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Abstract

Background: The advance of high-throughput sequencing has made it possible to obtain new transcriptomes and
study splicing mechanisms in non-model organisms. In these studies, there is often a need to investigate the
transcriptomes of two related organisms at the same time in order to find the similarities and differences between them.
The traditional approach to address this problem is to perform de novo transcriptome assemblies to obtain predicted
transcripts for these organisms independently and then employ similarity comparison algorithms to study them.

Results: Instead of obtaining predicted transcripts for these organisms separately from the intermediate de Bruijn
graph structures employed by de novo transcriptome assembly algorithms, we develop an algorithm to allow direct
comparisons between paths in two de Bruijn graphs by first enumerating short paths in both graphs, and iteratively
extending paths in one graph that have high similarity to paths in the other graph to obtain longer corresponding
paths between the two graphs. These paths represent predicted transcripts that are present in both organisms.
We show that our algorithm recovers significantly more shared transcripts than traditional approaches by applying
it to simultaneously recover transcripts in mouse against rat and in mouse against human from publicly available
RNA-Seq libraries. Our strategy utilizes sequence similarity information within the paths that is often more reliable
than coverage information.

Conclusions: Our approach generalizes the pairwise sequence alignment problem to allow the input to be non-linear
structures, and provides a heuristic to reliably recover similar paths from the two structures. Our algorithm allows
detailed investigation of the similarities and differences in alternative splicing between the two organisms at both the
sequence and structure levels, even in the absence of reference transcriptomes or a closely related model organism.

Background
The advance of next generation sequencing technologies
has made it possible to perform detailed studies of splicing
mechanisms among eukaryotic organisms. A popular
strategy is to first sequence their transcriptomes, then map
the reads to reference databases. In non-model organisms,
such reference databases are often unavailable, and de
novo transcriptome assembly algorithms are employed to

obtain predicted transcripts [1-4]. This is often achieved
by first constructing a de Bruijn graph structure that con-
tains all branching possibilities [5,6], then obtaining
predicted transcripts based on coverage information along
the paths.
In many of these studies, there is often a need to investi-

gate the transcriptomes of two related organisms at the
same time in order to study their similarities and differ-
ences. In these cases, RNA-Seq libraries are obtained from
both organisms under different experimental conditions
and the goal is to compare their transcriptome assemblies.
The traditional approach to address this problem is to
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perform transcriptome assemblies to obtain predicted
transcripts for the two organisms separately (see Figure 1).
Similarity comparison algorithms such as BLAST [7] are
then employed to extract corresponding transcripts that
are shared in the two organisms.
Since predicted transcripts are constructed indepen-

dently for each organism based on coverage information
only, this strategy is often unreliable. To address this pro-
blem, we develop an algorithm to allow direct compari-
sons between paths in the two intermediate de Bruijn
graph structures by an iterative extension strategy (see
Figure 1). Since sequence similarity information is often
more reliable, this strategy allows the direct extraction of
shared transcripts based on evolutionary support.

Methods
De Bruijn graph
Given a set of reads and a parameter k, a de Bruijn
graph is constructed by taking each k-mer that appears
within the reads as a vertex. Two k-mers are connected
by a directed edge if the (k − 1)-suffix of the first k-mer
is the same as the (k − 1)-prefix of the second k-mer
[5,6]. The de Bruijn graph implicitly assembles the reads
by linking together the overlapping parts, and it is
employed as the main intermediate structure by most
short read assembly algorithms [8-12]. To obtain a more
compact structure, each linear sequence of vertices that
have no branches is collapsed into a single node that
corresponds to contigs.

Iterative extension
Given de Bruijn graphs G1 and G2 that correspond to
transcriptome assemblies of two related organisms, we

first apply BLAST to obtain similarity scores between
each pair of nodes u from G1 and v from G2. We
then start the iterative extension process as follows.
For each node u from G1, we extract its most similar
node v from G2 with e-value below a cutoff. If such a
node v exists, we retain u as a single-node path. We
extend u by one node along all its outgoing edges into
multiple paths, and apply BLAST from each of these
extended paths from u against v. If at least one of
these extended paths gives a better e-value against v,
we retain all the paths that have better e-values and
continue to extend the top path that gives the best
e-value. We repeat the procedure starting from this
new path until the e-value no longer improves. Note
that only one best direction is chosen since extending
in more than one direction is very time-consuming.
By starting from each node u in G1 independently,
the probability of missing the real best path is reduced
a lot.
After the above procedure, we have retained u and all

the extended paths from u that have improved e-values,
with the top path that gives the best e-value being fully
extended. We then retain v as a single-node path and
perform a similar extension process starting from v by
extending it by one node along all its outgoing edges
into multiple paths. We apply BLAST from each of
these extended paths from v against all the retained
paths from u. If at least one of these extended paths
gives a better e-value, we retain all the paths that have
better e-values and continue to extend the top path that
gives the best e-value. Similar to above, we repeat the
procedure starting from this new path until the e-value
no longer improves to obtain a fully extended path and

Figure 1 Difference between traditional strategy and our strategy.
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a set of retained paths from v that have improved
e-values (see Figure 2).
We then repeat the entire extension procedure in turn

in G1 and G2 by replacing u by the fully extended path
from u and comparing against all the retained paths from
v, and replacing v by the fully extended path from v and
comparing against all the retained paths from u. The
entire process is repeated until no more improvements
can be made, and the algorithm is applied again by switch-
ing the role of G1 and G2 and repeating all the steps.
To obtain longer paths, we consider the retained paths

from each node u and the retained paths from its twin
node u′, in which u′ represents the reverse complemen-
tary sequence of u on the opposite strand. We merge
the twin paths that are complementary to the retained
paths from u′ with the retained paths from u, and keep
those paths with improved e-values.

Extraction of predicted transcripts
We consider all the retained paths in G1 as predicted
transcripts in the first organism and all the retained
paths in G2 as predicted transcripts in the second organ-
ism. Since the collection of all these retained paths can
be very big, we only keep a path if it contains a node in
the de Bruijn graph that is not covered by another path
with a better e-value according to the top BLAST align-
ment. In this condition, a node is covered by a path if it
contains the node itself or its twin node. To avoid a
large number of incorrectly predicted isoforms, we
remove paths with worse e-values so that each node in
the de Bruijn graph along with its twin node appears at
most 10 times within the final set of paths.

Extraction of predicted shared transcripts
To obtain predicted shared transcripts that have corre-
spondences between the two organisms, we apply
BLAST from each predicted transcript in one organism
against the set of all predicted transcripts in the other
organism as database. We retain a predicted transcript
as a predicted shared transcript if it appears both as a
query with BLAST hits from one direction and as a sub-
ject BLAST hit in the other direction.

Results and discussion
Validation
We implement our algorithm Mutual as a postproces-
sing module of Velvet [10], which is a popular sequence
assembly algorithm that returns a set of contigs along
with the de Bruijn graph. We compare our performance
to Oases [3], which uses output from Velvet to con-
struct predicted transcripts. We validate our algorithm
by applying it to simultaneously recover transcripts in
mouse against rat and in mouse against human from
publicly available RNA-Seq libraries at the sequence
read archive [13], including two libraries from mouse in
[14] (SRX017794), one library from rat in [15]
(SRX076903), and four libraries from human in [16]
(SRX011545). We perform quality trimming by remov-
ing all positions including and to the right of the first
position that has a quality score of less than 15, result-
ing in a size of 1.3 G for the mouse libraries, 2.5 G for
the rat libraries and 1.1 G for the human libraries.
We apply each algorithm over k = 25, 31, and over

k-mer coverage cutoff c = 3, 5, 10. In our algorithm
Mutual, iterative extension is applied twice with an
e-value cutoff of 0.1 using the bl2seq (BLAST 2
Sequences) variant of BLAST, once with translated
BLAST and once with nucleotide BLAST. Velvet and
Oases are applied independently in each organism. Since
Oases applies the coverage cutoff itself to obtain a de
Bruijn graph by modifying Velvet’s original de Bruijn
graph without coverage cutoff, Mutual is applied on the
two de Bruijn graphs given by Oases to obtain predicted
transcripts.
To obtain predicted shared transcripts for both Oases

and Mutual, we apply both translated BLAST and
nucleotide BLAST with an e-value cutoff of 10−7 or 10−20

from each predicted transcript in one organism against
the set of all predicted transcripts in the other organism
as database. The predicted transcripts that appear both
as a query with BLAST hits from one direction and as a
subject BLAST hit in the other direction are retained as
predicted shared transcripts. To evaluate the accuracy of
the predicted shared transcripts, we apply nucleotide
BLAST to compare them against known mouse, rat or

Figure 2 Illustration of the iterative extension procedure. The paths that are fully extended from u in G1 and from v in G2 are marked in
bold, while the other retained paths with improved e-value are not marked.
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human transcriptome databases using the same e-value
cutoff as the one used to obtain the transcripts, which is
10−7 or 10−20. To assess the extent of translocated tran-
scripts, we apply GMAP [17] to map the predicted shared
transcripts to known mouse, rat or human genomes.

Predicted transcripts
Tables 1 and 2 show that Mutual constructed less pre-
dicted transcripts than Oases. Note that the predicted
transcripts from Mutual are obtained by extending simi-
lar paths that appear in the two organisms through
iterative BLAST, while the predicted transcripts from
Oases are obtained independently in each organism.
The similarity constraints in Mutual ensure that a pre-
dicted transcript in one organism has a similar counter-
part in the other organism, albeit with a loose e-value
cutoff. The later reciprocal BLAST is needed to enforce
more stringent e-value cutoffs. On the other hand, the
predicted transcripts from Oases have no such con-
straints, and reciprocal BLAST is used to obtain shared
transcripts.

Predicted shared transcripts
When compared to Tables 1 and 2, Tables 3 and 4
show that only a small percentage of predicted tran-
scripts were shared in the two organisms, with a smaller
decrease by Mutual than by Oases. The decrease by
Mutual is due to more stringent e-value cutoffs, while
the decrease by Oases is due to imposing similarity con-
straints between the two organisms. While the actual
amount of predicted shared transcripts that can be
recovered depends on the size of libraries, the evolution-
ary distance between the two organisms and the experi-
mental conditions, Tables 3 and 4 show that Mutual
recovered more predicted shared transcripts than Oases.
Almost all these predicted shared transcripts are found

in the corresponding known transcriptome database,
with comparable percentages between Mutual and
Oases. The percentages are lower in rat, probably due to
the fact that the rat genome is less well annotated. The
number of predicted shared transcripts decreases as the
assembly parameters become more stringent, but these
transcripts are of higher quality.

Top BLAST hits to databases
By applying BLAST from each set of predicted shared
transcripts in each organism to its known transcrip-
tome database, Tables 5 and 6 show that Mutual
recovered more shared transcripts than Oases, with
many more shared transcripts recovered when the
assembly parameters are less stringent. When com-
pared to Tables 3 and 4, there is an effect of diminish-
ing returns since a few thousand more predicted
shared transcripts are needed to recover a few hundred
more shared transcripts.

Length distribution of transcripts
Figures 3 and 4 show that the lengths of predicted
shared transcripts recovered by Mutual were comparable
to the ones recovered by Oases, which are slightly
shorter in mouse but have slightly higher medians in
rat. These transcripts are generally longer when the k-
mer coverage cutoff c increases.

Recovery of full length transcripts
The situation is different when considering predicted
shared transcripts that are close to full length. Tables 7
and 8 show that Mutual recovered more or a compar-
able number of 80% full length transcripts as Oases
when the assembly parameters are more stringent, and
less 80% full length transcripts than Oases when the
assembly parameters are less stringent. Although Mutual
performs worst in rat that recovers less 80% full length
transcripts than Oases, its predicted shared transcripts
have slightly higher median lengths when considering all
the transcripts together (see Figure 3), instead of just
the ones that are 80% full length transcripts.

Table 1. Comparisons of the number of predicted
transcripts in the test on mouse against rat from Oases
and from Mutual over different values of k and k-mer
coverage cutoff c

mouse rat

k_c Oases Mutual Oases Mutual

25_3 51218 40657 100317 56409

25_5 27873 18511 33396 22538

25_10 10557 6104 7669 5639

31_3 48841 29778 82090 38141

31_5 25947 14073 28047 15981

31_10 8224 3954 5145 3485

Note that these numbers are not directly comparable between Oases and
Mutual since the predicted transcripts from Mutual are obtained by extending
similar paths that appear in the two organisms with an e-value cutoff of 0.1
from bl2seq, while the predicted transcripts from Oases are obtained
independently in each organism without such constraints.

Table 2. Comparisons of the number of predicted
transcripts in the test on mouse against human

mouse human

k_c Oases Mutual Oases Mutual

25_3 51218 34514 49579 36268

25_5 27873 18561 25911 17519

25_10 10557 7020 7672 5405

31_3 48841 23510 35993 23263

31_5 25947 13433 20396 12867

31_10 8224 4358 4705 3182

Notations are the same as in Table 1.
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Table 3. Comparisons of the number of predicted shared transcripts (shared) and the number of predicted shared
transcripts that have BLAST hits from each organism to its known transcriptome database (found) in the test on
mouse against rat from Oases and from Mutual over different values of k and k-mer coverage cutoff c and over
different e-value cutoffs 10−7 and 10−20

mouse(10−7 ) rat(10−7 )

Oases Mutual Oases Mutual

k_c shared found shared found k_c shared found shared found

25_3 27671 26756 (97%) 35230 34011 (97%) 25_3 24489 21844 (89%) 39287 34298 (87%)

25_5 12729 12366 (97%) 14924 14520 (97%) 25_5 10092 9245 (92%) 15287 13639 (89%)

25_10 3955 3823 (97%) 4589 4465 (97%) 25_10 2994 2835 (95%) 3955 3705 (94%)

31_3 22635 22046 (97%) 25035 24396 (97%) 31_3 20917 19008 (91%) 27484 24744 (90%)

31_5 10229 10028 (98%) 11039 10825 (98%) 31_5 8398 7815 (93%) 11225 10332 (92%)

31_10 2597 2545 (98%) 2871 2815 (98%) 31_10 2013 1939 (96%) 2489 2382 (96%)

mouse(10−20 ) rat(10−20 )

Oases Mutual Oases Mutual

k_c shared found shared found k_c shared found shared found

25_3 22936 22290 (97%) 28705 27881 (97%) 25_3 19282 17719 (92%) 29923 26898 (90%)

25_5 10904 10608 (97%) 12648 12336 (98%) 25_5 8242 7669 (93%) 12087 10999 (91%)

25_10 3377 3253 (96%) 3901 3790 (97%) 25_10 2510 2388 (95%) 3254 3070 (94%)

31_3 18052 17627 (98%) 20026 19567 (98%) 31_3 15835 14699 (93%) 20943 19264 (92%)

31_5 8429 8261 (98%) 9157 8964 (98%) 31_5 6623 6218 (94%) 8886 8251 (93%)

31_10 2196 2150 (98%) 2438 2386 (98%) 31_10 1681 1629 (97%) 2041 1959 (96%)

The number in parentheses is the percentage of predicted shared transcripts that have BLAST hits from each organism to its known transcriptome database.

Table 4. Comparisons of the number of predicted shared transcripts and the number of predicted shared transcripts
that have BLAST hits from each organism to its known transcriptome database in the test on mouse against human

mouse(10−7) human(10−7 )

Oases Mutual Oases Mutual

k_c shared found shared found k_c shared found shared found

25_3 20763 20406 (98%) 25630 25189 (98%) 25_3 22499 22084 (98%) 28364 27911 (98%)

25_5 11914 11685 (98%) 12956 12784 (99%) 25_5 12037 11786 (98%) 12806 12643 (99%)

25_10 4644 4520 (97%) 5226 5114 (98%) 25_10 3844 3762 (98%) 4121 4047 (98%)

31_3 14631 14440 (99%) 16226 16041 (99%) 31_3 16498 16348 (99%) 18482 18318 (99%)

31_5 8351 8241 (99%) 8920 8825 (99%) 31_5 9250 9171 (99%) 9841 9753 (99%)

31_10 2727 2686 (98%) 2924 2887 (99%) 31_10 2326 2308 (99%) 2438 2420 (99%)

mouse(10−20 ) human(10−20 )

Oases Mutual Oases Mutual

k_c shared found shared found k_c shared found shared found

25_3 15532 15335 (99%) 18418 18165 (99%) 25_3 17014 16799 (99%) 19840 19558 (99%)

25_5 9534 9356 (98%) 10249 10137 (99%) 25_5 9718 9541 (98%) 10120 10000 (99%)

25_10 3965 3854 (97%) 4452 4358 (98%) 25_10 3344 3278 (98%) 3593 3529 (98%)

31_3 10165 10045 (99%) 11250 11127 (99%) 31_3 12052 11960 (99%) 13138 13043 (99%)

31_5 6262 6183 (99%) 6728 6654 (99%) 31_5 7267 7216 (99%) 7615 7557 (99%)

31_10 2245 2209 (98%) 2419 2385 (99%) 31_10 2003 1989 (99%) 2083 2069 (99%)

Notations are the same as in Table 3.

Table 5. Comparisons of the number of top unique BLAST hits to different transcripts from each set of predicted shared
transcripts in each organism to its known transcriptome database in the test on mouse against rat from Oases and from
Mutual over different values of k and k-mer coverage cutoff c and over different e-value cutoffs 10−7 and 10−20

10−7 mouse rat 10−20 mouse rat

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual

25_3 7780 8349 (+569) 7382 8061 (+679) 25_3 7035 7547 (+512) 6608 7148 (+540)
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Presence of translocated transcripts
As reported by GMAP, Tables 9 and 10 show that
Mutual recovered a much larger number of predicted
shared transcripts that are uniquely mapped than Oases,
while at the same time returning more translocated
transcripts that can be considered to be errors due to
their rare occurrences [18]. The ratio of the number of
translocated transcripts to the number of uniquely
mapped transcripts is at most about twice as much for
Mutual when compared to Oases. This ratio increases
when k decreases or when the k-mer coverage cutoff c
increases.

Accuracy of transcript reconstruction
By investigating the fitness of the alignment between the
predicted shared transcripts and the known transcrip-
tome database sequences, Figures 5 and 6 show that
with respect to the accuracy of shared transcript recon-
struction, there are tradeoffs between precision and
recall by Mutual when compared to Oases. Mutual has
slightly lower F-scores than Oases in most cases.

Availability
A software program that implements our algorithm
(Mutual) is available at http://faculty.cse.tamu.edu/shsze/
mutual.

Conclusions
We have developed an algorithm that makes use of evo-
lutionary information to simultaneously recover

significantly more shared transcripts from RNA-Seq
data in two related organisms that may be missed by
traditional de novo approaches. While more shared tran-
scripts are recovered due to the smaller evolutionary
distance between mouse and rat, our algorithm can be
applied to related organisms that are evolutionarily
farther away, such as between mouse and human.
While known transcriptomes are used as databases

during validation, one important characteristic of our
algorithm is that no reference transcriptomes or a clo-
sely related model organism are needed. Our algorithm
can be used to recover shared transcripts that are speci-
fic to two closely related non-model organisms, which
may not be present in a related model organism that is
evolutionarily farther away.
Depending on the size of the de Bruijn graphs, our

algorithm can take many processor-hours to run. It
takes more than 600 processor-hours to obtain all the
predicted transcripts in mouse against rat or in mouse
against human for the least stringent values of k and
the k-mer coverage cutoff c. Although our algorithm
can take much more computational time than the de
novo algorithms Velvet or Oases, the iterative BLAST
searches can be run independently in parallel on a
computing cluster. While an additional 60 processor-
hours are needed to obtain predicted shared tran-
scripts from the predicted transcripts, a similar proce-
dure is also needed for Oases. No special memory
requirement is needed after the de Bruijn graphs are
obtained.

Table 5. Comparisons of the number of top unique BLAST hits to different transcripts from each set of predicted shared
transcripts in each organism to its known transcriptome database in the test on mouse against rat from Oases and
from Mutual over different values of k and k-mer coverage cutoff c and over different e-value cutoffs 10?−?7 and 10?−?20

(Continued)

25_5 5310 5563 (+253) 4863 5158 (+295) 25_5 4715 4929 (+214) 4319 4538 (+219)

25_10 2361 2463 (+102) 2011 2094 (+83) 25_10 2008 2094 (+86) 1769 1833 (+64)

31_3 6645 6854 (+209) 6392 6660 (+268) 31_3 5780 5997 (+217) 5527 5802 (+275)

31_5 4286 4368 (+82) 3933 4103 (+170) 31_5 3713 3804 (+91) 3454 3557 (+103)

31_10 1705 1740 (+35) 1462 1517 (+55) 31 10 1443 1484 (+41) 1287 1320 (+33)

Only the top hit with e-value below the cutoff is considered. The number in parentheses is the change by Mutual over Oases.

Table 6. Comparisons of the number of top unique BLAST hits to different transcripts from each set of predicted
shared transcripts in each organism to its known transcriptome database in the test on mouse against human

10−7 mouse human 10−20 mouse human

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual

25_3 7090 7474 (+384) 7123 7548 (+425) 25_3 6169 6402 (+233) 6317 6539 (+222)

25_5 5308 5392 (+84) 5244 5318 (+74) 25_5 4666 4700 (+34) 4679 4696 (+17)

25_10 2781 2818 (+37) 2591 2612 (+21) 25_10 2452 2476 (+24) 2376 2385 (+9)

31_3 5490 5647 (+157) 5198 5387 (+189) 31_3 4421 4557 (+136) 4416 4547 (+131)

31_5 3918 3971 (+53) 3662 3732 (+70) 31_5 3221 3275 (+54) 3180 3222 (+42)

31_10 1796 1805 (+9) 1573 1594 (+21) 31_10 1531 1540 (+9) 1403 1410 (+7)

Notations are the same as in Table 5.
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One drawback of our algorithm is that only a weak
recovery of non-coding regions of mRNA is possible since
these regions may not be conserved. Due to the use of

similarity information between two related organisms to
extend transcripts, our algorithm cannot identify extended
transcripts that are not shared between the two organisms.

Figure 3 Length distribution of predicted shared transcripts in the test on mouse against rat from Oases and from Mutual over
different values of k and k-mer coverage cutoff c (represented by k_c) and over different e-value cutoffs 10−7 and 10−20 . The width of
each box is proportional to the square root of the size of each group, while outliers are ignored.
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Figure 4 Length distribution of predicted shared transcripts in the test on mouse against human. Notations are the same as in Figure 3.

Table 7 Comparisons of the number of predicted shared transcripts that are 80% full length transcripts in the test on
mouse against rat from Oases and from Mutual over different values of k and k-mer coverage cutoff c and over
different e-value cutoffs 10−7 and 10−20 .

10−7 mouse rat 10−20 mouse rat

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual

25_3 1900 1840 (−60) 2066 1777 (−289) 25_3 1802 1743 (−59) 1870 1611 (−259)

25_5 1705 1677 (−28) 1739 1581 (−158) 25_5 1595 1561 (−34) 1577 1429 (−148)

25_10 1119 1097 (−22) 862 848 (−14) 25_10 984 975 (−9) 798 788 (−10)

31_3 1144 1158 (+14) 1407 1179 (−228) 31_3 1061 1077 (+16) 1226 1042 (−184)

31_5 1054 1062 (+8) 1240 1095 (−145) 31_5 966 990 (+24) 1092 978 (−114)

31_10 719 724 (+5) 662 662 (0) 31_10 638 646 (+8) 607 602 (−5)

These transcripts are the ones in which 80% of the coding region is included in the best BLAST alignment from each organism to its known transcriptome
database. The number in parentheses is the change by Mutual over Oases.
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Table 8. Comparisons of the number of predicted shared transcripts that are 80% full length transcripts in the test on
mouse against human

10−7 mouse human 10−20 mouse human

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual

25_3 1851 1808 (−43) 1529 1553 (+24) 25_3 1733 1686 (−47) 1450 1477 (+27)

25_5 1716 1666 (−50) 1534 1536 (+2) 25_5 1605 1552 (−53) 1454 1459 (+5)

25_10 1250 1241 (−9) 1178 1183 (+5) 25_10 1124 1112 (−12) 1114 1126 (+12)

31_3 1085 1099 (+14) 739 746 (+7) 31_3 995 1008 (+13) 686 700 (+14)

31_5 1009 1018 (+9) 734 736 (+2) 31_5 923 932 (+9) 678 683 (+5)

31_10 720 723 (+3) 627 628 (+1) 31_10 654 656 (+2) 579 585 (+6)

Notations are the same as in Table 7.

Table 9. Comparisons of the number of predicted shared transcripts that are uniquely mapped (unique) or
translocated (transloc) as reported by GMAP in the test on mouse against rat from Oases and from Mutual over
different values of k and k-mer coverage cutoff c and over different e-value cutoffs 10−7 and 10−20

mouse(10−7) rat(10−7)

Oases Mutual Oases Mutual

k_c unique transloc unique transloc k_c unique transloc unique transloc

25_3 24635 599 (0.024) 30713 1475 (0.048) 25_3 21335 986 (0.046) 33566 2237 (0.067)

25_5 10718 436 (0.041) 12071 1011 (0.084) 25_5 8509 438 (0.051) 12676 971 (0.077)

25_10 2913 218 (0.075) 3197 409 (0.128) 25_10 2353 122 (0.052) 3042 257 (0.084)

31_3 20360 242 (0.012) 22229 483 (0.022) 31_3 18236 497 (0.027) 23818 795 (0.033)

31_5 8778 189 (0.022) 9263 388 (0.042) 31_5 7132 251 (0.035) 9453 388 (0.041)

31_10 1914 99 (0.052) 2026 176 (0.087) 31_10 1553 65 (0.042) 1888 113 (0.060)

mouse(10−20) rat(10−20)

Oases Mutual Oases Mutual

k_c unique transloc unique transloc k_c unique transloc unique transloc

25_3 20209 544 (0.027) 24662 25 3 25_3 16880 746 (0.044) 25851 1536 (0.059)

25_5 9070 396 (0.044) 10067 25 5 25_5 7021 332 (0.047) 10097 718 (0.071)

25_10 2431 188 (0.077) 2631 25 10 25_10 1977 98 (0.050) 2499 214 (0.086)

31_3 16077 213 (0.013) 17610 31 3 31_3 13866 376 (0.027) 18290 516 (0.028)

31_5 7136 156 (0.022) 7538 31 5 31_5 5656 177 (0.031) 7572 243 (0.032)

31_10 1590 85 (0.053) 1701 31 10 31_10 1299 51 (0.039) 1559 83 (0.053)

The number in parentheses is the ratio of the number of translocated transcripts to the number of uniquely mapped transcripts.

Table 10. Comparisons of the number of predicted shared transcripts that are uniquely mapped or translocated as
reported by GMAP in the test on mouse against human

mouse(10−7) human(10−7)

Oases Mutual Oases Mutual

k_c unique transloc unique transloc k_c unique transloc unique transloc

25_3 18157 531 (0.029) 21931 1209 (0.055) 25_3 19912 224 (0.011) 25142 592 (0.024)

25_5 10036 393 (0.039) 10760 763 (0.071) 25_5 10353 150 (0.014) 11088 334 (0.030)

25_10 3582 203 (0.057) 3838 420 (0.109) 25_10 3114 78 (0.025) 3281 221 (0.067)

31_3 12899 196 (0.015) 14105 370 (0.026) 31_3 14748 65 (0.004) 16499 126 (0.008)

31_5 7084 147 (0.021) 7392 302 (0.041) 31_5 8101 43 (0.005) 8536 94 (0.011)

31_10 2029 93 (0.046) 2095 167 (0.080) 31_10 1858 30 (0.016) 1919 58 (0.030)

mouse(10−20) human(10−20)

Oases Mutual Oases Mutual

k_c unique transloc unique transloc k_c unique transloc unique transloc

25_3 13313 499 (0.037) 15285 1073 (0.070) 25_3 14928 195 (0.013) 17259 518 (0.030)

25_5 7877 373 (0.047) 8286 713 (0.086) 25_5 8301 130 (0.016) 8638 315 (0.036)
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Table 10. Comparisons of the number of predicted shared transcripts that are uniquely mapped or translocated as
reported by GMAP in the test on mouse against human (Continued)

25_10 2980 188 (0.063) 3152 400 (0.127) 25_10 2699 73 (0.027) 2822 211 (0.075)

31_3 8736 181 (0.021) 9504 330 (0.035) 31_3 10690 57 (0.005) 11621 106 (0.009)

31_5 5183 137 (0.026) 5408 281 (0.052) 31_5 6325 35 (0.006) 6580 84 (0.013)

31_10 1618 91 (0.056) 1671 161 (0.096) 31_10 1591 19 (0.012) 1623 55 (0.034)

Notations are the same as in Table 9.

Figure 5 Precision, recall and F-score with respect to the accuracy of shared transcript reconstruction in the test on mouse against rat from
Oases and from Mutual over different values of k and k-mer coverage cutoff c (represented by k_c) and over different e-value cutoffs 10−7

and 10−20 . Precision is defined to be the fraction of query positions from predicted shared transcripts that are included in BLAST alignments from
each organism to its known transcriptome database. Recall is defined to be the fraction of subject positions from database sequences that are
included in BLAST alignments from each organism to its known transcriptome database. F-score is the harmonic mean of precision and recall.
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Figure 6 Precision, recall and F-score with respect to the accuracy of shared transcript reconstruction in the test on mouse against
human. Notations are the same as in Figure 5.
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