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ABSTRACT

Background: Selection of the best oocyte for subsequent steps of fertilization and embryo transfer was shown to
be the crucial step in human infertility treatment procedure. Oocyte selection using morphological criteria mainly
Zona pellucida (ZP) has been the gold standard method in assisted reproductive technologies (ART) clinics, but this
selection approach has limitations in terms of accuracy, objectivity and constancy. Recent studies using OMICs-
based approaches have allowed the identification of key molecular markers that quantitatively and non-invasively
predict the oocyte quality for higher pregnancy rates and efficient infertility treatment. These biomarkers are a
valuable reinforcement of the morphological selection criteria widely used in in vitro fertilization (IVF) clinics. In this
context, this study was designed to investigate the relationship between transcriptomic predictors of oocyte
quality found by our group and the conventional morphological parameters of oocyte quality mainly the ZP
birefringence.

Results: Microarray data revealed that 48 and 27 differentially expressed candidate genes in cumulus cells (CCs)
were respectively overexpressed and underexpressed in the ZGP (Zona Good Pregnant) versus ZBNP (Zona Bad
Non Pregnant) groups. More than 70% of previously reported transcriptomic biomarkers of oocyte developmental
competence were confirmed in this study. The analysis of possible association between ZP birefringence versus
molecular markers approach showed an absence of correlation between them using the current set of markers.

Conclusions: This study suggested a new integrative approach that matches morphological and molecular
approaches used to select developmentally competent oocytes able to lead to successful pregnancy and the
delivery of healthy baby. For each ZP birefringence score, oocytes displayed a particular CCs’ gene expression
pattern. However, no correlations were found between the 7 gene biomarkers of oocyte developmental potential
and the ZP birefringence score. Further studies using larger lists of candidate markers are required to identify
suitable genes that are highly correlated with the morphological criteria, and therefore able to reinforce the
accuracy of oocyte selection and the effectiveness of infertility treatment.
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Background
Infertility is “a disease” that affects the reproductive appa-
ratus making it unable to carry out a successful clinical
pregnancy after at least one year of regular and unpro-
tected intercourse [1]. The worldwide prevalence of this
disease keeps rising and is estimated to 1 out of 6 couples
of reproductive age. Consequently, an increase need for
assisted reproductive technologies (ART) to help couples
achieving their parenthood project has been recorded. It
is important to highlight that regardless of the infertility
cause, the oocyte quality is recognized as the main cor-
nerstone amongst others of any successful ART treat-
ment [2]. Consequently, numerous studies focused on
the criteria allowing an efficient selection of high-quality
oocytes, named also competent oocytes, for assisted
reproduction procedure using both human and animal
models. Such oocyte competence is defined as its ability
to properly achieve full maturation at nuclear, cytoplas-
mic and molecular levels, to achieve successful steps of
fertilization and early embryo development, and to ulti-
mately lead to a viable and healthy offspring [3-5]. The
cumulus-oocyte complex (COC) morphology and cytol-
ogy are amongst the main parameters that have been
used in ART clinics to select the best oocyte for subse-
quent steps of fertilization and early embryo development
in human and livestock species [6,7]. These parameters
include the oocyte diameter, its cytoplasm granulation
and the first polar body integrity [7,8]. For its bordering
cumulus cells (CCs), their appearance, compaction and
number of layers have been also correlated to the oocyte
developmental potential [9-12]. It is established that the
oocyte communication with CCs are a prerequisite to
acquire its full developmental competence. In fact, CCs
were shown to enhance the oocyte quality by their physi-
cal presence (cell-cell adhesion structures), their mor-
phology [12,13], their metabolic and signal transduction
functions [14-17].
Zona pellucida (ZP), which is a filamentous matrix of

well-structured and glycosylated glycoproteins surround-
ing the oocyte, is another morphological criterion of
oocyte selection. This matrix is made of three proteins
encoded by three different genes ZP1, ZP2 and ZP3
[18,19]. An additional protein expressed by a ZP1-
paralogue gene, the ZP4, was also reported in human
[20-22]. ZP genes’ transcription and glycoprotein synth-
esis are reported in both the oocyte and CCs of most
mammals. This ZP acts as an oocyte’s coat since the
oocyte growth and maturation, remains during the early
embryo development until the blastocyst hatching
[23,24]. Its thickness increases with the oocyte matura-
tion progression to reach around 17 µm at the human
MII stage [25]. ZP is also marked by layers of long fila-
ments with repetitive protein heterodimers ZP2-ZP3
cross-linked by ZP1 homodimers [26,27]. ZP proteins’

glycosylation is maximal in the outer layers and decreases
progressively to a more compact and less porous inner
region [24,28]. In human and mice, ZP3 is crucial for
sperm recognition and fertilization [27,29-31]. A positive
correlation between ZP Thickness and uniformity, and the
human oocyte quality was reported in several studies
[9,32-34]. That’s why many human IVF clinics used the
ZP thickness and birefringence as a morphological criter-
ion to select oocytes with higher ability to achieve success-
ful pregnancy [32,34-36].
Despite their contribution to a relative improvement of

IVF outcomes, these morphological and microscopic-
based selection approaches have limitations in terms of
accuracy, objectivity and constancy. They rely more on the
embryologist/clinician experience since the molecular
events underlying the oocyte competence acquisition and
their manifestation on its morphology are still poorly
understood [37,38]. The alternative of transferring more
than one embryo to balance such weakness has led to a
significant increase of multiple pregnancies rates, prema-
ture births, mother health problems and associated costly
health treatments [39-41]. Therefore, the qualitative and
quantitative increase of ART outcomes and the reduction
of associated health care costs for both the mother and
the offspring are still challenging [42,43].
The rapid development of high-throughput OMICs

technologies has been a precious adjunct to ART in
order to develop more effective strategies to improve the
selection of high-quality oocytes using non-invasive and
quantitative approaches, allowing therefore more effec-
tive elective single embryo transfer (eSET) procedure
[44,45]. In this context, some promising strategies based
on indirect prediction of oocyte competence/quality
using the follicular cells in the oocyte neighborhood
mainly CCs were recently suggested. The focus on CCs is
mainly due to their continuous bidirectional molecular
interplay with the oocyte shown to be crucial for her sub-
sequent developmental competence. Therefore, CCs are
thought to reflect the oocyte competence level. Several
molecular biomarkers using follicular cells and mainly
CCs have been suggested recently by our group [4,46-51]
and elsewhere [52-55]. We assume that these molecular
biomarkers are a valuable reinforcement to the morpho-
logical selection criteria accumulated by the clinicians’
cumulative experience and used in IVF clinics worldwide.
In this context, this study was designed to study possible
correlations between some molecular predictors of
oocyte quality and the conventional morphological para-
meters of oocyte quality mainly ZP birefringence. We
expect to report a positive correlation between the ZP
birefringence score and transcriptomic markers of oocyte
competence expressed in CCs. Such pioneering approach
based on combining the OMICs tools with established
oocyte quality parameters mainly the ZP birefringence

ASSIDI et al. BMC Genomics 2015, 16(Suppl 1):S9
http://www.biomedcentral.com/1471-2164/16/S1/S9

Page 2 of 16



should lead to an integrative strategy that will accurately
predict the oocyte developmental potential. A clinical
tool that use both molecular biomarkers and ZP birefrin-
gence to efficiently select high quality oocytes in IVF
clinics will allow the selection of the best oocyte(s), a suc-
cessful elective single embryo transfer (eSET) and conse-
quently more effective infertility treatment.

Results
Gene expression analysis
RNA hybridizations were performed on a custom-made
microarray platform enriched in CCs, granulosa cells
(GCs), oocytes and early embryos ESTs using suppressive
subtractive hybridization (SSH) of cDNA sequences as
described elsewhere [56,57]. Results of microarrays hybri-
dization of CCs of ZGP against those of ZBNP showed
that 48 and 27 candidate genes were respectively overex-
pressed and underexpressed in the ZGP compared to the
ZBNP (ZGP/ZBNP ratio ≥ 2; FDR=5%) (see tables S1 and
S2, additional files 1 and 2). Interestingly, at least three (3)
positive oocyte biomarkers from the (ZGP vs ZGNP)
reported in our previous study [49] appeared also in the
overexpressed gene list of the (ZGP vs ZBNP). These bio-
markers of oocyte quality are PSMD6, CALM1 and NRP1.

Cumulus cells-induced molecular, cellular and
physiological functions
The analysis of the CCs differentially expressed genes (48
overexpressed; 27 underexpressed) (see tables S1 and S2,
additional files 1 and 2) showed that several candidates are
associated to key functions related to the reproductive
function at both molecular and cellular levels (Table 1).
Around 23% and 19% of the differentially expressed genes
were respectively associated to the reproductive function

and inflammatory-like response. These results confirmed
the major role of CCs in the final maturation of the oocyte
and the ovulation process, known by its inflammatory-like
aspect. At the molecular and cellular levels, the time of CCs
removal prior to intracytoplasmic sperm injection (ICSI) is
marked by an important expansion of extracellular matrix
(ECM), active molecular and signaling events to prepare
ovulation, steroidogenesis and cell differentiation. That’s
why important functions associated to cell morphology
(≈ 30% of candidate genes), cell signaling (≈ 17 % of candi-
date genes) and cellular assembly (≈ 12 % of candidate
genes) were activated (Table 1). Conversely, the cell cycle
function (≈ 7% of candidate genes) was under-represented
since the CCs are in a differentiation stage characterized by
more apoptosis rather than proliferation (Table 1).

Real time PCR analysis
In addition to the validation of the microarray data,
quantitative real time PCR was performed on the initial
biological samples to assess the expression levels of the 7
gene biomarkers found in our previous study to be over-
expressed in ZGP group compared to its ZGNP counter-
part [49]. This QPCR validation was achieved on CCs of
oocytes with ZGP versus those with ZBNP (successful
pregnancy and HZB versus pregnancy failure and LZB).
Among the 7 biomarkers associated to both HZB and
successful pregnancy reported previously, 5 genes (out of
7) were also significantly different between the two
groups studied (ZGP versus the ZBNP) (i.e. 71.4 % of bio-
markers confirmed), which is a further quantitative con-
firmation of the validity of our biomarkers on separate
biological samples. These candidates are NRP1 (p =
0.003), CALM1 (p = 0.005), DPP8 (p = 0.006), UBQLN1
(p = 0.025) and PSMD6 (p = 0.048) (Figure 1). However,

Table 1 Main molecular, cellular and physiological functions triggered by CCs in ZGP versus ZGNP. These functions are
ranked by p-value and their proportion of differentially expressed genes (both overexpressed and underexpressed)
according to the IPA software

Molecular, cellular and physiological functions p-value No.
genes

Proportion of differentially expressed genes
involved (%)*

Physiological functions /
conditions

Reproductive and embryonic
development

4.13E-05 -
2.95E-02

17 22.67

Organ morphology 5.92E-06 -
2.95E-02

16 21.33

Inflammatory-like response 2.86E-04 -
2.95E-02

14 18.67

Molecular & cellular
functions

Cell Morphology 5.92E-06 -
2.95E-02

22 29.33

Small molecule biochemistry &
signaling

1.09E-04 -
2.59E-02

13 17.33

Cellular assembly and
organization

4.13E-05 -
2.95E-02

9 12.00

Cell cycle 1.37E-04 -
2.59E-02

5 6.67

*: The proportion of differentially expressed genes included both over- and under-expressed genes
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the association analysis between these biomarkers and ZP
birefringence revealed that they were not significantly dif-
ferent between ZGNP and ZBNP (p > 0.05; Table 2).

Gene networks’ analysis
Both overexpressed and underexpressed candidate genes
of ZGP vs ZBNP groups were mapped to their potential
molecular, cellular and biological functions using the
Ingenuity Pathways Analysis (IPA) software [58]. Four (4)
main networks were selected for further discussion and a
comprehensive analysis of differentially expressed genes
in CCs collected prior to ICSI and their association with
ZP and follicular function. These top-ranked networks
were made of differentially over- and under-expressed
genes in CCs and focused on: i) cell morphology, ii)

intracellular signaling, iii) immune-like response, iv) ster-
oidogenesis and v) apoptosis (Figures 2, 3, 4).

Discussion
Study approach
This study was designed to investigate potential relation-
ships/association between the oocyte quality/competence
reflected by its developmental potential and the ZP mor-
phology. For the oocyte competence, it was predicted
using transcriptomic markers differentially expressed in
its CCs through a comparative analysis of gene expres-
sion patterns between ZGP group versus ZGNP in our
previous study [49]. Concerning the ZP morphology, it
was analyzed using a polarizing microscope (Polscope)
linked to a robot-like micromanipulation system (to

Figure 1 Real-time PCR analysis of differentially expressed genes in individual CCs of ZGP group versus ZBNP. Gene candidates were ranked
according to their p-values, which were determined following a T-test analysis achieved on normalized data at a = 0.05

Table 2 Quantitative real-time PCR comparative analysis of differentially expressed genes in individual CCs among the
three ZP quality groups (ZGP versus ZGNP versus ZBNP). Candidates with different letters are significantly different
following a F-test analysis at a = 0.05

Gene CALM1 DPP8 HIST1H4C NRP1 PSMD6 TOM1 UBQLN1

ZP quality groups ZGP a a a a a b a

ZGNP b b b b b a b

ZBNP b b a b b a,b b
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ensure zona 3D visualisation and scoring) and a suitable
software that automatically and objectively (user-indepen-
dent) measure both ZP density and uniformity. The bire-
fringence score is determined based on approximately 180
measurements that cover all the ZP and was shown to be
correlated to the oocyte quality [32,35,59,60]. Taken
together, the interesting progress in both ZP birefringence
scoring accuracy and the non-invasive and quantitative
biomarkers of oocyte quality were behind this original
study. The goal is to investigate possible correlations
between oocyte developmental competence markers and
ZP birefringence in order to assess if these two approaches
are additive, and hence able to strengthen each other and
enhance the selection of highly competent oocytes proce-
dure. Such positive association once confirmed is expected
to improve the infertility treatment approaches through
the suggestion of an integrative method based on con-
firmed molecular predictors that reinforce the morpholo-
gical selection based on ZP birefringence and the
embryologist experience.

Cumulus cells’ molecular and cellular gene networks
Microarray data analysis revealed a non exhaustive list
of 75 differentially expressed genes between ZGP versus
ZBNP treatment groups (see tables S1 and S2, additional

files 1 and 2) that reflected the behavior and roles of
both CCs and ZP prior to ovulation. The analysis of the
molecular, cellular and physiological processes triggered
by both overexpressed and underexpressed genes
revealed key gene networks. The molecular and cellular
functions/ networks having the highest scores were
selected for further analysis.
Cell morphology
It was interesting to report that around 30% of differen-
tially expressed genes in CCs were involved in the regula-
tion of cell morphology (Table 1; Figure 2). These findings
showed that important ultrastructural changes occurred in
cumulus cells during final maturation and ECM expansion
through microtubule and microfilaments organization
(RAN, PRDX2), cell differentiation (CDKNA1, HDAC2,
GLB1, CCNA2, PRDX2) and intracellular signaling
(CDKNA1, TIE1, RGS3) (Figure 3). Similar morphological
and metabolic changes in CCs due to the remodeling of
their cytoskeleton [61,62], the transzonal projections num-
ber and signaling [29,63] and the disruption of CCs shapes
and cell-cell contacts [64,65] were also reported. In several
mammalian species, it was documented that these CCs
intracellular events are essential to support oocyte final
maturation, to convey COC some signaling factors and
viscoelastic properties that ease its release during ovulation

Figure 2 Main candidate genes differentially expressed in CCs and involved in both cell and ZP morphologies as revealed by IPA software.
(Red): overexpressed genes. (Green): underexpressed genes. (Gray): ZP genes. Genes are CASP9 (caspase 9), CCNA2 (cyclin A2), RAN (RAN,
member RAS oncogene family), CDKN1A (cyclin-dependent kinase inhibitor 1A), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide
1), GLB1 (galactosidase, beta 1), HBA1/HBA2 (hemoglobin, alpha 1/ hemoglobin, alpha 2), HBB (hemoglobin, beta), HDAC2 (histone deacetylase
2), HSP90B1 (heat shock protein 90, beta, member 1), LAMB1 (laminin, beta 1), PRDX2 (peroxiredoxin 2), SGCB (sarcoglycan, beta), TIE1 (tyrosine
kinase with immunoglobulin-like and EGF-like domains 1), ZP1 (zona pellucida glycoprotein 1 (sperm receptor)), ZP2 (zona pellucida glycoprotein
2 (sperm receptor)), ZP3 (zona pellucida glycoprotein 3 (sperm receptor)), and ZPBP (zona pellucida binding protein).
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as well as to contribute in sperm recognition and fertiliza-
tion [66-69]. ZP is also an important structure involved in
the organization of its own matrix as well as the oocyte
and CCs morphology through dynamic arrangements of
its structure and microfilament networks (Figure 2;
[25,70]). In this study, it was used as a crucial distinctive
parameter between the two treatment groups (ZGP vs
ZBNP) which may further explain the upregulation of the
cell and organ morphology functions (Table 1).
Intracellular signaling
In addition to cell morphology, CCs are characterized by
a variety of signaling pathways that finely regulated their
functions. Such signaling events are governed by gona-
dotropins [71-73], the oocyte-secreted factors [74-76] as
well as the intra-ovarian endocrine and paracrine envir-
onment [77,78]. These signaling pathways involve sev-
eral players including second messengers’ receptors,
transcription factors and kinases as illustrated by figure
3. It is important to note that oocyte competence acqui-
sition and ovulation are still poorly understood and this
high cross-talk between key signaling pathways mainly
kinases (figure 3) is expected. In fact, CCs is considered

as an interface between the oocyte and its surrounding
environment through functional signaling cascades
involving the pathways of these kinases (ERK,
p38MAPK, PKC, PKA and PI3K) known to be crucial
for mammalian oocyte quality, CCs expansion, ovulation
and even early embryo development [17,78-83].
Inflammatory-like response
CCs were retrieved prior to ovulation which is a complex
mechanism that allows the rupture of the follicle and the
ovarian epithelium to release the COC in the fallopian
tube. It is a crucial differentiation step in the reproductive
function marked by a local inflammatory reaction that
involves different signals from the blood supply in the
theca cells as well as steroidogenic and proteases factors
produced within the follicle. These signals triggered the
CCs expression of many genes associated to an inflamma-
tory-like condition (around 19% of total differentially
expressed genes; Table 1) including mainly the underex-
pression of anti-inflammatory regulators (TAX1BP1, MT-
CYB, ENO1) and heat shock proteins (HSPA8, HSP90B1,
HSP70); and the overexpression of immune (HLA-DRA,
SCARA5, PRDX2) and cell signalling (RGS3, RAN, PSPI1)

Figure 3 Gene network of differentially expressed candidates in CCs involved in both cell morphology and intracellular signalling pathways
cross-talk. (Red): overexpressed genes. (Green): underexpressed genes. (White): other genes. Overexpressed genes are PRDX2 (peroxiredoxin 2),
HBA1/HBA2 (hemoglobin, alpha 1/ hemoglobin, alpha 2), HBB (hemoglobin, beta), RAN (RAN, member RAS oncogene family), CASP9 (caspase 9),
HDAC2 (histone deacetylase 2), HSP90B1 (heat shock protein 90, beta, member 1), TIE1 (tyrosine kinase with immunoglobulin-like and EGF-like
domains 1), GLB1 (galactosidase, beta 1), CDKN1A (cyclin-dependent kinase inhibitor 1A) and RGS3 (regulator of G-protein signaling 3).
Underexpressed genes are CCNA2 (cyclin A2) and CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1). Other genes are ADRB
(Adrenoreceptor, Beta), Ck2 (casein Kinase II), PI3K (phosphatidylinositol-4,5-bisphosphate 3-kinase), PKC (protein Kinase C), MAPK and ERK1/2
(mitogen-activated protein kinase family), HSP70 (heat shock protein 70), RNA polymerase II, Insulin, AP1 (activator protein-1), CD3 and LH
(luteinizing hormone).
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factors ( (Figure 4, see tables S1 and S2, additional files 1
and 2).
These inflammatory-related genes were suggested as

protectors of the oocyte and CCs in an inflammatory
and pro-apoptotic environment during ovulation [84,85].
Moreover, this inflammatory-like response is considered
as prerequisite for ovulation and subsequent fertilization
[84,86-88]. Recent genome-wide association studies
(GWAS) showed that CCs gained some immune and
neuronal functions required during ovulation in many
mammal species including human [3,89,90], mouse
[85,91], rat [92] and bovine [56]. Overall, these findings
support a significant role of CCs in ovulation.
Apoptosis
At this preovulatory period, CCs have reached full expan-
sion marked by weaker cell-cell connections and increased
level of apoptosis [93,94]. This apoptotic phenotype was
clearly reflected in our study by several differentially
expressed genes in CCs and involved in pro-apoptotic
pathways as heat shock proteins (HSPA8, HSP90B1,

HSP70), caspases (CASP9), cell cycle under-regulation and
cell differentiation (FOSB, CCAR1, CCNA2, CDKNA1,
HDAC2, PRDX2, PANX1) as well as cell death-related
intracellular signaling and transport (FDPS, CDKNA1,
RGS3, TAX1BP1, RAN, PSPI1) (Figure 4). Such pro-apop-
totic gene pattern was associated to an obvious underex-
pression of cell cycle genes (less than 7% of differentially
expressed candidate genes; Table 1). This apoptosis
increase was also reported in follicular cells (cumulus and
granulosa) in primates and cattle [6,95,96]. Interestingly, a
slight apoptosis in the outer layers of CCs is considered as
a morphological criterion that is positively correlated with
the oocyte developmental competence [79,93,95,97,98].
Additionally, this apoptotic behavior is expected at this
stage since CCs have achieved most of their main roles
required to both ovarian function and oocyte quality. We
assume that these apoptotic signs are an intrafollicular
message about the oocyte preparedness for ovulation or
atresia. This apoptotic condition may also amplify the

Figure 4 Gene network of several differentially expressed CCs genes involved in both apotosis and anti-inflammatory-like response. (Red):
overexpressed genes. (Green): underexpressed genes. (White): other genes. Overexpressed genes are CCAR1 (cell division cycle and apoptosis
regulator 1), RGS3 (regulator of G-protein signaling 3), PRDX2 (peroxiredoxin 2), HSP90 / HSP90B1 (heat shock protein 90, beta, member 1),
PANX1 (pannexin 1), CASP9 (caspase 9), CDKN1A (cyclin-dependent kinase inhibitor 1A), PSIP1(PC4 and SFRS1 interacting protein 1), RAN (RAN,
member RAS oncogene family) and HDAC / HDAC2 (histone deacetylase 2). Underexpressed genes are FOSB (FBJ murine osteosarcoma viral
oncogene homolog B), FDPS (farnesyl diphosphate synthetase), TAX1BP1 (Tax1 (human T-cell leukemia virus type I) binding protein 1), HSPA8/
HSP70 (heat shock protein 70 kDa, protein 8), CCNA2 (cyclin A2) and ENO1 (Enolase 1, alpha). The other genes of the network are ERK1/2
(Extracellular signal-regulated kinase 1 /2, mitogen-activated protein kinase family), HSP27 (heat shock 27kDa protein), BCR (complex) (B-cell
receptor complex), PP2A (protein phosphatase type 2a), Histone H1, PKG (protein kinase G), LDL (low density lipoprotein) and IL1 (interleukin 1).
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immune and inflammatory-like response that prepares the
ovulation process.
Steroidogenesis
It is established that follicular growth is governed mainly
by gonadotropins and steroids. The nearness onset of ovu-
lation is marked by a fine regulation of steroidogenesis to
increase estradiol levels and initiate progesterone synthesis
[99,100]. Several genes involved in steroidogenesis (around
23%) were differentially expressed as shown by the top
position of the reproductive function (Table 1). This CCs
active hormonal activity and early luteinisation was also
clearly reflected by several differentially expressed genes in
CCs (see tables S1 and S2, additional files 1 and 2) and
confirmed in previous reports [95,101-104].

Zona pellucida and ovarian function
According to CCs gene expression data, we confirmed
herein the complexity of molecular and signalling events
that drives the final steps of oocyte maturation, its inter-
play with CCs and ovulation. Since this study is comparing
two treatment groups with different ZP birefringences, it is
important to highlight that this oocyte’s coat remain in the
oocyte immediate vicinity since the oocyte growth and
maturation and remains during the early embryo develop-
ment until hatching [23,24]. ZP structure is based on fila-
ments of ZP2-ZP3 heterodimers proteins, linked in some
binding sites by ZP1[26]. It is involved in vital functions
related to ovarian function and oocyte quality as summar-
ized in figures 2 and 5 following gene function analysis
using IPA software. In fact, ZP is a filamentous matrix
located in the perivitelline space around the oocyte and
composed of well-structured and highly- glycosylated gly-
coproteins [24,28]. ZP genes transcription and their glyco-
protein synthesis are reported in both the oocyte and CCs
of most mammals and involved in maintaining both COCs
and ZP morphologies (Figures 2 and 4), prevent poly-
spermy and protect early embryo development until the
blastocyst hatching [25].
It is important to highlight that according to our gene

expression data of this study and elsewhere [49], it appears
that each ZP group has its particular gene expression pat-
tern that is dependent on both ZP birefringence and
oocyte quality.

Association ZP birefringence versus oocyte
transcriptomic markers
Our data confirmed that CCs compartment is the site of
specific signalling and gene expression events which sup-
port and reflect the oocyte’s quality. ZP was also showed
to be crucial in key functions associated to the oocyte
maturation, fertilization and early embryo development.
Taken together, CCs and ZP look to be key sites of a well
space and time-coordinated sequence of molecular events
that determine the oocyte quality and its subsequent

developmental competence. The main objective of this
study is to study the possibility of combination of these
two non-invasive parameters (molecular markers and ZP
birefringence) to enhance the effectiveness of high-quality
oocyte selection and reinforce the already used morpholo-
gical criteria. To do this, we have analyzed a list of CCs
genomic markers of oocytes having high ZP birefringence
(HZB) and were able to achieve successful pregnancy as
described in our previous study [49]. Correlation analysis
of QPCR results of each one of these transcriptomic mar-
kers and both ZP birefringence and pregnancy outcomes
revealed that 71.4 % (5 out of 7) of these biomarkers were
confirmed using the ZBNP group. This finding is a further
quantitative confirmation of the validity of our biomarkers
identified on the (ZGP versus ZGNP) study [49] and using
separate biological samples. These candidates are NRP1
(p = 0.003), CALM1 (p = 0.005), DPP8 (p = 0.006),
UBQLN1 (p = 0.025) and PSMD6 (p = 0.048) (Figure 1).
Such results are in line with previous reports confirming
the usefulness of CCs transcriptomic markers for selection
of the best human oocytes for subsequent fertilization and
embryo transfer [42,47,49,98,105], increasing therefore the
fertility treatment success rates.
Regarding potential additive effects between these bio-

markers and the ZP birefringence, this correlation, if con-
firmed, could offer an interesting integrative approach
based on the combination of morphological (ZP) and
molecular (biomarkers) criteria allowing an accurate and
non invasive selection of high competent oocytes. Thus,
more reliable clinical tools/kits using both parameters
could be developed for IVF clinics. However, our data
revealed that most of the gene biomarkers were not signif-
icantly expressed between the two groups with failed preg-
nancy (ZGNP vs ZBNP; p> 0.05) except for HIST1H4C
(Table 2). Therefore and despite having two opposite ZP
birefringence scores (HZB versus LZB), few or no gene
biomarkers differences were found between ZGNP versus
ZBNP. According to these data, it looks that the ZP mor-
phological phenotype is not directly associated to the
selected transcriptomic markers of oocyte competence
used in this study. Although the ZP birefringence was
positively correlated to oocyte developmental competence,
this selection criterion did not revealed significant differ-
ences at the gene expression levels once validated by
QPCR. As a result, it was difficult to establish a positive
correlation/association between the ZP morphology and
the molecular marker of oocyte competence expressed
in CCs.
Although these data are preliminary and require more

investigations, several reasons could explain the lack of
correlation between these two parameters. In fact, only 7
gene biomarkers have been used to assess such correla-
tion which might be too small to cover potential genes
directly affected by the ZP morphology and/or functions.
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Larger studies using whole genome microarrays and
increased number of selected biomarkers are required to
profoundly explore this relationship. Moreover and as
mentioned before, the ZP formation started at the sec-
ondary follicular stage and is achieved at the preovulatory
stage. Therefore at the time of COCs collection for ICSI,
low correlation between the ZP birefringence and CCs
gene expression may be expected despite their both
involvement in subsequent fertilization. Another study by
Dr. Montag group [106], reported a differential gene
expression gradient within CCs when moving from the
very differentiated corona radiata cells (CRCs) at the ZP
vicinity to the outer layers. Therefore and due to the high
similarities of the compared tissues, only corona CRCs
may show a transcriptomic difference associated to ZP
birefringence. This assumption is further supported by
possible involvement of the CRCs in ZP protein bio-
synthesis. Therefore, the analysis of the whole CCs in our
case may dilute possible transcriptional difference in
CRCs with opposite ZP birefringence scores. The possibi-
lity that ZP birefringence is an independent parameter
that does not unlikely correlate with the genomic predic-
tors of oocyte competence might be also considered.
It is important to highlight that other promising tech-

nologies as time-lapse embryo monitoring (TLEM) and
preimplantation genetic screening (PGS) can be also com-
bined to our approach [107,108]. Such complementary
technologies will even strengthen more our approach

through the combination of high quality oocyte selection
(suggested herein) and morphologically good quality
embryos (TLEM and/or PGS) would offer a very accurate
and integrative selection approach that will allow efficient
infertility treatments and higher pregnancy successful
rates.

Conclusion
Our results confirmed that ZP properties’ variation is asso-
ciated to a CCs gene expression difference. We also con-
firmed 5 gene biomarkers of oocyte developmental
competence using different biological samples. Surpris-
ingly, no correlations between our 7 CCs gene biomarkers
of oocyte developmental potential and the ZP birefrin-
gence score. It looks that the ZP morphology is associated
to a transcriptomic gene pattern that is not directly related
to these biomarkers. These findings highlighted the com-
plexity of the molecular events underlying the develop-
mental competence pathway. Hence, further studies using
larger lists of candidate markers are required to identify
suitable genes that are highly correlated with the morpho-
logical criteria, and therefore able to reinforce the accuracy
of oocyte selection. Ultimately, the idea of finding ZP-
related biomarkers of oocyte quality would reinforce the
accuracy of oocyte selection. Additive or correlated oocyte
selection criteria should strengthen each other offering
therefore a reliable prognostic tool of the pregnancy out-
come. The improvement of oocyte selection procedures

Figure 5 Main ZP genes’ functions related to ovarian function and oocyte quality following a functional analysis using the IPA software. ZP1
(zona pellucida glycoprotein 1 (sperm receptor)), ZP2 (zona pellucida glycoprotein 2 (sperm receptor)), ZP3 (zona pellucida glycoprotein 3
(sperm receptor)), and ZPBP (zona pellucida binding protein).
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would increase the efficiency of infertility treatment as well
as the pregnancy outcomes. Additional promising embryo
selection technologies as TLEM and PGS are expected to
reinforce our current approach through a later selection at
the early embryo stage. Therefore, efficient single embryo
transfer could be envisioned.

Materials and methods
Ethics statement
Patients involved in this study were recruited from the
IVF clinic of the University of Bonn Medical School
after signing a written informed consent. All procedures
and protocols used in this study were approved by the
institutional review boards of both the University of
Bonn Medical School, Germany; and Laval University,
Canada.

Patients
Seven consenting patients (n=7) were meticulously
selected for ovarian stimulation and ICSI (intracytoplas-
mic sperm injection). Patient selection was based on
diagnosis of male factor infertility induced due to low
quality sperm (low concentration, morphology or moti-
lity) according to World Health Organization (WHO)
guidelines [109]. To proper infertility diagnosis and pre-
vent any potential bias, all patients were first subjected
to extensive andrological, gynaecological and cytogenetic
examinations. ICSI was the recommended procedure for
all the patients included in the study. Based on ZP bire-
fringence, CCs of each individual oocyte were divided
into two classes: i) HZB: includes 8 CCs of oocytes with
High Zona Birefringence; and ii) LZB: includes 3 CCs of
oocytes with Low Zona Birefringence.

IVF and culture media
All media used for oocyte retrieval, denuding, gametes’
washing, ICSI treatment and subsequent embryo culture
(Fertilization, Cleavage, Gamete, PVP, Hyaluronidase,
Culture oil) were of pharmaceutical, embryo-tested
grade and free of phenol red. Unless mentioned, all
embryo culture media were provided by Cook Company,
Brisbane, Australia.

Ovarian stimulation and cumulus-oocyte-complexes
recovery
A gonadotropin releasing hormone agonist (GnRHa)-
based stimulation regimen using triptorelin acetate
(Decapeptyl (0.1 mg/day), Ferring, Germany) and HMG
(HMG; Menogon, Organon) / FSH (Gonal-F, Serono,
Germany) was given to patients as described before [49].
FSH/HMG doses (average of 225 IU) were individually
adjusted for each patient using ultrasound monitoring
mainly follicular diameter and estradiol. A dose of
10,000 IU of hCG (human chorionic gonadotrophin)

was used to induce ovulation and COCs were transvag-
inally punctured 36 to 38 h later.

Cumulus cells removal and ZP birefringence assessment
Collected COCs were collected, washed and individually
incubated at warm temperature using pre-mixed gas with
low oxygen (6% CO2, 5% O2, 89% N2) at 37°C. CCs were
manually collected using a sterile scalpel in HEPES-
buffered medium under oil and put at -80°C. Cumulus-
free MII oocytes were selected following a hyaluronidase
treatment and thereafter individually incubated in 5-μL
droplets of fertilization medium covered with mineral oil
at 37°C for subsequent ZP imaging. The analysis of ZP
birefringence was automatically done using an automatic
module Octax polairAide™ (Octax ICSI Guard™,
OCTAX Microscience GmbH, Altdorf, Germany) con-
nected to a polarization imaging software (OCTAX Eye-
ware™) as reported elsewhere [32]. Zona birefringence
visualization and scoring were automatically and non-
invasively done at 180 points under a heating platform
allowing 37.0 ± 0.5°C in the medium droplet during
micromanipulation and microscopic observation. ZP
images were captured and used to determine the ZP
scores which reflected the uniformity and the intensity of
the ZP around the oocyte [32]. While LZB MII oocytes
are characterized by an irregular and/or low birefringence
distribution, the HZB MII ones had uniform and high
intensity birefringence ZP (Figure 6).

Intracytoplasmic sperm injection (ICSI) and embryo
culture
Prior to ICSI, patients were subjected to andrological,
gynaecological and cytogenetic examination. The sperma-
tozoa ejaculate was washed, centrifuged, suspended in fer-
tilization media and stored in a CO2 incubator. Following
ZP imaging, all MII oocytes with know ZP birefringence
and good morphology from patients’ group selected for
their male factor-induced infertility received ICSI proce-
dure according to routine standard protocols and using a
spermatozoon with good morphology and motility as
described elsewhere [49]. Following ICSI, selected zygotes
with successful fertilization (presence of two pronuclei
(2PN) of equal size in the center of the ooplasm) were
individually cultured in a Minc benchtop incubator at 5%
O2, 6% CO2, 98% N2 until day 3.

Embryo transfer (ET) and pregnancy assessment
For each patient and as per law, the two fertilized oocytes
with the highest ZP birefringence scores were selected for
transfer and the supernumerary oocytes were cryopre-
served. The priority for embryo transfer was given to early
embryos produced by HZB MII oocytes whenever avail-
able; otherwise those coming from LZB ovules were trans-
ferred. ET was performed using a transvaginal intrauterine
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Sydney IVF catheter as described previously [32]. Preg-
nancy was checked first using a hCG test at day 14 post
transfer and confirmed by ultrasounds to detect the pre-
sence of gestational sacs and a positive heart beat (viable
embryo) at 5 weeks of pregnancy.

Experimental groups
Based on ZP birefringence and subsequent pregnancy
results, CCs coming from each individual oocyte were
considered as biological replicates and were split into
two main experimental groups (Figure 7):
- ZGP (Zona Good Pregnant) group: CCs of HZB

oocytes that lead to successful pregnancy.
- ZBNP (Zona Bad Non Pregnant) group: CCs of LZB

oocytes and pregnancy failure.
While the ZPG includes 8 CCs and is considered as

the positive treatment, the ZBNP one acted as a nega-
tive control for ZP relationship with pregnancy.

RNA extraction and amplification
Total RNA from each CC sample were performed using
the PicoPure RNA Isolation Kit (Arcturus, Molecular
Devices Analytical Technologies, Sunnyvale, CA) accord-
ing to the user manual guidelines and eluted in 30 μL of
Elution buffer (EB) provided in the kit. Good RNA quality
and concentration were assessed and confirmed using the
Agilent 2100 bioanalyzer (Agilent Technologies, Wald-
bronn, Germany) according to the manufacturer’s proto-
col. For each experimental group, two pools (biological
replicates) of 10 ng of total RNA was used for linear
amplification of messenger RNA (mRNA) using the
2-round in vitro transcription (IVT) following the instruc-
tions of the RiboAmpplus RNA Amplification kit (Arc-
turus, Molecular Devices Analytical Technologies) as
described in the manufacturer’s manual. Amplified mRNA
yield was eluted in 30 μL of RNA eluted buffer (RE) and
quantified by spectrophotometry at 260 nm using the

NanoDrop ND-1000 (NanoDrop Technologies, Wilming-
ton, DE).

Microarray hybridizations
Amplified messenger RNA pools of each group (ZGP vs
ZGNP) were labelled using the Universal Linkage System
(ULS™) aRNA Fluorescent Labelling Kit (KREATECH
Biotechnology, Amsterdam, The Netherlands) according
to the manufacturer’s instructions and used in a dye-swap
design (Figure 7). Prior to hybridization, an equimolar
mixture of the two labelled probes of each ZGP group’s
pool and its counterpart in ZGNP group was prepared
based on labelling dosage. Hybridization was achieved
using a partial custom-made array enriched with tran-
scripts associated to good quality oocytes as described
elsewhere [49,57]. Hybridizations were done in the Array-
Booster using the Advacard AC3C (The Gel Company,
San Francisco, CA) for 18 h at 50°C using Slide Hyb#1
(Ambion, Austin, TX). The slides were washed succes-
sively in (2X SSC/0.5% SDS), (0.5X SSC/0.5% SDS) and 1X
SSC buffers, then spin-dried and immediately used for
subsequent scanning and analysis.

Microarray data analysis
Hybridized microarray slides were scanned using the
VersArray ChipReader 3.1 System (Bio-Rad, Mississauga,
Canada) and analyzed using the ArrayPro Analyzer soft-
ware (Media Cybernetics, Bethesda, MD). Raw microar-
ray data were first Loess-normalized and corrected for
background as described before [56,57]. Ratio of net
fluorescence intensities of our dye-swap experiments
between positive (ZGP; pregnant) and negative (ZBNP;
non-pregnant) groups was assessed using Array Analysis
Tool (Baltimore, MD) developed at the National Institute
on Aging (NIA) [110] at FDR=5% and a minimum cut-
off limit of 2.25. Given that each clone was printed twice
on each microarray slide, these two additional technical

Figure 6 ZP birefringence classes as shown by the polscope. (A): is a low zona birefringence MII oocyte (LZB); (B): is a high zona birefringence
MII oocyte (HZB).
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sub-replicates were considered during data statistical
analysis. Two lists of respectively over-expressed and
under-expressed gene candidates with more than two-
fold change ZGP / ZBNP were generated for subsequent
analysis and data validation.

Gene networks’ analysis
The analysis of gene networks and the molecular pathways
triggered by the CCs differentially expressed genes was
performed using the QIAGEN’s Ingenuity Pathway Analy-
sis software (IPA) [58]. Briefly, the candidate genes were
uploaded with their official name and fold change into the
IPA. Such software allowed potential connections and
downstream signalling pathways between candidate genes
and previous studies to generate and rank causal and/or
hierarchical network analysis that may explain the
observed gene expression changes in CCs of ZGP vs.
ZBNP groups. Such approach was helpful to demystify the
molecular pathways and cellular functions associated to
ZP birefringence and their potential relationship with the
oocyte developmental competence.

Quantitative real-time PCR of oocyte quality markers
Selected gene candidates mainly the molecular markers
of high developmental capacity oocytes reported in a pre-
vious study [49] were validated on the original samples of
ZGP, ZGNP and ZBNP groups using quantitative real-
time PCR. Briefly, equal amounts of total RNA were
taken from each replicate on individual CCs of each
patient group, denatured and reversed transcribed using
the SensiScript reverse transcriptase kit (Qiagen,

Mississauga, ON, Canada). Real-time PCR was performed
on the selected candidates in LightCycler capillaries
(Roche Applied Science, Mannheim, Germany) using the
LightCycler FastStart DNA Master SYBR Green I kit
(Roche) as well as custom sets of primers reported else-
where [49] according to the manufacturer’s guidelines.
Three housekeeping/control genes ACTB (b-actin),
GAPDH, and PPIA were quantified and used in GeNorm
Normalization [111,112]. The two housekeeping genes
(ACTB and PPIA; P > 0.05) were the most stable and
therefore used for QPCR data normalization.

Association between transcriptomic markers versus ZP
birefringence
In order to assess the relationship between the 7 CCs tran-
scriptomic biomarkers of high developmental potential
oocytes associated to successful pregnancy and the zona
pellucida birefringence, association study between the
levels of expression of such biomarkers in 3 patient groups
(ZGP vs ZBNP vs ZGNP) having different ZP birefrin-
gences and pregnancy outcomes was performed. Therefore
and for each gene biomarker, its gene expression levels
revealed by QPCR in CCs of the three patients’ groups
were compared and analyzed based both the pregnancy
output and ZP birefringence score.

Statistical analysis
Statistical analysis of QPCR results was done by
ANOVA followed by Fisher’s protected least significant
difference (LSD) test at a=0.05 and using the GraphPad
Prism 5 software (GraphPad Software, San Diego, CA).

Figure 7 Study’s experimental design
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Similarly, association analysis between oocyte quality
biomarkers and ZP birefringence was performed for
each gene biomarker using the QPCR results of CCs
gene expression in the three patients’ groups: ZGP,
ZBNP and ZGNP and ANOVA/ F-test as described
before.

Additional material

Additional file 1: Table S1: List of over-expressed genes in ZGP versus
ZBNP groups (ZGP/ZBNP ratio ≥ 2) following microarray analysis at
FDR=5%

Additional file 2: Table S2: List of under-expressed genes in ZGP versus
ZBNP groups (ZBNP/ZGP ratio ≥ 2) following microarray analysis at
FDR=5%
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