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Abstract

Background: Many supervised learning algorithms have been applied in deriving gene signatures for patient
stratification from gene expression data. However, transferring the multi-gene signatures from one analytical
platform to another without loss of classification accuracy is a major challenge. Here, we compared three
unsupervised data discretization methods-Equal-width binning, Equal-frequency binning, and k-means clustering-in
accurately classifying the four known subtypes of glioblastoma multiforme (GBM) when the classification algorithms
were trained on the isoform-level gene expression profiles from exon-array platform and tested on the
corresponding profiles from RNA-seq data.

Results: We applied an integrated machine learning framework that involves three sequential steps; feature
selection, data discretization, and classification. For models trained and tested on exon-array data, the addition of
data discretization step led to robust and accurate predictive models with fewer number of variables in the final
models. For models trained on exon-array data and tested on RNA-seq data, the addition of data discretization
step dramatically improved the classification accuracies with Equal-frequency binning showing the highest
improvement with more than 90% accuracies for all the models with features chosen by Random Forest based
feature selection. Overall, SVM classifier coupled with Equal-frequency binning achieved the best accuracy (> 95%).
Without data discretization, however, only 73.6% accuracy was achieved at most.

Conclusions: The classification algorithms, trained and tested on data from the same platform, yielded similar
accuracies in predicting the four GBM subgroups. However, when dealing with cross-platform data, from exon-array
to RNA-seq, the classifiers yielded stable models with highest classification accuracies on data transformed by Equal
frequency binning. The approach presented here is generally applicable to other cancer types for classification and
identification of molecular subgroups by integrating data across different gene expression platforms.

Background

Molecular understanding of tumor heterogeneity is key to
personalized medicine and effective cancer treatments.
Numerous studies have identified molecularly distinct can-
cer subtypes among individual patients of the same histo-
pathological type by performing a high-throughput gene
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expression analysis of the patient tumor samples [1].
While microarray-based gene expression estimates are
often not precise or quantitative enough for applications
in the clinical setting, the expression profile data from
microarrays are the basis for the widely used OncotypeDX
(Genomic Health, Redwood City, CA) test, which predicts
the risk of recurrence in patients with early stage breast
cancer [2]. The OncotypeDX assay analyzes the expression
of 21 genes by RT-qPCR to provide a recurrence score
that is unique to each patient [3,4]. More recently, the
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development of next-generation sequencing (NGS) based
techniques, RNA-seq [5], is enabling gene expression ana-
lysis to yield a much greater resolution for accurate identi-
fication of different isoforms. While several genome-wide
expression profiling studies have dramatically improved
our collective understanding of cancer biology and led to
numerous clinical advancements [6,7], the use of genomics
based molecular diagnostics, such as OncotypeDX [8-12],
in clinical practice still remains largely unmet for majority
of human cancers [13].

A crucial step in the translation of gene signatures
derived from high-throughput platforms is validation in a
clinical setting, using robust and quantitative assay plat-
forms (e.g., RT-qPCR based assay) without loss of any
classification accuracy [14]. A major bottleneck in trans-
lating the prognostic or molecular subtyping statistical
models is lack of adaptability of the derived models from
one analytical platform to another. In other words,
assuming that we have gene expression data for a set of
tumor samples (with known subtype/class labels) from
two different analytical platforms, “can a statistical model
derived on data from one platform (e.g., microarray/
exon-array) accurately predict the class labels using data
from another platform (e.g., RNA-seq) for the same
patient samples?” While several normalization strategies,
such as locally weighted scatter plot smoothing (loess)
[15,16], rank and quantile normalization methods
[17-19], have been successfully applied to eliminate sys-
tematic errors in data from a same platform, these meth-
ods are not appropriate for normalization of data from
different profiling platforms (microarray, RNA-Seq and
RT-qPCR) because of the differences in the data scales
and magnitude. In such cases, researchers usually accept
the normalized data in the original analyses, and harvest
the list of differentially expressed (significantly up or
down) genes from each study by rank ordering. Then, the
genes are prioritized by comparing the lists of up- and
down-regulated (or rank ordered) genes between studies,
rather than comparing individual expression values.
However, these pre-processing methods are not useful in
developing platform-independent statistical models.

Data discretization is a popular data pre-processing
step used in supervised learning for creating the training
sets. Data discretization transforms continuous values of
feature variables to discrete ones [21,22]. It can signifi-
cantly impact the performance of classification algo-
rithms in the analysis of high-dimensional data [23].
Different data discretization methods have been devel-
oped that can be categorized as: (1) supervised vs. unsu-
pervised methods depending on the availability of class
labels; (2) global vs. local methods considering all or only
one feature to discretize; and (3) static vs. dynamic meth-
ods based on interdependency between attributes. Many
discretization techniques have been applied to analyze
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gene expression data, for example, to devise a new
approach to explore gene regulatory networks [24], and
as a pre-processing step to improve classification accu-
racy using microarray data [25]. While the previous
studies have used the discretization method as a pre-
processing step to design and apply the statistical models
on data from one platform (e.g., microarray), our goal in
this study is to evaluate three unsupervised data discreti-
zation methods—equal width (Equal-W) binning, equal
frequency (Equal-F) binning, and k-means clustering—in
combination with different feature selection and machine
learning methods for deriving the most accurate classifi-
cation model from one platform (e.g., exon-array), and
apply it to data from another platform (e.g., RNA-seq)
for molecular subtype prediction of a future cancer
patient.

Feature selection algorithms seek for a subset of rele-
vant features to use in model construction in order to
simplify and reduce over-fitting of the models. The wrap-
per, filter, and embedded methods are the three main
categories that have been widely used in biomedical
research to deal with a large feature space [26,27]. Briefly,
wrapper algorithm uses a predictive model that scores on
a new each subset to train, and test on the remaining set;
filter algorithm uses a direct measure instead of the error
rate estimate to score a feature subset; embedded algo-
rithm integrates feature selection as part of the model
construction process including the Recursive Feature
Elimination (RFE) algorithm. In this study, we adopted
two advanced feature selection algorithms based on SVM
and RF, and one filter method using the coefficient of
variation (CV), a statistical measure to find highly vari-
able genes.

Using a subset of most important genes (variables/
features) screened by the variable selection methods,
numerous classification methods have been applied to
tackle disease sample classification problems. For example,
SVM was applied for characterizing functional roles of
genes in yeast genome and cancer tissues [28,29], RF for
classifying cancer patients and predicting drug response for
cancer cell lines [30-32], NB (naive Bayes) for classification
on prostate cancer [33,34], and PAM (Prediction Analysis
of Microarrays) for molecular classification of brain tumor
and heart disease [35,36]. These studies, however, focused
largely on the data from one platform such as microarray,
although cross-platform data analysis would help find
robust gene signatures. Recently, we developed PIGExClass
[20], platform-independent isoform-level gene expression
based classification system, that captures and transfers gene
signatures from one analytical platform to another through
data discretization. PIGExClass is an integrative system that
consists of data discretization, feature selection, and classifi-
cation. The application of PIGExClass has led to the devel-
opment of a novel molecular classifier (or gene panel) for
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diagnosis of GBM subtypes [20]. Motivated by the impor-
tance of data discretization step in PIGExClass algorithm, in
this paper we evaluated the performance of three data dis-
cretization methods together with four popular machine
learning algorithms to derive reliable platform-independent
multi-class classification models; specifically, predicting the
four known subtypes of GBM patient samples from the
same platform as well as independent platforms.

Results

Data discretization retained the classification accuracy
with fewer number of variables for data from same
platform

Because gene isoforms (variables) whose expression levels
do not vary much across the samples are less useful for
discriminating the four GBM subtypes, We selected
2,000 isoforms with the highest variability across the
samples, using CV (coefficient of variation). To search
for an optimal bin number k for the discretization, we
explored various bin sizes including the optimal bin
number (k = 11) based on Dougherty’s formula [37], and
chose the bin number of k = 10 as it consistently
achieved good accuracy. Then we applied two advanced
feature selection algorithms, SVM-recursive feature elim-
ination (SVM-RFE) [38] and RF based feature selection
(RF_based_FS) [39], and prepared independent training
and testing datasets by dividing the exon-array samples
into four fold; 3/4™ (257 samples) for training and 1/4™
(85 samples) for testing. We describe below the classifica-
tion performance for each variable selection method-CV,
SVM-RFE and RF_based_FS.

First, we trained the classifiers with the features
ranked by the CV that represent high generic variability.
Overall, the accuracy of the derived classifiers was
within the range of 89.4-97.6% for FC and 91.3-97.6%
for discretized data (Figure 1 and Table 1), suggesting
that the discretization retained the classification accu-
racy of the respective models. More importantly, SVM
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achieved similar accuracy with Equal-W binning using
only 500 features in comparison to without discretiza-
tion. For RF, NB and PAM the classification accuracies
and the number of variables used in the models did not
differ significantly between the discretized and non-
discretized data. We then trained the classifiers by con-
sidering only the top 100 features that can be clinically
testable by, for example, RT-PCR. We observed that
SVM with k-means clustering yielded the best accuracy
of 90.6% (Table 2).

Second, we evaluated the classification performance
using the features ranked by SVM-RFE. Accuracy of the
classifiers ranged from 83.5 to 97.6% for both FC and
discretized data (Figure 2 and Table 1). Again, SVM
showed similar accuracy between discretized and FC
data, but required fewer variables in the model that was
trained on Equal-W binning data. Similarly, RF showed
similar accuracy between discretized and non-discretized
data, but the RF model trained on Equal-F binning data
used only 400 variables in comparison to 1,000 variables
required for FC data. Interestingly, NB not only
improved the classification accuracy with Equal-F bin-
ning data but also used much fewer number of variables
(80 in comparison to 1,000) to achieve the higher accu-
racy. For PAM, the classification accuracy and number
of variables in the models remained similar between FC
and discretized data. Using the top 100 features, SVM
still attained the best accuracy with Equal-F binning
(Table 2).

Lastly, we used the features selected by RF_based_FS
to assess the classifiers’ performance. Accuracy of the
classifiers did not fluctuate much by staying within the
range of 92.9-98.8% for both non-discretized and discre-
tized data (Figure 3 and Table 1). Overall, all the classi-
fiers tested retained their highest accuracies, but with
significantly fewer number of variables in the final mod-
els. While SVM achieved the best accuracy (98.8%) with
FC, it retained comparable accuracy (96.4%) with just 70
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Figure 1 Accuracy of classifiers on the same platform with features ranked by the CV. Independent exon-array data of 257 and 85
samples are used for training and testing, respectively. The dotted brown line marks 90% accuracy.
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Table 1. Comparison of classification accuracy on the same platform using top ranked gene isoforms

Feature CV (#) SVM-RFE (#) RF_based_FS (#)
selection

Classifier FC Equal-W Equal-F k-means FC Equal-W Equal-F k-means FC Equal-W Equal-F k-means

SVM 97.6 97.6 96.4 96.4 97.6 95.2 97.6 97.6 98.8 964 (70) 96.4 98.8

(1000) (600) (500) (600) (1000) (600) (1000) (1000) (150) (200) (150)

RF 94.1 95.2 929 91.7 96.4 964 95.2 964 95.2 94.1 929 929

(900) (1000) (800) (600) (900) (1000) (400) (1000) (300) (150) (500) (400)

NB 94.1 941 929 929 83.5 83.5 88.2 (80) 83.5 95.2 95.2 95.2 96.4

(700) (900) (600) (700) (1000) (1000) (1000) (300) (200) (600) (400)

PAM 89.4 929 91.7 91.7 87.0 83.5 87.0 87.0 929 94.1 94.1 929

(900) (1000) (1000) (1000) (900) (900) (900) (900) (600) (200) (800) (400)

# Number of variables in the classification model
Comparison of classification methods both trained (257 samples) and tested (85 samples) on exon-array data. The best accuracy (percentage of samples correctly
predicted) achieved by each combination of the four classifiers and three feature selection schemes are presented, with number of features used in the best

fitted model is shown in parenthesis. The models were built by stepwise addition of feature variables into the model by considering the top 1,000 ranked feature
variables. Best accuracy, achieved with the least number of features, is marked in bold for each classification method.

Table 2. Comparison of classification accuracy using top 100 genes using data from same platform

Feature selection cv SVM-RFE RF_based_FS
Classifier FC Equal-W Equal-F k-means FC Equal-W Equal-F k-means FC Equal-W Equal-F  k-means
SVM 84.7 859 859 90.6 776 81.2 929 87.1 96.5 94.1 953 96.5
RF 859 859 84.7 859 81.2 788 88.2 87.1 91.7 929 91.7 90.6
NB 823 81.2 80.0 80.0 753 69.4 812 788 90.6 92.9 85.9 84.7
PAM 859 87.1 859 84.7 7 70.6 84.7 80.0 91.7 91.7 87.1 859

The classification models were trained (257 samples) and tested (85 samples) on exon-array data. Highest accuracy for each classification method is marked in
bold. While SYM in combination with RF_based_FS performed best whit the highest accuracy for both FC data (without discretization) and k-means discretised
data, the other three classifiers (RF, NB and PAM) in combination with RF_based_FS achieved comparable classification accuracies on Eaual-W discretized data.
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Figure 2 Classification performance on the same platform using features ranked by SVM-RFE. We evaluated the classification algorithms
using exon-array data for both training (257 samples) and testing (85 samples). The dotted line indicates 90% accuracy.
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Figure 3 Prediction accuracy of the classifiers on the same platform using features selected by RF_based_FS. We evaluated the four
classifiers using exon-array data for both training (257 samples) and testing (85 samples). The dotted line denotes 90% accuracy.
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variables in the model trained on Equal-W binning data
in comparison to 150 variables in the model trained on
FC data. Similarly, both RF and NB models trained on
Equal-W binning data achieved similar accuracy with
fewer number of variables in comparison to FC data.
Interestingly, PAM model trained on Equal-W binned
data slightly improved the accuracy with fewer variables
in comparison to FC data.

In summary, all the classifiers trained and tested on the
discretized data from same platform resulted with fewer
number of variables, yet retaining the high accuracies in
comparison to the corresponding models that were
trained on FC data. Overall, while SVM achieved the best
accuracy, Equal-W discretization in combination with
RF_based_FS helped build the classification models with
significantly lower number of variables in the final
models.

Data discretization improved cross-platform predictions
In order to evaluate the accuracy of classification models on
data derived by different gene expression platforms (exon-
array and RNA-seq in this study), we trained the classifiers
using the data from exon-array and tested on matched
RNA-seq datasets for the same TCGA samples. First, we
observed that the classification framework resulted in poor
classification accuracies when the classification and feature
selection algorithms were trained on FC data from exon-
array data and tested on corresponding FC data from
RNA-seq platform (Table 3). The best accuracy of 73.6%
on FC data was achieved by RF with RF_based_FS with
just 40 variables in the final model. However, with data
discretization we observed significant improvements in
the performance of the classification framework. Below,
we report the classification performance in more detail
based on testing of the models on data from 76 RNA-seq
samples.
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For CV based feature selection, the classification accu-
racy of the models trained on FC (without discretiza-
tion) was rather poor and ranged from 27.6 to 69.7%
(Figure 4 and Table 3). However, the accuracy of the
models built on Equal-F binning data achieved higher
and stable accuracy, ranging from 92.1 to 100%. Notably,
the SVM classifier accomplished the best accuracy of
100% (700 features) with Equal-F binning followed by
k-means with SVM (92.1% accuracy; 300 features).
Equal-W binning improved the accuracy for RF (84.2%
accuracy; 1000 features), but not for the other three clas-
sifiers. When using the top 100 features in the final
model, RF with Equal-F binning correctly predicted 68
samples out of 76, achieving ~90% accuracy (Table 4).

Similarly, for SVM-RFE features selection, the predic-
tion accuracy of the models on FC data is quite low,
within the range of 35.5-61.8%. While Equal-F binning
improved the accuracy of all the four classifiers, Equal-
W binning improved the accuracy for SVM and RF only
(Figure 5 and Table 3). Most notably, with Equal-F bin-
ning discretization, SVM classifier achieved the highest
accuracy using 1,000 features. For both Equal-W bin-
ning and k-means clustering discretization, RF achieved
the best performance. Using the top 100 features, RF
with Equal-F binning achieved 86.8% accuracy that is
31.6% higher than the best accuracy with FC (55.2%).

For RF_based_FS, the classification accuracies were
dramatically improved for the models trained on discre-
tized data, with Equal-F binning showing the highest
improvement with more than 90% accuracies for all the
models (Figure 6 and Table 3). Models built using
k-means based discretized data also showed significant
improvement with fewer number of variables in the
final models. Considering only the top 100 features, RF
with Equal-F performed 90.8% (69/76 samples) accuracy
whereas RF with FC correctly predicted only 43 samples

Table 3 Comparison of classification accuracy using top ranked features for platform transition

Feature CV (#) SVM-RFE (#) RF_based_FS (#)
selection
Classifier FC Equal-W  Equal-F k- FC Equal-W Equal-F k- FC Equal-W Equal-F k-
means means means
SVM 434 35.5 (80) 100 92.1 513 75.0 100 736 (60) 486 (20) 394 (50) 973 (600) 921
(500) (700) (300) (400) (200) (1000) (200)
RF 69.7 84.2 97.3 894 618 (60) 894 96.0 81.5 73.6 (40) 85.5 97.3 88.1
(300) (1000) (1000) (600) (700) (1000) (100) (100) (800) (300)
NB 276 302 (10)  92.1 (500) 75 (200) 35.5 (40) 38.1 (10) 85.5 (600) 67.1 (60) 355 34.2 (20) 94.7 78.9 (90)
(800) (200) (600)
PAM 447 263 (10) 92.1 (400) 763 447 394 894 (400) 60.5 (60) 46.0 (10) 34.2 (10) 93.4 828
(300) (300) (900) (600) (500) (200)

# Number of variables in the classification model

Comparison of classification methods trained on exon-array (342 samples) and tested on RNA-seq (76 samples). The best accuracy (percentage of samples
correctly predicted) achieved by each combination of the four classifiers and three feature selection schemes are presented, with number of features used in the
best fitted model is shown in parenthesis. The models were built by stepwise addition of feature variables into the model by considering the top 1,000 ranked
feature variables. Highest accuracy, achieved with the least number of features, for each classification method is marked in bold.
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Figure 4 Accuracy of classifiers for independent platform with features ranked by the CV. 342 samples of exon-array and 76 samples of
RNA-seq were used for each training and testing to predict the four GBM subtypes. The dotted brown line marks 90% accuracy.

J
Table 4. Comparison of classification accuracy using top 100 features for platform transition
Feature selection CV (%) SVM-RFE (%) RF_based_FS (%)
Classifier FC Equal-W Equal-F k-means FC Equal-W Equal-F k-means FC Equal-W Equal-F k-means
SVM 408 263 84.2 816 36.8 40.8 855 395 289 30.2 763 395
RF 67.1 73.7 89.5 76.3 552 60.5 86.8 80.2 56.6 816 90.8 855
NB 250 237 80.2 710 329 237 763 223 237 237 84.2 36.8
PAM 355 237 789 64.5 395 276 737 329 395 237 81.6 44.7

The classification models were trained on exon-array (342 samples) and tested on RNA-seq (76 samples) data. Highest accuracy for each classification method is
marked in bold. Only RF with Equal-F binning achieved greater than 90% classification accuracy.
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Figure 5 Classification accuracy for independent platform with features chosen by SVM-RFE. 342 samples of exon-array and 76 samples
of RNA-seq were used for each training and testing to predict the four GBM subtypes. The dotted line indiciates 90% accuracy.
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Figure 6 Accuracy of classifiers for independent platform with features selected by RF_based_FS. 342 samples of exon-array and 76
samples of RNA-seq were used for training and testing to predict the four GBM subtypes. The dotted line denotes 90% accuracy.
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out of 76 (Table 4). We present the sensitivity and spe-
cificity measures for each classifier trained on the top
ranking 100 features from exon-array data and tested on
corresponding data from RNA-seq in Table 5.

In summary, we found that Equal-F binning based dis-
cretization performed best, followed by k-means cluster-
ing based data discretization. Equal-W binning
improved only for RF and not for other classifiers for
cross-platform class label predictions.

Discussion

The evaluation of the three unsupervised discretization
methods using our integrated classification framework
revealed that the addition of discretization step into the
learning framework led to a large average increase in clas-
sification accuracy for all the classification models trained
on data from one gene expression platform and tested on
corresponding data from a different platform. Specifically,
the best method, Equal-F binning, improves performance
of all the classifiers and feature selection methods for
cross-platform transfer of the derived models.

In machine learning, data discretization is primarily
used as a data pre-processing step for various reasons,
for example, (1) for classification methods that can han-
dle only discrete variables, (2) for improving the human
interpretation, (3) for faster computation process with a
reduced level of data complexity, (4) for handling non-
linear relations in the data, e.g., very highly and very
lowly expressed genes are more relevant to cancer sub-
type, and (5) to harmonize the heterogeneous data. In
this study, we showed that simple unsupervised discreti-
zation indeed improved the classification accuracy by
harmonizing the data that come in different scale and
magnitude from different gene expression platforms.
The discretization step lead to numerically comparable
measures of gene expression between different plat-
forms, and translate the classification models (consisting
of multiple transcript variables) across platforms. How-
ever, the discretization methods applied in this study
have some limitations. For example, Equal-W binning is
prone to outliers that may skew the distribution [37].
The k-means discretization performed relatively well

Table 5. GBM subtype prediction

Class PN N CcL M
Method  Sn Sp Sn Sp Sn Sp Sn Sp
SVM 0681 0963 0818 1000 0772 0926 0863 0870
RF 0833 0965 0944 1000 0888 0965 0833 0982
NB 0950 0946 1.000 0910 0850 0928 0800 0910
PAM 0937 0916 0875 0966 0875 0966 0750 0983

Sensitivity (Sn) and Specificity (Sp) of the classifiers trained on the top 100
feature variables from exon-array data and tested on the independent RNA-
seq data for prediction of the four GBM Subtypes.
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with the CV and RF based feature selection schemes.
The known drawback of this clustering discretization,
however, is in choosing initial cluster centroids which in
general is randomly assigned and less robust to outliers;
additionally, it is sensitive to the number of clusters
affecting classification accuracy. The Equal-F binning
performed superior in this study and appeared to be
feasible.

The choice of classification algorithms is often impor-
tant dealing with a certain dataset as each of the algo-
rithms has its own strengths and weaknesses. We
experimented on the four state-of-the-art machine
learning approaches based on maximum margin, deci-
sion tree, probabilistic and clustering classification.
While SVM achieved the best accuracy, the performance
of RF was more consistent when tested with various
numbers of features and data types. We used the linear
kernel SVM because it is known to be less prone to
overfitting than nonlinear kernels such as radial basis
function (RBF); intuitively, the RBF kernel could per-
form better when the data is linearly not separable or
the feature and sample spaces are well balanced. PAM
and NB also performed fairly well with the features cho-
sen by RF_based_FS. NB is known to be robust with
irrelevant features, but the performance would be
quickly degraded when correlated features are added.

Conclusions

For training and testing the models on data from same
platform, all the classifiers built with features selected by
RF_based_FS led to robust and accurate predictive mod-
els regardless of the data format. While data discretiza-
tion step does not significantly improve the accuracy of
the classifiers, it significantly reduced the number of
variables in the final models. For cross-platform training
and testing of the classifiers, Equal-F binning outper-
formed FC, Equal-W binning and k-means clustering.
With Equal-F binning, RF_based_FS identified important
features more efficiently than the CV and SVM-RFE
when fewer gene isoforms are considered in classifica-
tion. Based on these encouraging results, we propose an
integrative machine learning framework that involves
feature selection, data discretization, and classification
model build up by training and testing for independent
platform (Figure 7). We anticipate that the application
of this machine-learning framework, which includes
data discretization as a key step, will provide quantita-
tive and reproducible stratification of cancer patients
with prognostic significance, the potential to improve
precision therapy and the selection of drugs with sub-
type-specific efficacy. More importantly, the approach
presented here is generally applicable to other cancer
types for classification and identification of molecular
subgroups.
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Methods

Dataset

We obtained isoform-level gene expression estimates and
molecular subtype information for 342 and 155 GBM
samples profiled by Affymetrix exon-arrays and RNA-
seq, respectively. The four molecular subgroups are
neural (N), proneural (PN), mesenchymal (M) and classi-
cal (CL). Gene expression profiles for 76 (18 are N; 22
are PN; 16 are M; and 20 are CL subtype) samples were
available from both RNA-seq and exon-array platforms.
The common samples were used to assess classification
performance for platform transition. We followed the
data pre-processing procedure and obtained patients’
GBM subtype information (class labels) from our recent
study [14]; briefly, we downloaded the unprocessed Affy-
metrix exon-array dataset of 426 GBM samples and 10
normal brain samples from TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/); obtained the isoform expres-
sion of 114,930 transcript variants (equivalent to 35,612
genes) using the Multi-Mapping Bayesian Gene eXpres-
sion program [33]. The estimated expression values were
then normalized across the samples, using the locally
weighted scatterplot smoothing algorithm [34], a

non-parametric regression method. To select 2,000 most
variable transcripts, we applied Pearson’s correlation
coefficient with cutoff of > 0.8 followed by the CV.
See [14] for more details.

Data type and transformation

We processed the gene expression data to estimate the
FC values, and then three unsupervised discretization
techniques—Equal-W binning, Equal-F binning, and
k-means clustering—on the continuous FC data.

FC is a measure of a quantitative change of gene
expression, defined by FC=log, (T/N), where T is esti-
mated expression values of a tumor sample and N is
median expression of normal brain samples.

To determine the number of bins for discretization,
Dougherty et al [28] suggested a heuristic to set the
maximum number of bins k = max (1, 2 log (/)), where /
is the number of distinct values of the attribute. Boulle
[29] proposed an algorithm to find an optimal bin num-
ber for Equal-F and Equal-W, and demonstrated the
optimal bin number performs similar to the bin number
k = 10, considered as a default for most cases. While
the former approach resulted the maximum bin number
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k = 11, we extensively evaluated by exploring various bin
numbers of k = 2i for i={1, 2, ..., 10}.

Equal-W binning algorithm seeks for maximum and
minimum values, and then divides the range into the
user-defined equal width intervals defined as Equal-W=
(max(GE(i))-min(GE(i)))/number of bins, where GE is
isoform-level transcript gene expression of sample i.
Then, continuous variables are assigned into the corre-
sponding bin numbers.

Equal-F binning algorithm sorts all continuous vari-
ables in ascending order, and then divides the range
into the user-defined intervals so that every interval
contains the same number of sorted values defined as
Equal-F=sort(GE(i))/number of bins.

K-means clustering algorithm calculates distance-
based similarity to cluster the continuous variables.
With the user-defined number of clusters, the algorithm
iteratively finds centroids until no data point is reas-
signed to the updated centroids.

Feature selection methods

To capture most significant features, we first applied
Pearson’s correlation to the normalized expression data
with a cutoff value of 0.8. Second, we used the CV to
assess the degree of variability for each transcript.

CV is defined as CV=0 /u, where o and g are the
standard deviation and mean, respectively. Based on the
CV scores, we selected the top 2000 transcripts out of
~115,000. To refine the selected features further, we
employed two advanced feature selection algorithms
based on SVM and RF that iteratively evaluate each fea-
ture’s contribution to the classification performance. We
adopted the programs available in R packages ‘mSVM-
RFE’ and ‘varSelRF.

SVM-REE is a feature search algorithm that measures
feature’s importance to the data by iteratively eliminat-
ing one feature at a time [13]. Adopted from the weight
vector w of the binary classification problem, the rank-
ing criteria is the coefficients of w?(i = 1, ..., n); features
with the highest weights are the most informative. Thus,
the procedure of SVM-RFE is composed of training the
SVM classifier, computing the ranking criteria w? for all
features, and eliminating the feature with the lowest
ranking criterion. This process is repeated until a small
subset of features is achieved.

RF_based_FS method uses both backward elimination
strategy and the importance spectrum to search a set of
important variables [31]. Concisely, multiple random
forests were iteratively constructed to search for a set of
variable in each forest that yields the smallest out-of-bag
(OOB) error rate. The main advantage of this method is
that it returns a very small set of genes while retaining
high accuracy.
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Classification methods

We considered the four classification methods—SVM,
RF, NB, and PAM-to compare the performance on plat-
form transition using the 76 GBM samples.

SVM is primarily a two-class classifier that constructs a
hyperplane to separate the data with maximum margin
[35,36]. For multiclass classification problems, two techni-
ques are widely used: one is to build one-versus-all classifiers,
and choose the class that yields maximum margin for test
examples; the other is to build a set of one-versus-one classi-
fiers. For class C > 2, C (C-1)/2 binary classifiers are trained
and the appropriate class is determined by major voting. In
this study, we used the latter approach with a linear kernel
method as the size of features is larger than samples.

RF is an ensemble learning method that builds decision
trees with binary splits [37]. Each tree is grown randomly
in two steps. First, a subset of predictors is chosen at ran-
dom from all the predictors. Second, a bootstrap sample
of the data is randomly drawn with replacement from the
original sample. For each RF tree, an unused observation
is utilized to calculate the classification accuracy.

NB is a simple probabilistic classification method
grounded in Bayes’ theorem, for calculating conditional
probabilities, with an independence assumption [38]. For
a given instance (example), the NB classifier calculates
the probability belonging to a certain class. The basic
underlying assumption is that the features (x,...,x,,) of an
instance X are conditionally independent given the class
C. For example, for a class C that maximizes the likeli-
hood is P(X|C)=P(X},...,X,,|C). The conditional indepen-
dence enables the conditional probability as a product of
simpler probabilities defined by P(X|C)=II P(X;|C).

PAM is a sample classification method that uses the
nearest shrunken centroid approach for transcript-var-
iants gene expression data [26]. Briefly, the method
computes a standardized centroid for each class. Then,
it shrinks each of the class centroids by removing genes
toward the overall centroid for all classes using a user-
defined threshold. A new sample is assigned to the near-
est centroid for which classification is based on the
unseen sample’s gene expression profile.

Accuracy

We estimated the overall classification accuracy based
on the number of correct predictions divided by the
total number of prediction samples defined as ACC=
(number of correct predictions)/(total number of test
samples). In addition, sensitivity (Sn) and specificity (Sp)
for each sub-group (one GBM sub-group vs the rest of

the GBM groups together) are calculated as
ntp: " tn:
Sn = nz’=1 pi and Sp = nz’ﬂ i where tp, tn,,
21 pi+ f 2 ic1 i+ fpi

and fn; are true positive, true negative, false positive,
and false negative for class C;, respectively.
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