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Abstract

Background: Several phylogenomic analyses have recently demonstrated the need to account simultaneously for
incomplete lineage sorting (ILS) and hybridization when inferring a species phylogeny. A maximum likelihood
approach was introduced recently for inferring species phylogenies in the presence of both processes, and showed
very good results. However, computing the likelihood of a model in this case is computationally infeasible except
for very small data sets.

Results: Inspired by recent work on the pseudo-likelihood of species trees based on rooted triples, we introduce
the pseudo-likelihood of a phylogenetic network, which, when combined with a search heuristic, provides a
statistical method for phylogenetic network inference in the presence of ILS. Unlike trees, networks are not always

other criteria and/or data in other scenarios.

uniquely encoded by a set of rooted triples. Therefore, even when given sufficient data, the method might
converge to a network that is equivalent under rooted triples to the true one, but not the true one itself. The
method is computationally efficient and has produced very good results on the data sets we analyzed. The
method is implemented in PhyloNet, which is publicly available in open source.

Conclusions: Maximum pseudo-likelihood allows for inferring species phylogenies in the presence of hybridization
and ILS, while scaling to much larger data sets than is currently feasible under full maximum likelihood. The
nonuniqueness of phylogenetic networks encoded by a system of rooted triples notwithstanding, the proposed
method infers the correct network under certain scenarios, and provides candidates for further exploration under

Background

The last decade has seen an explosion in the development
of methods for inferring species trees from genome-wide
data in the presence of incomplete lineage sorting (ILS);
see [1] for a recent review. Indeed, ILS has been shown to
be at play in various phylogenomic data sets; e.g., [2-4]. In
the presence of ILS, the species phylogeny still takes the
shape of a tree, with the difference gene trees “growing”
within its branches. Another evolutionary process that
results in gene tree incongruence in eukaryotic data sets,
but violates the tree shape of the species phylogeny, is
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hybridization. Hybridization—the mating of individuals
from different species—is believed to play an important
role in several groups of eukaryotic species [5-9]. It has
been estimated that at least 25% of plant species and 10%
of animal species hybridize [7]. The non-treelike phyloge-
netic relationships resulting from hybridization are best
modeled by phylogenetic networks.

Recent studies have reported patterns of co-occurrence
of hybridization and ILS [10-14]. These studies call for
developing methods that account simultaneously for ILS
and hybridization. In recent years, some efforts have been
made to address this issue, but they all focused on limited
special cases of phylogenetic networks [15-20]. More
recently, methods have been developed for general phylo-
genetic networks, including maximum parsimony [21],
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maximum likelihood [22-24] and distance-based methods
[25]. Of these, maximum likelihood produces the most
accurate results and allows for estimating, in addition to
the network topology, branch lengths and other
parameters.

Computing the likelihood of a phylogenetic network
under the models of [22,24] is computationally very
expensive. When this step is coupled with a search heuris-
tic that traverses the space of phylogenetic networks and
other parameters, application of maximum likelihood
becomes limited to very small data sets (fewer than
10 taxa and 3 reticulations). In this paper, we propose a
maximum pseudo-likelihood approach for inferring phylo-
genetic networks in the presence of hybridizations and
ILS. The work extends MP-EST, which is a maximum
pseudo-likelihood approach for estimating species trees
from a collection of gene trees under the multispecies coa-
lescent model [26]. The pseudo-likelihood of a species tree
is computed based on the frequencies of rooted triples in
the input gene trees. Given that a tree is uniquely encoded
by its set of rooted triples, the method of [26] has theoreti-
cal guarantees of convergence, in addition to its empirical
performance. However, a phylogenetic network is not
necessarily uniquely encoded by its triple set. The implica-
tion of this fact is that our method might not identify the
true network (even when given sufficiently large amounts
of data), but one that is equivalent to it in terms of the
rooted triples it induces. However, it is important to note
that a phylogenetic network could very well be uniquely
encoded by a system of rooted triples. Further, when the
phylogenetic network is not uniquely encoded by a system
of rooted triples, the networks that the method infers
could be explored using other criteria (e.g., under likeli-
hood based on gene trees) and/or other types of data (e.g.,
gene trees with branch lengths and molecular sequences).

We have implemented the method in the open-source
software package PhyloNet [27], which can be accessed at
[28]. We analyzed the performance of the method on a
biological data set as well as simulated data. Results on
these data sets show that the method has a very good per-
formance in terms of accuracy of the inferred evolutionary
histories, as well as computational requirements. This
method will enable analyses of larger data sets than is cur-
rently feasible where hybridization and ILS are suspected
to be at play.

Methods

Liu et al. recently introduced MP-EST, a maximum
pseudo-likelihood approach for estimating species trees
from a collection of rooted gene trees under the multispe-
cies coalescent [26]. The method resulted in significant
improvements in the running time of statistical inference
of species trees. Inspired by this work, we propose a
method for estimating species phylogenies in the presence
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of both hybridization and incomplete lineage sorting
under maximum pseudo-likelihood.

Phylogenetic networks, gene trees, and rooted triples

A (binary) phylogenetic network [29] ¥ on set 2 of
species (taxa) is a rooted, directed, acyclic graph whose
node-set is V (¥) = {r} U V; U VU Vy where

« r is the root of ¥ and satisfies d (r) = 0 and d*(r) = 2;
+ Vi: the leaf-set bijectively labeled by .2, where d
“(v=1and d"(v) = 0 for any v € Vj;

« Vr : internal tree nodes, where d (v) = 1 and
d*(v) = 2 for any v € VT ; and,

o Vy : reticulation nodes, where d (v) = 2 and
d*(v) = 1forany v € Vy

Here, d™(v) and d*(v) are the in-degree and out-degree
of node v, respectively. We denote by E(P) the set of edges
in network ¥. The phylogenetic network has branch
lengths A : E(¥) — R". Hereafter, we will use ¥ to denote
both the topology and branch lengths of a phylogenetic
network. Further, as in [22,24], for a probabilistic setting,
there is an additional function, referred to as the inheri-
tance probability, y: E(¥) — [0, 1] that satisfies:

» Ae) = 1 for every edge e whose head is a tree node,
and

» Ael) + Ye2) = 1 for every pair of edges el and e2
whose head is the same reticulation node.

In [24], we discussed how to generalize the function y
so that it varies across loci, and that generalization
would be trivial to incorporate in the methods below.

A gene tree g on set 2" of species is a rooted tree (not
necessarily binary) whose leaves are labeled (not neces-
sarily bijectively) by 2". To distinguish the leaves that
are labeled by the same element of 27, we add sub-
scripts to the leaf labels. Figure 1 shows a gene tree g
on set X = {X, Y, Z} of species, where four alleles are
sampled from species X (labeled xy, ..., x4), three alleles
are sampled from species Y (labeled y, ..., ¥3), and two
alleles are sampled from species Z (labeled z; and z,). In
particular, in this work we allow a gene tree to have
zero alleles sampled from some species.

A rooted triple (from now on we will just write “triple”,
since we only deal with rooted topologies) is a rooted tree
with three leaves. If the triple is binary, we write xy|z to
denote that the triple puts x and y closer to each other
than either of them to z. If the triple is nonbinary, then it
is xyz. We denote by g|{x,5,z} the triple in the gene tree g
induced by restricting its leaf-set to the three leaves
labeled #, y, and z. Figure 1 shows the two triples induced
by {x1, y1, z1} and {x1, y1, zo}. Finally, to link the leaf-labels
in the gene tree to their corresponding taxa in the
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Figure 1 Gene trees and rooted triples. A gene tree g on three species X, Y, and Z, where multiple alleles are sampled per species. Two
induced triples by the gene tree and their mapping to the species names are shown.

phylogenetic network, we introduce function ¢ which
maps an allele label in the gene tree to its corresponding
taxon in the network. For example, in Figure 1, ¢(z1) =
¢(z5) = Z. Further, we use ¢(g|{x,y,z}) to denote the
induced triple with its leaf-labels replaced by the taxa
names (of species). Figure 1 illustrates ¢.

Pseudo-likelihood of a species network

Let 2 be a set of taxa (species), t = XY |Z be a binary tri-
ple with X, ¥, Z €2/, and g be a gene tree on 2. We
denote by a(g X), for X € X, the set of alleles from X that
label leaves of g. For example, in Figure 1, a(g X) = {x1, x5
x3, x4}. We define p(¢ g) to be the number of times ¢ is
induced by g (when the leaf-labels are mapped to 2" using
the function ¢) normalized by the number of times any
triple on X, Y, and Z is induced by g. Clearly, if at most
one allele per species is sampled in g, then any triple is
either not induced by the gene tree or induced once. How-
ever, since we allow multiple alleles per species, this might
not be the case. Note that while ¢ is binary, it could be the
case that g|{x; ,y; ,zi} is nonbinary. Since there are three
ways of resolving a nonbinary triple, a nonbinary triple g
{xi,y; 21} contributes 1/3 to the value of p(t, g). Account-
ing for these two issues, p(t, g) for t = XY |Z equals

(I(p(8—txp.a) = XYIZ) - 1+ U(¢(8lixy.a) = XYZ) - 1/3)
xea(gX).yea(gY)zea(g.2) (1)

la(g X)| - la(g, Y)I - la(g, Z)|

where T is the indicator function defined by I(e) = 1
when e is true and I (e) = 0 when e is false. For a set G
of gene trees, we define p(t,G) = decp(t,g). If the
denominator in Eq. (1) equals zero, we set p(t, g) = 0.

Given a set G of gene trees, the three binary triples #;
=XY|Z t, = XZ|Y, and t3 = YZ|X onaset {X,Y,Z} C X
have a multinomial distribution given by

3

IG]! H (P(tl¥, y ))/I(t,,c)l (2)

fp(t1, G), p(t2, G), p(t3, G) ¥, 7) = e |

where P (t|¥, 7) is the probability of rooted triple ¢
given network ¥ and inheritance probabilities y [22,21].

Finally, the pseudo-likelihood of phylogenetic network
Y and inheritance probabilities ¥ given a set G of gene
trees is given by

L¥,716) = ] f(p(XYIZ G), p(X2IY,G), p(YZIX, G)I¥, 7).
{X,Y,Z)CX

A maximum pseudo-likelihood approach seeks ¥~ and
y that maximize Eq. (3). IG|!
Since for a given set G of gene trees is a
& & [T, (1 G)!

constant irrespective of ¥ and 7, this term is dropped
from the pseudo-likelihood computation when searching
for ¥ and 7.

Convergence and identifiability
It follows from the strong law of large numbers [30]
that as the number of gene trees

|G| goes to infinity, the proportions of rooted triples
in gene trees converge to their

expectations, that is

{ p(t1,G) p(2,G) p(t3,G)

), e 9 20 L Lot ) e e ) (4)

where  is the true phylogenetic network and y are
the true inheritance probabilities. Thus, as |G| goes to
infinity, L(¥, 7|G) converges to

e (x,l,_z[,g(nil (|c\|-cg(z,\@, py L1 ”)‘GI'P(M))' ®)
A phylogenetic tree is uniquely encoded by its triple
system [31]. More specifically, given a phylogenetic tree
T , let R(T) be the set of triples induced by tree T .
Then no tree T" exists such that T # T" and R(T) = R(T
"). Combining this fact with Eq. (5) and the fact that H
(¥, 7y) is maximized when j — ] and y = 7, it is clear
that when the species phylogeny YV is a tree, as |G| goes
to infinity, ¥~ converges to the true species tree [26].
However, in contrast to trees, triples do not necessarily
uniquely encode a phylogenetic network [32]. For example,
the three phylogenetic networks ¥y, ¥, and W3 in Figure 2
have different topologies, but they induce (a network
induces a triple if at least one of the trees displayed by the
network induces that triple) the same triple system {A|BC,
AB|C, A|BD, AB|D, A|CD, B|CD}. This means that, given a
phylogenetic network ¥ (topology and branch lengths)
and inheritance probabilities ¥, if there is a phylogenetic
network W' s.t. R(¥) = R(¥') (which is not necessarily
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Figure 2 lllustration of the lack of network identifiability under the proposed pseudo-likelihood framework. Three phylogenetic
networks with the same set of triples: A|BC, AB|C, ABD, AB|D, A|CD, and B|CD. Branch lengths and inheritance probabilities are shown in blue and

b
b3 |2
Bs T \04
A B C D A B
vy
red, respectively, for ¥; and ¥,.

always true), then there exist branch lengths for ¥' and
inheritance probabilities ¥ such that P (¢|¥, y) = P (¢|¥’, ¥)
for every rooted triple ¢. For example, in Figure 2, given
network W1 with its branch lengths and inheritance prob-
abilities, we can obtain P (¢|¥}, 1) = P (¢|¥y, }») for every
triple ¢ by setting the branch lengths of network ¥, and
inheritance probabilities as

Iy = —In(ae® + (1 — a)e®™) + bs + by + by,

I, = —In((ae”"? ("5 (3ae" + 3 — 4a) — " — ae” — & + a)+
(1= @) (e (1 — o + ae™) — (1 +a)e™))/

(e 0403 (3ehs — 1) + P15 ((1 — a)e® — &) — ae**5))) + by,
(o0 — 1)es — qel

I3 = Ini
? (ae"”bS(ebZB(a —1)ebs —a) + (1 —a)els) — (1 — a)?eb2tbs

) +by +b3,

and

) (1 = a)(ae 02403 (=3ebs 4 1) — 1#05 (1 — a)el? — eb3) + e *ts
(1 — a)ebr#bs+bs (—3geb> + 1+ a) — ebr+h2 (1 — a)2els — qels) — a2ebatbs”

A concrete example of these settings is:

e network Wi: by =1,by=1,b3=2,b, =1, bs =0,
o=0.1

« network W,: [; = 1.841435, [, = 1.951019, I3 =
0.207841, B = 0.6631633.

This result means that when a species network ¥ is not
uniquely encoded by its triple system, as the number of
gene trees |G| goes to infinity, argmaxy, L(¥, Y|G) is not
unique, and one of the solutions is the true species net-
work  and true inheritance probabilities . This leads to
an issue in our inference: if the optimal phylogenetic net-
work s is not uniquely encoded by its triple system R(¥),
the maximum pseudo-likelihood search might return any
of the optimal networks with the same triple system. To
ameliorate (yet, not guaranteed to always solve) the iden-
tifiability issue, one heuristic is to save all optimal net-
works identified during the search based on pseudo-
likelihood and then optimize their branch lengths and
inheritance probabilities using the full likelihood computa-
tion [22,21] to identify the optimal one among them.

However, it is important to keep in mind that full likeli-
hood computation can be infeasible except for very small
data sets.

Searching for ¥" and ¢’

Given a set of gene trees G, ¥~ and ¥ that maximize L(%¥,
71G) are searched by traversing the space of phylogenetic
networks and inheritance probabilities using simulated
annealing. The search starts from initial values of ¥ and y
and in every iteration, one of the following operations is
selected randomly according to their preset weights:

+ Modifying one or more branch lengths.

+ Modifying one or more inheritance probabilities.
+ Adding a reticulation edge.

+ Deleting a reticulation edge.

+ Relocating the head of a reticulation edge.

+ Relocating the tail of an edge.

The first two operations do not change the topology of
the network. Full details of how these operations are
implemented are given in [24]. During the search, if the
new network has higher pseudo-likelihood than the cur-
rent one, it is always accepted; otherwise, it is accepted
with some probability. The search terminates if one of two
conditions is satisfied: (1) the number of iterations reaches
some preset maximum value or (2) the search is alternat-
ing between a collection of species networks with high
pseudo-likelihoods, and a sufficient number of iterations
have passed since visiting any other species networks. The
details of how the probability of acceptance is set and the
termination conditions are determined are similar to those
used in [33,34].

Since branch lengths and inheritance probabilities are
sampled, rather than optimized, during the search,
some solutions could be missed due to this sampling.
One heuristic to ameliorate this problem is to keep the
top k optimal networks during the search, and then at
the end optimize the branch lengths and inheritance
probabilities (under the pseudo-likelihood criterion) of
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only these networks to identify the optimal one. We
implemented this in our method and we discuss its
performance in the simulation results below.

Results

A yeast data set

Using our method, we reanalyzed the yeast dataset of
[35]. It contains 1070 genes from 23 yeast genomes. We
rooted the gene trees under the MDC criterion using
the algorithms of [36,37] and the species tree reported
in [35] which was inferred by both maximum-likelihood
and Bayesian inference on their concatenated sequence
alignment. It is worth mentioning that all 1070 gene
trees were topologically distinct and none of them
agreed with the inferred species trees.

The optimal species networks with 0, 1 and 2 reticula-
tions inferred by our method are shown in Figure 3.
Their log pseudo-likelihoods are —324904, -323034, and
-321710, respectively. The optimal species tree is the
same as the one inferred in [35]. The optimal network
with 3 reticulations (not shown here) has lower pseudo-
likelihood than the one with 2 reticulations, so our
method proposes the optimal network with 2 reticula-
tions, shown at the bottom of Figure 3, as the hypoth-
esis for the evolutionary history of this dataset.

In the species tree reported in Figure 3, descending from
the MRCA of all the Candida species are two successive
branches with very poor support (29/0.01 and 29/0.02).
Further, the total time on the path from the MRCA of C.
parapsilosis and C. albicans to the MRCA of all Candida
species is 1.52 + 0.47 + 0.09 = 2.08 coalescent units. On
the other hand, an analysis that accounts for the possibility
of hybridization (in addition to incomplete lineage sorting)
estimates longer branches, making the same path of length
1.50 + 1.66 + 1.76 + 0.27 + 0.19 + 0.72 = 6.1 coalescent
units, which is almost three times as long. Further, it esti-
mates an inheritance probability of 0.4 at the newly added
reticulation edge. In other words, this combination of a
new reticulation edge and much longer path indicate that
much of the incongruence in this part of the tree can be
explained by hybridization, rather than incomplete lineage
sorting. Notice that inferring this reticulation edge also
grouped D. hansenii differently, which is one of the two
clades with very low support in the species tree. This new
reticulation also posits that many of the gene trees indicate
that D. hansenii and P. stipitis are much more recent des-
cendants from the MRCA with Candida due to hybridiza-
tion. Finally, for this part of the network, observe that the
reticulation edge has a non-negligible length of 2.74 coa-
lescent units. This implies the possibility that the hybridi-
zation involved a sister species of the MRCA of the
Candida species that was not sampled in this data set.

A similar scenario can be observed in the other part of
the species phylogeny (with the Kluyveromyces and
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Saccharomyces species). In this part, the underlying
“tree” grouping does not differ from that in the esti-
mated species tree, and the branch lengths are also very
similar. However, the new inferred reticulation edge (the
dashed one) groups S. kluyveri with the other clade that
has all the other Saccharomyces, and this edge is very
long (5.92 coalescent units). This indicates that this evo-
lutionary history supports grouping S. kluyveri with the
other clade, yet with hardly any incomplete lineage sort-
ing involved in this grouping.

In other words, the new analysis, which is enabled by the
fast computation of pseudo-likelihood of networks, sup-
ports a hypothesis of (at least) two major hybridization
events in this data set and more divergence in certain parts
of the phylogeny than is supported by the species tree.

Simulated data

We also used synthetic data to test the performance of
our method in terms of accuracy. We used the phyloge-
netic network in Figure 3 with an added outgroup as the
model species phylogeny. Within the branches of this
network, we simulated 100, 250, 500, 1000 and 2000
gene trees using the program ms [38]. For each number
of gene trees, 30 datasets were generated. Then down
each gene tree we used seq-gen [39] to generate
sequences of lengths 250, 500 and 1000 under the GTR
model of sequence evolution. We set the population
mutation rate to 0.036, the base frequencies of the
nucleotides A, C, G and T to 0.2112, 0.2888, 0.2896, and
0.2104, respectively, and the relative rates of substitutions
to 0.2173, 0.9798, 0.2575, 0.1038, 1 and 0.2070. At last,
gene trees were reconstructed using RAxML [40] and
rooted at the outgroup. For each sequence alignment,
RAXxML was run five times and the best tree among
these five runs was used as the estimated gene tree.

We ran our method on both the true gene trees and
estimated gene trees to infer species networks. The num-
ber of reticulations was set to the true value 2. For each
dataset, the search was performed 5 times starting from
the optimal species tree under the MDC criterion [41].
During the search, the top 5 species networks with highest
pseudo-likelihood were saved. After that, we optimized the
branch lengths and inheritance probabilities of those top
species networks under maximum pseudolikelihood (see
the discussion above for the rationale of doing this step).
Note that the true network is uniquely encoded by its tri-
ples in this case. The results are shown in Figure 4.

Overall, except for the hardest cases (very short
sequences and a small number of gene trees), the method
made very accurate inferences. As expected, the accuracy
improves when the number of loci increases. When true
gene trees are used, even data sets with the smallest
number of loci yield good results. When estimated gene
trees are used, as expected, overall, the inferred species
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Figure 3 Reanalysis of the 1070-gene yeast data set of [35]. Top: the species tree inferred by maximum pseudo-likelihood when no
reticulations are allowed during the search. It is identical to the tree reported in [35]. The two black numbers for every internal node are gene-
support frequency (left) and internode certainty (right) reported in [35]. Bottom: the species network inferred by maximum pseudo-likelihood
with 2 reticulations. The red solid edge is the reticulation edge in the optimal species network with 1 reticulation. Blue and red numbers are
branch lengths and inheritance probabilities, respectively, inferred by the method.
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Figure 4 Accuracy of the method on simulated data. For every
number of lodi, the rightmost bar corresponds to inference from true
gene trees and the other three bars, from left to right, correspond to
inference from estimated gene trees from sequences of lengths 250,
500 and 1000, respectively. The dark blue region corresponds to the
number of times the true network was returned as the optimal
network after the search. The green region corresponds to the
number of times the true network is not the optimal network found
by the search, but is the optimal one among the top 5 species
networks after optimizing their branch lengths and inheritance
probabilities under maximum pseudo-likelihood. All other scenarios
are represented by the maroon region.

networks from gene trees estimated from longer
sequences are more accurate. For the smallest number of
loci (100), using gene trees estimated from the shortest
sequences (of length 250) results in performance that is
much worse than using those estimated from longer
sequences (of lengths 500 and 1000). However, the
improvement in the accuracy of the inferred species net-
works gained by using gene trees estimated from longer
sequences gets smaller when the number of loci increases.
When comparing the results based on true gene trees to
those based on estimated gene trees, we observe that using
true gene trees is only significantly better when the num-
ber of loci is small and the gene trees are estimated from
short sequences. In particular, for sequence lengths 500 or
1000 and 1000 gene trees, which are realistic sizes of phy-
logenomic data sets, the method has 100% accuracy (when
coupled with the optimization post-processing step) under
our simulation settings.

Finally, we investigated the running time of the
method. Given that the time of the search is affected by
various factors, we focused here on the running time of
computing the pseudo-likelihood of networks of varying
sizes. We first used PhyloGen [42] to generate random
species trees with 20, 50, 100, 150 and 200 taxa. Then,
for each species tree, we randomly added 1, 2, 3, 4 and
5 reticulations (it is important to note that currently

@
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Figure 5 Running time of computing pseudo-likelihood of a
species network. We varied the species networks by the number
of taxa and the number of reticulations. The running times are

reported in seconds.

computing the full likelihood of networks of these sizes
is infeasible). More specifically, to add a reticulation to a
species network, we selected two edges uniformly at
random and added an edge between their midpoints
from the higher one (closer to the root) to the lower
one (farther from the root) to avoid creating a cycle.
The lower one became a new reticulation node to
whose incoming edges inheritance probabilities were
assigned uniformly at random. Then, the program ms
[38] was used to generate one gene tree within the
branches of each species network.

We ran our method in parallel on 8 cores on a system
with a 2.83-GHz processor. The results are shown in
Figure 5. Overall, computing the pseudo-likelihood of a
species network is very fast. It only took around 0.02 sec-
onds for species networks with 20 taxa and 0.25 seconds
for species networks with 50 taxa. It is not surprising to
see that the running time is dominated by the number of
taxa #n, since that directly determines the number of tri-
ples. Further, the running time of computing the probabil-
ity of a triple increases with the number of taxa of the
species network in general. On the other hand, we can see
from the figure that for a fixed number of taxa the running
time increases ever so slightly with the number of reticula-
tions in the species networks. It is very different from
computing the full likelihood, where the number of reticu-
lations and the configurations of the reticulations signifi-
cantly affect the running time of the likelihood
computation [21].

Discussion
In a recent study, Fontaine et al. reported on hybridiza-
tion and extensive introgression in the Anopheles



Yu and Nakhleh BMC Genomics 2015, 16(Suppl 10):510
http://www.biomedcentral.com/1471-2164/16/5S10/S10

gambiae complex [14]. Further, they discussed the poten-
tial for incomplete lineage sorting to be at play and
accounted for it in their analysis. The study highlighted an
underlying species tree of the An. gambiae complex, along
with added reticulation edges to capture hybridization.
However, Clark and Messer argued that “given that the
bulk of the genome has a network of relationships that is
different from this true species tree, perhaps we should dis-
pense with the tree and acknowledge that these genomes
are best described by a network” [43]. This is just one of
the most recent studies in an increasingly large body of
work that calls for (i) accounting for ILS when hybridiza-
tion detection is conducted, and (ii) using networks, rather
than trees, to model evolutionary relationships. Indeed,
networks encompass trees and provide a more expressive
model for reticulate evolutionary histories [44].

Along with coworkers, we recently introduced the first
maximum likelihood method for inferring general phylo-
genetic networks while accounting for ILS [24]. While
the method produces very good results in terms of the
evolutionary relationships it infers, its computational
requirements, particularly those of computing the likeli-
hood of a phylogenetic network candidate, remain a
major bottleneck that limits its applicability to very small
data sets. In this work, we introduced a pseudo-likelihood
model of phylogenetic networks that is based on the
rooted triples they induce and inspired by the work of
Liu et al. on the pseudo-likelihood of species trees [26].
The model, combined with a search heuristic, yields a
method for phylogenetic inference that is computationally
orders of magnitude more efficient than inference under
full likelihood and that produces very good inferences.

As stated by Eq. (4), as the number of gene trees goes to
infinity, the proportions of rooted triples in gene trees
would converge to their expectations. One issue of practi-
cal implications concerns the rate at which this conver-
gence occurs in practice. To explore this issue, we used
true gene trees generated in our simulation study, and for
every number of loci (100, 250, 500, 1000 and 2000), we
randomly selected one dataset out of 30. Then within the
branches of the same model species network, we simulated
one more set of gene trees of size 5000. For each set of
gene trees, we computed the proportions of all rooted tri-
ples in gene trees and their expectations and plotted their
differences. The results are shown in Figure 6. Clearly, the
results show good convergence and helps explain the good
performance in the simulation results above. It is impor-
tant to note that obtaining thousands of loci in phyloge-
nomic analyses is becoming very feasible, particularly that
for the purposes of these analyses, a locus can be taken to
be any non-recombining genomic region. That is, gene
trees in these analyses do not have to be estimated from
protein-coding genes, but rather from recombination-free
genomic regions regardless of their “coding” status.
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Figure 6 Convergence of the proportions of rooted triples in
gene trees to their expectations. Every point is the empirical
frequency of a triple minus the (theoretical) expectation of that
frequency.

An advantage of this method in terms of efficiency is that
the running time of the inference depends in a minor way
on the number of gene trees. More specifically, after the
gene trees G are read, p(t, G) is computed only once for all
possible rooted triples ¢ and the results are saved. Then
during the search afterwards, p(¢, G) are only constants
when computing pseudo-likelihood of species networks.

The major drawback of the method is that not all
phylogenetic networks are uniquely encoded by their
systems of rooted triples. That is, some systems of
rooted triples can encode more than a single network.
In these cases, the convergence result given above does
not guarantee that the true network is identified;
rather, it implies that a network that is equivalent to
the true one under rooted triples (potentially the true
network itself) might be identified in the search. When
such a scenario arises, using different types of data or
an alternative criterion to evaluate the identified net-
works might help to identify the true network.

Conclusions

Inference of phylogenetic networks based on pseudo-
likelihood is very fast and produces very accurate
results, thus providing an approach that scales up evolu-
tionary history inference in the presence of hybridization
and incomplete lineage sorting to much larger data sets
than is currently feasible. Under certain conditions, the
true reticulate evolutionary history might not be identifi-
able from the set of rooted triples. Research into iden-
tifiability issues with respect to phylogenetic networks is
beginning to emerge [32,45,46], but much more work is
needed in this area, particularly for the phylogenetic
network model employed here (which accounts for ILS)
and data other than gene tree topologies.
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