The
experimental results were reported in Table 5, where
MHC2MIL(+n) means that position # is added into key
positions, such as, in MHC2MIL(+2), KPy = {1, 2, 4, 6, 7,
9} and KPy; = {1, 2, 3, 5,7, 8, 10, 11}. From the experimen-
tal results, we can see that MHC2MIL(+2) is the best pre-
diction method in 11 out of all 14 alleles, which achieved
the highest average AUC of 0.780. Specifically, MHC2MIL
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(+2) outperformed MHC2MIL(fl) in 11 out of 14 alleles
(with one tie), and MHC2MIL(fl+kp) in all 14 alleles. Both
of them are statistically significant (binomial test, p - value
< 0.05). This indicates that the position 2 on DR may be
another important binding position besides well-known
key positions of 1, 4, 6, 7 and 9.

Comparison with other allele-specific methods

In this section, we present the performance comparisons
of MHC2MIL with other allele-specific methods against
Wang’s dataset using five fold cross validation. The
results on HLA DP and DQ are shown in Table 6, and
those on HLA DR in Table 7. For HLA DR, position 2
is also deemed as a key position in the implementation
of MHC2MIL. There are total 7 allele specific methods
of ARB, SMM-align, CombLib, TEPITOPE, MHC2SK,
NN-align, and MHC2MIL. CombLib is only for HLA
DP and DQ, while TEPITOPE is only for HLA DR.
Since we used the same dataset, partition, and experi-
mental procedure, the experimental results of ARB,
SMM-align, CombLib, TEPITOPE and NN-align were
directly taken from [9]. As shown in their paper [13],
MultiMHCII’s performance is as low as TEPITOPE, so
we did not compare this method. As given in Table 6,
MHC2MIL, MHC2SK and NN-align are three best pre-
diction methods for HLA DP and DQ molecules with
the highest average AUC of 0.794, 0.783 and 0.783,
respectively. In particular, MHC2MIL outperformed
NN-align in 9 out of 11 alleles, and MHC2SK in 9 out
of 12 alleles, both of which are being statistically signifi-
cant (binomial test, p - value < 0.05). For HLA DR
molecules, as shown in Table 7, MHC2MIL, MHC2SK
and NN-align are also the three best prediction methods
with the highest average AUC of 0.780, 0.780 and 0.776
respectively. Specifically, MHC2MIL outperformed NN-
align in 9 out of 14 alleles, and MHC2SK in 5 out of 14
alleles (with one tie). Overall, MHC2MIL is the best
prediction method for HLA DP and DQ molecules, and
achieved comparable performance with two state-of-the-
art methods of MHC2SK and NN-align on HLA DR
molecules.

As shown in Table 8, we present the prediction binding
affinities (IC50nM) of 5 peptides to HLA-DQA1_0501-
DQB1_0201 in Table 8 by MHC2MIL, MHC2SK and
NN-align, respectively. For all these 5 peptides,
MHC2MIL achieved the closest binding affinity, com-
pared with MHC2SK and NN-align. For example, for
peptide “SVLLVVALFAVFLGS” of binding affinity of
748.1nM, the predicted affinity by MHC2MIL is 745nM,
while the predicted values by MH2SK and NN-align are
1072.4nM and 2064.6nM, respectively. All these results
demonstrate the effectiveness of MHC2MIL on predict-
ing MHC-II binding peptides.
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Table 5 Performance of adding 2,3,5,8 positions respectively to MHC2MIL(fl+kp) on DR. For each allele, the largest
value is displayed in boldface.

allele MHC2MIL(fl) MHC2MIL(fl+kp) MHC2MIL(+2) MHC2MIL(+3) MHC2MIL(+5) MHC2MIL(+8)
HLA-DRB1_0101 0.786 0.787 0.792 0.787 0.785 0.785
HLA-DRB1_0301 0.808 0.803 0.809 0.807 0.799 0.806
HLA-DRB1_0401 0.741 0.732 0.736 0.738 0.727 0.734
HLA-DRB1_0404 0.791 0.782 0.786 0.783 0.773 0.775
HLA-DRB1_0405 0.792 0.785 0.792 0.786 0.790 0.785
HLA-DRB1_0701 0.819 0.823 0.825 0.823 0.823 0.821
HLA-DRB1_0802 0.712 0.716 0.718 0.715 0.720 0.721
HLA-DRB1_0901 0.733 0.735 0.736 0.734 0.731 0.728
HLA-DRB1_1101 0.834 0.838 0.843 0.842 0.838 0.837
HLA-DRB1_1302 0.745 0.734 0.746 0.744 0.733 0.735
HLA-DRB1_1501 0.765 0.763 0.770 0.766 0.764 0.759
HLA-DRB3_0101 0.756 0.757 0.762 0.755 0.750 0.749
HLA-DRB4_0101 0.787 0.792 0.797 0.791 0.790 0.788
HLA-DRB5_0101 0.803 0.808 0.811 0.806 0.799 0.805
average AUC 0.777 0.775 0.780 0.777 0.773 0.773

Table 6 Comparisons of ARB, SMM-align, CombLib, MHC2SK, NN-algin and MHC2MIL on DP and DQ. For each allele,
the largest value is displayed in boldface.

allele ARB SMM-align ComblLib MHC2SK NN-align MHC2MIL
HLA-DPA1_01-DPB1_0401 0.746 0.767 0.704 0.778 0.802 0.791
HLA-DPA1_0103-DPB1_0201 0.745 0.767 0.724 0.789 0.793 0.808
HLA-DPA1_0201-DPB1_0101 0.743 0.786 0.723 0.824 0.818 0.834
HLA-DPA1_0201-DPB1_0501 0.709 0.728 0.729 0.794 0.787 0.805
HLA-DPA1_0301-DPB1_0402 0.771 0818 0.756 0.838 0.828 0.846
HLA-DPB1_0301-DPB1_0401 - - - 0.792 - 0.790
HLA-DQA1_0101-DQB1_0501 0.741 0.783 0.728 0.789 0.805 0.781
HLA-DQA1_0102-DQB1_0602 0.708 0.734 0.752 0.770 0.762 0.769
HLA-DQA1_0301-DQB1_0302 0.637 0.663 0616 0676 0693 0.706
HLA-DQA1_0401-DQB1_0402 0.643 0.761 0637 0.767 0.742 0.774
HLA-DQA1_0501-DQB1_0201 0.700 0.736 0.620 0.775 0.777 0.810
HLA-DQA1_0501-DQB1_0301 0.756 0.801 0.745 0.807 0811 0.817
average AUC 0.718 0.759 0.703 0.783 0.783 0.794

Table 7 Comparisons of ARB, SMM-align, PROPRED, MHC2SK, NN-algin and MHC2MIL on DR. For each allele, the
largest value is displayed in boldface.

allele ARB SMM-align PROPRED MHC2SK NN-align MHC2MIL(+2)
HLA-DRB1_0101 0.710 0.756 0.692 0.792 0.763 0.792
HLA-DRB1_0301 0.728 0.808 0.669 0.812 0.829 0.809
HLA-DRB1_0401 0.668 0.721 071 0.726 0.734 0.736
HLA-DRB1_0404 0.681 0.789 0.753 0.791 0.803 0.786
HLA-DRB1_0405 0.716 0.767 0.742 0.783 0.794 0.792
HLA-DRB1_0701 0.736 0.796 0.750 0.827 0811 0.825
HLA-DRB1_0802 0.649 0.689 0.641 0.719 0.698 0.718
HLA-DRB1_0901 0.654 0.696 - 0.744 0.713 0.736
HLA-DRB1_1101 0.777 0.829 0.779 0.844 0.847 0.843

HLA-DRB1_1302 0.667 0.754 0.577 0.729 0.732 0.746
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Table 7 Comparisons of ARB, SMM-align, PROPRED, MHC2SK, NN-algin and MHC2MIL on DR. For each allele, the lar-

gest value is displayed in boldface. (Continued)

HLA-DRB1_1501 0.696 0.741 0.703 0.771 0.756 0.770
HLA-DRB3_0101 0.678 0.780 - 0.759 0.798 0.762
HLA-DRB4_0101 0.747 0.762 - 0.809 0.789 0.797
HLA-DRB5_0101 0.697 0.776 071 0.807 0.795 0.811
average AUC 0.700 0.762 0.703 0.780 0.776 0.780

Table 8 Predicting values of some peptides by MHC2SK, NN-algin and MHC2MIL on HLA-DQA1_0501-DQB1_0201.
IC50_t is the true IC50(nM) for each peptide. IC50_p is the predicting value.

peptide 1C50_t IC50_p by MHC2SK IC50_p by NN-algin 1C50_p by MHC2MIL
EDVGYPIIDQKYCP 8496 12453 1764.5 868.2
FEAMYLGTCQTLTPM 6708 6209 14734 667.8
LGHRDALEDDLLNRN 1874.1 22750 7755 1844.2
QLVPKLDEVYNAAYN 14788 3770.5 994.7 14173
SVLLWALFAVFLGS 748.1 10724 2064.6 7450

Discussion NNalign are the three best predicting methods. Differing

Although multiple instance learning has been already
applied in MHCMIR and MultiMHCII, the domain
knowledge in MHC-II peptide binding is not incorporated
very well. MHCMIR and MultiMHCII consider only 9
length instances and MHCMIL treats 9 amino acids in
each instances equally. In contrast, MHC2MIL incorpo-
rates both length 9 and 11 instances to measure the effect
of flanking regions. In addition, only the amino acids in
the key positions of the instance are used to measure the
distance between two instances in MHC2MIL. It is not
surprising that MHC2MIL outperformed MHCMIR on
the benchmark dataset, with being statistically significant.
In fact, previous studies show that the performance of
MHCMIR is comparable with SMM-align [16], and Multi-
MHCII with TEPITOPE [13]. In contrast, our experimen-
tal results demonstrate that, MHC2MIL is the best
performed method in HLA DP and DQ molecules out of
all six well-known computational methods, achieving com-
parable performance on HLA DR molecules with two
state-of-the-art computational methods of NN-align and
MHC2SK. All these indicate that incorporating domain
knowledge into the algorithm design is able to greatly
boost the prediction accuracy. On the other hand, some
interesting knowledge can be captured from the data. In
this work, we find that, for HLA DR molecules, in addition
to 5 well-known key positions (1, 4, 6, 7 and 9), position 2
may also play some roles in MHC-II pepitde binding pro-
cess. In fact, according to the position specific scoring
matrix provided by TEPITOPE, both positions 2 and 3
contribute slightly to the HLA DR binding process. More
experimental studies should be carried out to elucidate the
role of these two positions.

Our experimental results suggest that, for the MHC-II
pepitde binding prediction, MHC2MIL, MH2SK and

from NN-align using multiple neural network ensem-
bles, both MHC2SK and MHC2MIL use a single classi-
fier. Moreover, the underlying principles of these
algorithms are quite different. For NN-align, the binding
core is estimated and encoded with peptide flanking
region as a vector. Neither MHC2MIL nor MHC2SK
needs to estimate the binding core. MHC2SK relies on
string kernel based methods, where short substrings of
varying sizes are used to measure the similarity between
two peptides. MHC2MIL resorts to multiple instance
learning techniques to map each peptide into a common
metaspace. It is obvious that these methods are comple-
ment to each other, so that ensemble techniques could
be used to further enhance the prediction performance
[27,28].

Conclusion

In this paper, we have presented a novel MIL algo-
rithm called MHC2MIL that predicts MHC-II binding
peptides by creating bags of flexible instances and uti-
lizing key positions to calculate the similarity.
MHC2MIL achieves competitive results with two state-
of-the-art computational approaches of MHC2SK and
NN-align. Considering the high diversity of MHC-II
molecules, we would extend MHC2MIL to be a pan-
specific algorithm in order to cover many more MHC-
II molecules.
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