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Abstract

Background: Traditional approaches to studying molecular networks are based on linking genes or proteins.
Higher-level networks linking gene sets or pathways have been proposed recently. Several types of gene set
networks have been used to study complex molecular networks such as co-membership gene set networks
(M-GSNs) and co-enrichment gene set networks (E-GSNs). Gene set networks are useful for studying biological
mechanism of diseases and drug perturbations.

Results: In this study, we proposed a new approach for constructing directed, regulatory gene set networks
(R-GSNs) to reveal novel relationships among gene sets or pathways. We collected several gene set collections and
high-quality gene regulation data in order to construct R-GSNs in a comparative study with co-membership gene
set networks (M-GSNs). We described a method for constructing both global and disease-specific R-GSNs and
determining their significance. To demonstrate the potential applications to disease biology studies, we
constructed and analysed an R-GSN specifically built for Alzheimer’s disease.

Conclusions: R-GSNs can provide new biological insights complementary to those derived at the protein
regulatory network level or M-GSNs. When integrated properly to functional genomics data, R-GSNs can help
enable future research on systems biology and translational bioinformatics.

Background
Researchers often use pathway analysis [1] to reveal novel
insights into their gene lists obtained from high-throughput
experiments. One simple approach is evaluating the num-
ber of genes from a differentially expressed gene list found
in a particular pathway. Advanced methods calculate path-
way-level statistics. In some studies, a pathway is also con-
sidered to be a gene set, a group of genes sharing common
biological functions. For example, Gene Set Enrichment
Analysis (GSEA) calculates gene set-level statistics [2].
Using gene set-level statistics has additional advantages
because significant analysis at the single gene level suffers
from a limited number of samples and noise [3]. Gene
set based methods have also been developed to investigate

phenotypic changes at the pathway level [4]. By using path-
way topology, researchers can obtain a better ranking of
pathways/gene sets from their gene lists [1].
Several approaches have been proposed for constructing

networks of pathways/gene sets to study complex molecu-
lar networks. Yong, et al. constructed a global pathway
crosstalk network and linkage network for yeast [5]. Dikla,
et al. proposed a method for gleaning patterns of interac-
tions among biological processes by analyzing protein-
protein interactions, transcriptional co-expressions, and
genetic interactions [6]. Gene set networks can be also
applied to understanding diseases. Liu, et al. proposed an
approach to detect the crosstalk among Alzheimer’s dis-
ease (AD) related pathways and the dysfunctions in the six
brain regions of AD patients [7]. For databases of path-
way/gene set network, Sudhir, et al. developed Human
Pathway Database (HPD) to enable the study of human
pathway networks [8]. Huang, et al. developed Pathway

* Correspondence: jakechen@iupui.edu
3Institute of Biopharmaceutical Informatics and Technology, Wenzhou
Medical University, Wenzhou, Zhejiang Province, China
Full list of author information is available at the end of the article

Suphavilai et al. BMC Genomics 2015, 16(Suppl 11):S4
http://www.biomedcentral.com/1471-2164/16/S11/S4

© 2015 Suphavilai et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:jakechen@iupui.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


And Gene-set Enrichment Database (PAGED) to further
study human gene set networks [9]. Another study pro-
posed an approach to examine interactions between path-
ways in mice by integrating different types of data [10].
Recently, Jignesh, et al. proposed methods to construct
multi-edge gene set networks (GSNs) to reveal insights
into global relationships among biological themes or gene
sets [11]. A multi-edge GSN consists of three types
of edges: co-membership edge (M), linkage edge (L), and
co-enrichment edge (E).
To our knowledge, none of the existing gene set or

pathway networks contain high-level directionality infor-
mation, which is essential for building models to under-
stand the mechanistic linkages among many gene sets or
pathways that are enriched in a biological condition. In
this paper, we present a method of constructing a direc-
ted, regulatory gene set network called regulatory gene
set network (R-GSN). A directed edge in an R-GSN
represents a regulatory relationship from one gene set to
another. Compared to a linkage gene set network
(L-GSN), which is constructed from protein interactions
discarding directionality of the interactions, an R-GSN
provides higher resolution of knowledge. Our hypothesis
is that R-GSNs can reveal novel gene set relationships
and provide complementary knowledge to the existing
types of GSNs, such as M-GSNs, L-GSNs, and E-GSNs.
In an R-GSN, a pair of gene sets are connected if a

significant number of gene regulations exist between the
unique genes of the gene sets. Gene set and gene regula-
tion data were collected from multiple sources. To eval-
uate R-GSNs, M-GSNs are constructed separately as
baselines for each collection including KEGG, Reactome,
and three types of Gene Ontology (GO) terms. We
exploited the directionality information provided by
R-GSNs to search for significant gene sets in the net-
work. We also compared our R-GSNs with E-GSNs
obtained from Jignesh et al [11]. We chose Alzheimer’s
disease (AD) as an example to study disease-specific
R-GSNs. In order to construct an AD specific R-GSN,
gene sets from different collections were first combined
into one single collection and then AD related gene sets
were used to construct the AD specific R-GSN.

Methods
In a gene set network (GSN), a node represents a gene
set and an edge represents a relationship between two
gene sets. A GSN helps explain biological complexity by
revealing high level relationships among biological pro-
cesses. We constructed a new type of GSN, a regulatory
gene set network (R-GSN), using public available gene
regulation data. Another type of GSN we constructed is
the co-membership gene set network (M-GSN), which
can be a baseline network as it is constructed from
annotated gene sets and thus provides experimental

validation. Finally, we used hypergeometric distribution
to calculate significance values for each edge in both
R-GSNs and M-GSNs.

Data sources
The two major types of data used to construct R-GSNs
are gene set data and gene regulation data. Gene set data
provides information for nodes in a gene set network as
well as information for constructing co-membership gene
set network. Five collections of gene sets were collected.
They included KEGG, Reactome, GO Biological Process,
GO Cell Component, and GO Molecular Function from
KEGG [12] and MSigDB [2]. The total number of gene
sets from the five gene set collections is 2,304 and the
total number of genes is 11,111.
Gene regulation data was used for constructing R-GSNs.

Human gene regulations from String [13], TRANSFAC
[14], TRED [15], and SPIKE [16] were collected. Different
types of ID of genes obtained from different data sources
were mapped to NCBI official gene symbols. In order to
select only the high quality human gene regulation data,
different criteria were used to filter gene regulations in dif-
ferent data sources. For String, gene regulations with score
>= 800 were collected; for TRANSFAC, binding site qual-
ity <= 5 was the criterion; and for TRED, only gene regula-
tions not obtained from computational predicted method
were collected. All gene regulations provided by SPIKE
were collected since they are from pathway. The total
count of unique gene regulations after combining data
from the four data sources is 22,127.

Construction of gene set networks
An M-GSN was constructed separately for each gene set
collection. The hypergeometric distribution was used to
calculate the significance value for each co-membership
edge.
1. Count the number of genes inside each of the two

gene sets, GS1 and GS2, and the number of shared
genes between GS1 and GS2.
2. Calculate the p-value by using the hypergeometric

distribution:

p− value =
(
K
k

)(
N− K
n− k

)
/
(
N
n

)
(1)

where N is the total number of genes; n is the number
of genes in GS1; K is the number of genes in GS2; and k
is the number of shared genes.
3. Adjust the p-value for multiple hypotheses to con-

trol the false discovery rate by using the Benjamini-
Hochberg procedure with p-value ≤ 0.05.
4. Connect a pair of gene sets with an edge if the edge

is rejected by the Benjamini-Hochberg procedure and
thus considered as a significant edge.
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An R-GSN was constructed as follows:
1. Count the number of gene regulations where genes

in GS1 regulate genes outside GS1 and the number of
gene regulations where genes outside GS2 regulate
genes in GS2.
2. Remove shared genes from GS1 and GS2 and count

the number of gene regulations where the remaining
genes in GS1 regulate the remaining genes in GS2.
3. Calculate the p-value by using the hypergeometric

distribution using Formula (1), where N is the total num-
ber of gene regulations; n is the number of gene regula-
tions where genes in GS1 regulate genes outside GS2;
K is the number of gene regulations where genes in GS2
are regulated from genes outside GS2; and k is the num-
ber of gene regulations from genes in GS1 to GS2.
4. Adjust the p-value for multiple hypotheses to con-

trol the false discovery rate by using the Benjamini-
Hochberg procedure with p-value ≤ 0.05.
5. Connect a pair of gene sets with a directed edge

pointing from GS1 to GS2 if the edge is rejected by the
Benjamini-Hochberg procedure and thus is significant.
R-GSNs were constructed separately for each gene set

collection. Note that it is possible that R-GSNs contain a
loop when both incoming and outgoing edges of a pair of
gene sets are significant. R-GSNs are directed networks,
while M-GSNs are undirected networks. Before compar-
ing R-GSNs with M-GSN, the R-GSN was converted to
an undirected network by discarding the directions of
edges and removing loops.

A disease specific gene set network
A disease specific gene set network was constructed in
order to show how R-GSNs can help researchers explain
disease complexity. Alzheimer’s disease (AD) was chosen
to be a case study. An AD gene list containing 347 genes
from AlzGene database [17] was first collected. The five
gene set collections were combined into a single global
collection without removing and changing the original
gene sets. From the list, AD related gene sets were selected
from the global gene set collection. Then the AD specific
gene set network was constructed. In the network, each
node represents an AD related gene set. In order to find
AD related gene set, the number of genes in each gene set
found in the AD gene list was counted. Each AD gene list
was treated as a new gene set. The same method used in
constructing M-GSNs was used to calculate the p-value
for each gene set. There were 216 gene sets which shared
significantly high numbers of genes with the AD gene list.
These AD related gene sets were collected and used to
construct the AD specific R-GSNs.

Network analysis
Three types of centrality [18] were calculated for each
gene set in both R-GSNs and M-GSNs, degree centrality,

betweeness centrality, and closeness centrality. igraph
software package for R [19] was used in order to compute
all network values. Degree centrality represents the num-
ber of edges upon a node. A gene set with a high degree
centrality is likely to be an important gene set because it
acts like a hub in the network. It can also be used for
comparing two different types of networks. To conduct
such comparison, we calculated Pearson’s correlation
coefficient of nodes’ degree centrality between an
M-GSN and an R-GSN. Betweenness centrality is defined
as the number of times a node acts as a bridge along the
shortest path between two other nodes. In a gene set net-
work, a gene set with a high betweenness value is likely
to be a part of several biological critical paths. Closeness
centrality is defined as the inverse of the average length
of the shortest paths between a node and all other nodes
in a network. A node with a high closeness value is more
central. In a gene set network, if a gene set with a high
closeness value is disturbed, it is likely that a high num-
ber of gene sets will be affected by the gene set.

Results and discussion
Interpreting co-membership gene set network and
regulatory gene set network
When a pair of gene sets in an M-GSN are connected,
the interpretation depends on gene set data types. For
pathway gene sets, an M-GSN represents pathway cross-
talk; whereas for GO gene sets, an M-GSN represents
protein moonlighting or gene sharing. When a pair of
gene sets in an R-GSN are connected, they are connected
by a directed edge. A directed edge in an R-GSN presents
a possibility of one gene set regulating another.
According to Table 1, the numbers of unique genes

from all gene set collections are not much different, where
Reactome and GO Biological Process contain more genes
than the others. The total count of unique genes from all
collections is 11,111. We calculated the proportion of reg-
ulatory edges to nodes and normalized the proportion

value by using number of unique genes. We used
ri
gi/g

/si,

where ri is the number of gene is sets in collection i; gi is
the number of unique genes in collection i; g is the total
number of unique genes (11,111); and si is the number of
gene sets in collection i, to calculate the normalized pro-
portion. In the R-GSN, GO Biological Process has the
highest normalized proportion of edges to nodes (71.08)
among the five gene set collections. These results indi-
cated that pairs of biological process gene sets are more
likely to have a regulatory relationship. In addition,
according to the distribution of gene set sizes (Additional
file 1), the five gene set collections have similar distribu-
tions. The distributions show that the five collections con-
tain more small gene sets (size = 2-20) than large gene
sets (size > 20).
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Comparing the KEGG regulatory gene set network and
the KEGG co-membership gene set network
In the M-GSN of KEGG, an edge between pathways can
be considered as a pathway crosstalk [2,3]. Therefore,
M-GSNs can be baselines to compare with R-GSNs. A
regulatory relationship between pathways can provide
complementary knowledge such as dysfunction of one
pathway affecting function of other pathways. To inves-
tigate this knowledge, R-GSNs and M-GSNs of the
KEGG pathways were compared.
The percentage of shared edges between M-GSNs and

R-GSNs is the highest for KEGG Pathway (1461/(2230+
3274-1461) = 36.14%). The low percentage of shared
edges indicates that the R-GSN provides complementary
information to the M-GSN. In addition, it is important to
note that R-GSNs are constructed from gene regulations
which were collected from high coverage data sources.
Therefore, it is unlikely that R-GSNs depend on the quan-
tity and the quality of experimental data.
Considering both the R-GSN and M-GSN of KEGG

pathway gene sets, the most significant edge of the
KEGG R-GSN is a regulatory relationship from “Cell
cycle” to “Cytokine-cytokine receptor interaction” with
p-value = 6.46E-75 (Table 2); whereas the co-member-
ship edge between “Cell cycle” to “Cytokine-cytokine
receptor interaction” has relatively low significance value
( 0.029). In addition, only 4 of the top 10 most

significant regulatory edges are found in M-GSNs.
These findings suggest that the R-GSN reveals addi-
tional knowledge to the M-GSN.
For the KEGG R-GSN, 7 of the 10 most significant

regulatory edges are from the “Cell cycle” gene set to
other 7 KEGG pathway gene sets (Table 2). This sug-
gests that changing of “Cell cycle” pathway is likely to
affect other pathways. This finding is corresponding to
the fact that a cell cycle is a complex series of phenom-
ena by which cellular material is duplicated and divided.
Therefore if a cell cycle pathway does not function
appropriately, other pathways such as Pathways in Can-
cer can be affected.
For the M-GSN, the KEGG pathway gene sets of

Alzheimer’s, Parkinson’s, and Huntington’s diseases have
significant co-membership edges linking them together
(Table 3). The three co-membership edges connecting the
three neurodegenerative diseases are among the top 10
most significant co-membership edges suggesting that the
three neurodegenerative diseases are highly related. In
addition, 5 of the top 20 co-membership edges connect
cancer related pathway gene sets. These 5 edges connect
the “Pathways in cancer” gene set with 5 gene sets of can-
cers including “Small cell lung cancer”, “Pancreatic cancer”,
“Melanoma”, “Colorectal cancer”, and Prostate cancer”.
In addition, degree centrality (DC) of each node in

both networks was calculated (Table 4). In the KEGG

Table 1. Summary of co-membership gene set networks and regulatory gene set networks for five gene set collections

Collection Number of
gene sets

co-membership
edges (M)

Regulatory
edges (R)

Regulatory
relationships

Shared
edges a

Number of
genes

Normalized proportion of R
edges to nodes

KEGG 186 2,230 4,452 3,274 1,461 5,267 50.49

Reactome 674 15,859 25,569 20,917 7,437 6,025 69.96

GO BP 825 33,055 32,607 27,513 10,354 6,178 71.08

GO CC 223 4,186 1,446 1,122 793 5,270 13.67

GO MF 396 3,178 2,620 2,404 503 5,314 13.83
aFor regulatory edges, a pair of gene set can have a loop if both incoming and outgoing edges are significant. The number of regulatory edges is always greater
than or equal to the number of regulatory relationships because one pair of gene sets either have or do not have regulatory relationship.

Table 2. Top 10 most significant regulatory edges in the KEGG regulatory gene set network

Gene set 1 name Gene set 2 name P-value

Cell cycle Cytokine-cytokine receptor interaction 6.46E-75

Cell cycle Pathways in cancer 5.31E-55

Cell cycle Toll-like receptor signaling pathway 1E-42

Cell cycle Focal adhesion 2.22E-36

Cell cycle Leishmania infection 2.63E-33

Hedgehog signaling pathway Basal cell carcinoma 3.08E-33

p53 signaling pathway Cytokine-cytokine receptor interaction 3.38E-33

RIG-I-like receptor signaling pathway Toll-like receptor signaling pathway 3.39E-33

Cell cycle Hematopoietic cell lineage 8.26E-33

Cell cycle Jak-STAT signaling pathway 1.08E-31

The regulatory relationship is gene set 1 regulates gene set 2.
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M-GSN, the “Pathways in cancer” gene set has the high-
est value of DC (0.39). In the KEGG R-GSN, the “Cell
cycle” gene set has the highest DC (1.96) and the high-
est out-degree centrality (0.65). The gene set which has
the highest in-degree centrality (0.41) is “Pathways in
cancer”. Using directionality information to calculate in-
degree and out-degree centrality of the KEGG R-GSN,
we can find the sink, “Pathways in cancer”, and the
source, “Cell cycle”, gene sets.
After the DC value for each gene set was calculated,

the correlation between DC of the KEGG M-GSN and
DC of the KEGG R-GSN was calculated. The correlation
coefficient is 0.84 and R-squared value is 0.70 (Figure 1).
This result suggests that the gene set which is important
in the M-GSN is likely to be important in the R-GSN
and vice versa. We found three interesting outliers.
Pathway number 1, which has regulatory DC = 1.96 and
co-membership DC = 0.12, is “Cell cycle” suggesting
that the Cell cycle pathway does not tend to share
genes, but to have regulatory relationship with other
pathways. Pathway number 2, which has regulatory DC
= 1.47 and co-membership DC = 0.39, is “Pathways in
cancer” suggesting that Pathways in cancer shared high
number of genes with several pathways and their genes

also regulate the unique genes of other pathways. Path-
way number 3, which has regulatory DC = 0.68 and co-
membership DC = 0.005, is “Maturity onset diabetes of
the young”. This pathway shares 6 genes with only
“Type II diabetes mellitus pathway”.
While the correlation between DC of the KEGG

M-GSN and DC of the KEGG R-GSN is as high as 0.84,
the topologies of the networks are different (Figure 2).
This suggests that the two networks can be used to
explain different phenomenon in biological systems.

Constructing an exclusive R-GSN
We constructed a KEGG exclusive R-GSN (R-GSN
minus M-GSN) that contains only exclusive edges in the
R-GSN (Figure 3). The correlation of DC between the
KEGG exclusive R-GSN and the KEGG R-GSN is 0.81.
The correlation of DC between the KEGG exclusive
R-GSN and the KEGG M-GSN is 0.44, while the corre-
lation of DC between the KEGG non-exclusive R-GSN
and the KEGG M-GSN is 0.84. These suggest that the
exclusive R-GSN can reveal important gene sets that are
not likely to be revealed by M-GSN.
The directionality information from a regulatory gene

set network revealed “sink” and “source” gene sets in
addition to “hub” gene sets, which can be revealed by
constructing. Table 5 shows the top 10 highest out-
degree centrality gene sets (right) and top 10 highest in-
degree centrality gene sets (left) of KEGG exclusive
R-GSN. “Cell cycle”, “p53 signaling pathway”, and
“TGF-beta signalling pathway” are among the top 3
highest out-degree centrality which can be the sources.
The top 3 highest in-degree centrality gene sets, “Cell
cycle”, “Hematopoietic cell lineage”, and “Cytokine-cyto-
kine receptor interaction”, are the sinks.

Comparison of the KEGG co-enrichment network and the
KEGG regulatory network
In the previous analysis, we used the KEGG M-GSN as a
baseline and compared it with the KEGG R-GSN. Several

Table 3. Top 10 most significant co-membership edges in the KEGG co-membership gene set network

Gene set 1 name Gene set 2 name P-value

Dilated cardiomyopathy Hypertrophic cardiomyopathy (HCM) 2.9E-134

Oxidative phosphorylation Parkinson’s disease 5E-132

Huntington’s disease Parkinson’s disease 2.2E-124

Alzheimer’s disease Parkinson’s disease 8.9E-113

Drug metabolism - cytochrome P450 Metabolism of xenobiotics by cytochrome P450 2.5E-110

Alzheimer’s disease Huntington’s disease 1.5E-106

Alzheimer’s disease Oxidative phosphorylation 1.5E-101

Huntington’s disease Oxidative phosphorylation 1.02E-96

Pathways in cancer Small cell lung cancer 2.94E-91

Arrhythmogenic right ventricular cardiomyopathy (ARVC) Hypertrophic cardiomyopathy (HCM) 1E-89

Table 4. Top 5 degree centrality pathway of KEGG
co-membership gene set network (left) and regulatory
gene set network (right)

KEGG co-membership network KEGG regulatory network

Name DC Name DC

Pathways in cancer 0.39 Cell cycle 1.96

MAPK signaling pathway 0.36 T cell receptor signaling
pathway

1.55

T cell receptor signaling
pathway

0.36 Chemokine signaling
pathway

1.49

Chemokine signaling pathway 0.36 ErbB signaling pathway 1.48

Natural killer cell mediated
cytotoxicity

0.36 p53 signaling pathway 1.48
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relationships between gene sets were found exclusively in
the R-GSN. In order to validate both the KEGG M-GSN
and the KEGG R-GSN, the two GSNs were compared
with the KEGG co-enrichment network (E-GSN)
obtained from the study of Jignesh, et al. [11]. To con-
struct an E-GSN, they integrate experimental gene lists
and link two gene sets if the unique genes of the two
gene sets are consistently enriched together across many
experimentally derived gene lists. Therefore, edges found
in the KEGG R-GSN should also be found in the KEGG
E-GSN.
The total number of edges found in both the E-GSN

and the R-GSN is 1,050, which accounts for 67.48% of
the total number of edges in the E-GSN. The total num-
ber of edges found in both the E-GSN and M-GSN is
914, which is equal to 58.74% of the total number of
edges in the E-GSN. In order to calculate the signifi-
cance value of the number of shared edges, the KEGG
E-GSN was compared with random networks. We ran-
domly generated 1,000 networks using all the 187 gene
sets from KEGG. To calculate the significance value of
the number of shared edges between the KEGG E-GSN
and the KEGG M-GSN, each of the 1,000 random net-
works contains 2,230 edges, which are equal to the
number of edges found in the KEGG M-GSN. Then
Fisher’s exact test was used for calculating the p-value
for the number of shared edges. The p-value is < 2.2e-

16 (Figure 4A). To calculate the significance value of the
number of shared edges between the KEGG E-GSN and
the converted KEGG R-GSN, each of the 1,000 random
networks contains 3,274 edges. Then Fisher’s exact test
was used for calculating the p-value for the number of
shared edges. The p-value is < 2.2e-16 (Figure 4B).
The number of shared edges between the KEGG E-

GSN and the KEGG R-GSN is significantly high. This is
corresponding to the fact that a pair of gene sets with
strong regulatory relationship should be connected with
a co-enrichment edge. The number of shared edges
between the KEGG E-GSN and the KEGG M-GSN is
also significantly high. This is also corresponding to the
fact that a pair of gene sets with a high number of
shared genes should be connected with a co-enrichment
edge.

A disease specific regulatory gene set network
The number of shared genes between the AD gene list
(Additional file 2) and each gene set in the global gene
set collection was counted. Out of the 2,314 gene sets,
261 have significant number of shared genes. Among
the 261 AD gene sets, 42 are from KEGG; 59 are from
Reactome; 37 are from GO Molecular Function; 105 are
from Go Biological Process; and 18 are from GO Cellu-
lar component. Figure 5 shows the degree distribution
of AD-specific R-GSN constructed based on these 261

Figure 1 Correlation between DC of the KEGG M-GSN and DC of the KEGG R-GSN. Pathway number 1 is Cell cycle; pathway number 2 is
Pathways in cancer; and pathway number 3 is Maturity onset diabetes of the young.
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AD gene sets. In addition, Table 6 shows the top 10 AD
related gene sets arranged by the significant values.
“Genes involved in Lipid digestion, mobilization, and
transport” gene set has the highest significant value,
2.61E-13. The significant value was calculated by using
Formula (1) where there are 46 genes and 16 genes
were found in the AD gene list. The AD related R-GSN
of the top 10 gene sets are presented in Figure 6.

We then investigated the top 10 degree centrality gene
sets. Table 7 shows that “signal transduction” from GO
biological process has the highest value of DC suggest-
ing that the signal transduction process is very impor-
tant in AD. Searching on PubMed found more than
2,000 publications discussing the relationship between
signal transduction abnormality and Alzheimer’s
disease.

Figure 2 Gene set networks of KEGG gene sets. (M) is the KEGG M-GSN and (R) is the KEGG R-GSN. Node colors represent different classes of
pathways. The networks were drawn by Cytoscape using Cytoscape’s BioLayout.
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Considering the directionality of the AD specific R-GSN,
“signal transduction” has the highest in-DC (0.62). Gene
sets which have the highest out-DC (0.54) are “cellular
protein metabolic process” and “cellular macromolecule
metabolic process” (Additional file 3). These results show
that directionality information from the R-GSN enables us
to identify, in AD context, a sink gene set, “signal trans-
duction”, and source gene sets, “cellular protein metabolic
process” and “cellular macromolecule metabolic process”.
Furthermore, the closeness and betweenness of each

gene set in the AD specific R-GSN were computed. Note
that the directionality of each edge in the network was
considered when we calculated the shortest path for the
network in order to calculate the closeness and the

betweenness. For the closeness centrality, “signal trans-
duction” from the GO biological process, “Pathways in
cancer” from KEGG, and “protein metabolic process”
from the GO biological process have the highest close-
ness values (0.190, 0.188, and 0.188, respectively). These
results suggest that inappropriate functions of the three
gene sets are likely to affect high number of gene sets in
AD. For the betweenness centrality, “Pathways in cancer”
from KEGG, “system development” from GO biological
process, and “Leishmania infection” from KEGG have the
highest betweenness values (1,225.04, 1168.99, and
1146.79, respectively). These results suggest that the
three gene sets are likely to be on the critical path of bio-
logical functioning for AD patients.

Figure 3 Degree distribution of KEGG exclusive R-GSN. This figure show the degree distribution of KEGG exclusive regulatory gene set
network. Because the regulatory gene set network is a directed network, the degree of each nodes was counted by summing in-degree and
out-degree.

Table 5. Top 10 highest out-degree centrality and In-degree centrality of the KEGG exclusive R-GSN

Name DC (out) Name DC (in)

Cell cycle 0.54 Cell cycle 0.24

p53 signaling pathway 0.44 Hematopoietic cell lineage 0.21

TGF-beta signaling pathway 0.37 Cytokine-cytokine receptor interaction 0.20

Bladder cancer 0.32 Systemic lupus erythematosus 0.17

Small cell lung cancer 0.25 Leishmania infection 0.17

Chronic myeloid leukemia 0.24 Basal cell carcinoma 0.17

Jak-STAT signaling pathway 0.24 Cell adhesion molecules (CAMs) 0.17

Huntington’s disease 0.24 Graft-versus-host disease 0.17

Non-small cell lung cancer 0.23 Viral myocarditis 0.16

Wnt signaling pathway 0.22 p53 signaling pathway 0.15
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Figure 4 Number of shared edges between the KEGG M-GSN and the KEGG E-GSN and between the KEGG R-GSN and the KEGG
E-GSN. (A) A graph showing number of edges in the KEGG E-GSN that shared with the KEGG M-GSN and shared with 1,000 random networks.
For the number of shared edges between the 1,000 random network and the KEGG E-GSN, the average is 197; the minimum is 162; and the
maximum is 236. (B) A graph showing number of edges in the KEGG E-GSN that shared with the KEGG R-GSN and shared with 1,000 random
networks. For the number of shared edges between the 1,000 random networks and the KEGG E-GSN, the average is 289; the minimum is 240;
and the maximum is 333.

Figure 5 Degree distribution of the AD specific R-GSN. Degree distribution of the AD specific R-GSN containing 261 gene sets and 15,178
regulatory edges.

Suphavilai et al. BMC Genomics 2015, 16(Suppl 11):S4
http://www.biomedcentral.com/1471-2164/16/S11/S4

Page 9 of 12



Conclusions
Co-membership gene set networks (M-GSNs) and regula-
tory gene set networks (R-GSNs) for the five different
gene set collections were constructed, compared, and

studied for their biological relevance in this study. The
results show that new R-GSNs can provide complemen-
tary biological information to conventional M-GSNs. The
results also show that while the correlation between the

Table 6. Top 10 AD related gene sets arranged by p-value

Gene set name Collection Size AD genes P-value

Genes involved in Lipid digestion, mobilization, and transport Reactome 46 16 2.60794E-13

Alzheimer’s disease KEGG 169 28 3.33483E-13

lipid transport GO Biological Process 28 13 5.6133E-13

Genes involved in Lipoprotein metabolism Reactome 28 13 5.6133E-13

apoptotic process GO Biological Process 431 42 3.80595E-11

programmed cell death GO Biological Process 432 42 4.09448E-11

Genes involved in Metabolism of lipids and lipoproteins Reactome 478 44 8.10901E-11

Genes involved in Chylomicron-mediated lipid transport Reactome 16 9 2.51488E-10

cell development GO Biological Process 577 48 3.3663E-10

regulation of apoptotic process GO Biological Process 341 34 1.66543E-09

Figure 6 A R-GSN of the top 10 AD related gene sets. A regulatory gene set network of the top 10 AD related gene sets. Node colors
represent different collections of gene sets. The networks were drawn by Cytoscape using Cytoscape’s BioLayout.
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degree centrality of the KEGG M-GSN and the degree
centrality of the KEGG R-GSN is relatively high, the
topologies of the networks are totally different. This sug-
gests that the two networks can be employed to explain
different phenomenon in biological systems.
Validating KEGG M-GSNs and KEGG R-GSNs sepa-

rately against the KEGG co-enrichment networks
(E-GSNs) [11] reveals that the numbers of shared edges
are significantly high. The results suggest that the use of
E-GSN to validate M-GSN and R-GSN could be a better
way to describe experiments. Moreover, the R-GSN speci-
fic to Alzheimer’s disease shows that the network can be
used as a good high-level mechanistic model complemen-
tary to a more difficult-to-derive gene regulatory network
model towards a systematic understanding of the disease
mechanism.
In this study, we describe methods for constructing both

global and disease specific R-GSNs. They enable future
research on systems biology and translational bioinformatics.
Since the underlying gene regulation data are collected from
high quality and high coverage data sources, the directed
edges in the R-GSN do not tend to depend on the number
and the quality of experimental data. Moreover, directional-
ity information from the R-GSN enables the finding of
source gene sets and sink gene sets, which might be impor-
tant for drug discovery or drug repositioning.
Tissue-specific and disease-specific gene regulations

were not used in this study. Therefore, the GSNs obtained
might be generally applicable but should be carefully
reviewed and curated when they are to be used in specific
disease contexts where differential gene regulations exist
extensively. However, this limitation can be alleviated by
constructing only condition-specific GSNs instead of glo-
bal GSNs in the future. The framework in this study can
also be later extended by collecting higher resolution such
as tissue specific and disease specific gene regulation data
and gene set data. Separately, we have been developing a
comprehensive database populated with new gene sets and
all relationships identified or integrated between genes and

gene sets into an online resource called PAGER [20] to
put the method developed in this work into a web applica-
tion for biological users to explore.

Additional material

Additional File 1: Distribution of the sizes of gene sets in each
collection. This file contains five histograms presenting distribution of
the sizes of gene sets in each of the five gene set collections.

Additional File 2: AD gene list. This file contains a list of AD related
gens.

Additional File 3: Centrality values of each gene set in the AD
specific gene set network. This file contains centrality values, including
degree centrality, closeness centrality, and betweenness centrality, of 261
AD related gene sets in the AD specific R-GSN.
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