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Abstract

Background: Effective management and treatment of cancer continues to be complicated by the rapid evolution
and resulting heterogeneity of tumors. Phylogenetic study of cell populations in single tumors provides a way to
delineate intra-tumoral heterogeneity and identify robust features of evolutionary processes. The introduction of
single-cell sequencing has shown great promise for advancing single-tumor phylogenetics; however, the volume
and high noise in these data present challenges for inference, especially with regard to chromosome abnormalities
that typically dominate tumor evolution. Here, we investigate a strategy to use such data to track differences in
tumor cell genomic content during progression.

Results: We propose a reference-free approach to mining single-cell genome sequence reads to allow predictive
classification of tumors into heterogeneous cell types and reconstruct models of their evolution. The approach
extracts k-mer counts from single-cell tumor genomic DNA sequences, and uses differences in normalized k-mer
frequencies as a proxy for overall evolutionary distance between distinct cells. The approach computationally
simplifies deriving phylogenetic markers, which normally relies on first aligning sequence reads to a reference
genome and then processing the data to extract meaningful progression markers for constructing phylogenetic
trees. The approach also provides a way to bypass some of the challenges that massive genome rearrangement
typical of tumor genomes presents for reference-based methods. We illustrate the method on a publicly available
breast tumor single-cell sequencing dataset.

Conclusions: We have demonstrated a computational approach for learning tumor progression from single cell
sequencing data using k-mer counts. k-mer features classify tumor cells by stage of progression with high accuracy.
Phylogenies built from these k-mer spectrum distance matrices yield splits that are statistically significant when
tested for their ability to partition cells at different stages of cancer.

Background
Cancer remains a major public health challenge and the
road to effective management of the disease is challenged
by widespread inter- and intra-tumoral heterogeneity
[1,2]. Tumors at the same site of origin and identical clin-
ical presentation may show wide differences in genomic
[3] and hence, functional [4] architectures, leading to a

diversity of underlying cellular mechanisms, drug
responses and treatment outcomes. A key insight that
has informed work in this area is the recognition that a
tumor is an evolutionary system [5,6], in which individual
cells undergo a process of rapid mutation and selection
leading to an accumulation of driver mutations and, con-
sequently, a progression in phenotypes. Though varying
rates of progression result in widespread heterogeneity, a
fundamental hypothesis is that a few “driver” mutations
[7] affecting key cellular pathways control any specific
tumor type and that these drivers can be identified and
exploited for effective and efficient disease management.
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Recent research [8,9] has shown that driver mutations
function through clones of heterogeneous cells which
progress through space and time. The search for such
clonal populations defining robust progression subtypes
and the paths leading to them remains an active area of
research. Various experimental and in-silico approaches
have been devised [10] and tumor phylogenetics (c.f.,
[11]) is one such strategy for interpreting the evolution of
tumors using computer algorithms for phylogenetics, i.e.,
the inference of evolutionary trees. The result is a tumor
phylogeny, or phylogenetic tree, a reconstruction of the
sequences of mutations that cells within a tumor or class
of tumors accumulate over the course of their progres-
sion. The trees allow us to learn markers of progression
driving key steps in tumor evolution, identify and classify
tumor subtypes with possibly different underlying
mechanisms of action, and enable predictive modeling of
future stages of progression. Much prior work has shown
the utility of tumor phylogenies using data from single-
cell Fluorescent In-Situ Hybridization (FISH) [12-15] and
microarray technologies [16,17]. Advances in deep
sequencing technology, particularly single-cell sequen-
cing [18,19], have extended this interest by promising a
granular view of heterogeneity and progression within a
single tumor. Single-cell sequencing, however, results in
large noisy datasets, which are computationally expensive
to analyze, and extending prior methods requires custo-
mizing them at different levels to accommodate new
noise models. With such massive scale data becoming
rapidly available, there is a need for new strategies to
exploit them to derive robust progression models.
Here, we propose a reference-free method for inferring

genome evolutionary distance from single-cell sequencing
data towards building tumor phylogenies. Typically, a
comparison of tumor genomes would involve their align-
ment to the human reference genome followed by identifi-
cation and calling of aberrations of interest, usually
genome copy number variations (CNVs), single nucleotide
polymorphisms (SNPs) or other structural variations. In
the case of genome copy number changes, such a method
assumes an approximation of genome copy number at the
individual tumor level and makes consolidation of multi-
sample copy number changes challenging. Our method
does not rely on the availability of a well annotated refer-
ence genome and we draw inspiration from the widely
used k-mer based reference-free methods [20-22] to derive
genomic measures of copy number changes among sam-
ples. We then assign a utility to this information by using
it in tasks of classification and phylogeny inference. We
also demonstrate approaches for evaluating the resulting
phylogenies by hypothesis-testing of splits in the tree
using random null models. Besides computational simpli-
city, a reference-free method offers another advantage
unique to the study of tumors: tumor genomes are

massively rearranged and, hence, alignment to the refer-
ence genome can be a noisy process. Our method is illu-
strated through its application on a publicly available
breast tumor single-cell sequencing dataset [18]. This
dataset has 200 cells and its analysis provides a prototype
for more massive data as they become available. Through
this application, we conclude that our method offers
advantages of (1) a stand-alone reference-free approach
(2) easy comparison of multiple tumor genomes and (3)
translating tumor copy number variation into practical use
as features for classification and evolutionary inference.

Methods
We describe our strategy through a series of steps per-
formed in order. An overview of our method is presented
in Figure 1. For our purposes, a “sample” is a single tumor
cell genome and we use both terms interchangeably in the
text.

Starting data
We assume the input genome sequence data consists of
quality-controlled short sequencing reads from which
sequencing artifacts including adapters, polymerase
chain reaction (PCR) primers or chimeras have been
removed.

Step 1: Deriving the k-mer count matrix
Our reference-free approach relies on using genome
sequence information encoded in discrete genome mar-
ker units called k-mers, or sequences of DNA of length k.
For small values of k, we anticipate finding all possible
k-tuples of the DNA alphabet {A,T,G,C} in a sample. As
k increases, we expect not to fully explore the k-mer
space as the size of the human genome would limit the
occurrence of all combinations of letters in the alphabet.
For example, DNA sequences of length 18-24 have been
shown to have unique specificity in the genome [23,24].
If the genome were completely unique, we would expect
to see N - k + 1 unique k-mers where N is the average
genome size of 3 × 109 base-pairs. We use a k-mer coun-
ter to generate counts of occurrences of each unique
k-mer. A tumor genome can then be represented by a
vector of k-mer counts. We aggregate count vectors from
all samples into a k-mer count matrix which can be pro-
cessed further for downstream analyses.

Step 2: Noise correction and normalization
There are several contributors to noise in deep sequen-
cing data that must be considered in the model.

1 Noise due to sequencing error: Each sequencing
technology has an inherent error rate for base-calling
and this is usually an error probability or score for
each base of the read. For example, Illumina Fastq
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files come with phred [25] scores for each base. A
major consequence of such sequencing errors is con-
founding when calling sequence variants since distin-
guishing true variants from sequencing errors is a
challenge. We assume that such sequencing errors
would occur in a much smaller fraction and correct
for it by filtering out k-mers with sparse occurrences.

2 Noise due to technical variation: It is widely known
that sequencing depth may vary by sample or subsets
of samples. The number of reads for each sample
may be different due to varying experimental condi-
tions, true differences in abundance of DNA copies,
nature of the contig, repeats or microsatellite regions,
or other sources of noise. Typically, to allow for even

Figure 1 Workflow for inferring phylogenies from single-cell genome sequencing data based on the k-mer approach. The major steps
are k-mer counting, normalization, computation of distance matrices and phylogeny building.
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comparison in the absence of technical variation,
counts are either normalized [26] or adjusted for dur-
ing analyses (e.g., sequencing depth is included as a
covariate during multiple regression). We normalize
the counts using Total Sum Scaling (TSS) where the
count of each k-mer is divided by the total sum of all
k-mers considered in that sample to derive a compo-
sitional matrix of k-mer relative abundances for each
sample. A global normalization method like quantile
normalization applied to the counts directly would be
less favorable in tumor data as individual samples can
have widely varying genomic content. In the absence
of ploidy information, we may fail to effectively differ-
entiate between changes in genome ploidy and other
forms of local copy number changes.
3 Noise due to random amplifications in the Whole
Genome Amplification or WGA technology: Noise
results from unevenness inherent in the amplifica-
tion technique and as a result, certain regions of the
genome may be amplified in some samples and not
in others. Since WGA was performed up-stream of
sequencing to generate our test dataset, we address
this unique technical limitation by only including
those k-mers that are amplified or “occur” in all
samples. By imposing this strict condition, we limit
ourselves to a much smaller section of the genome
that will be available for analyses and, thus, preferen-
tially select for amplifications and genome ploidy
multiplications at the cost of detecting truly deleted
or missing genomic regions. We also cannot identify
true structural rearrangements occurring in a subset
of samples. For sequencing technologies not using
WGA, we recommend a less stringent filtering
method based on occurrence of k-mers in a certain
fraction of samples or by a measure of variance of
individual k-mer count measures.
4 Noise due to alignment: The massive structural
rearrangements accompanying tumor progression
makes alignment to reference genomes noisy and
non-robust. As our method is reference-free, we do
not deal with this source of error.

Step 3: Dimensionality reduction and feature selection
When k increases, the computational expense of analyz-
ing an exponentially increasing k-mer count matrix over-
powers the computational efficiency of k-mer counting.
In such a scenario, dimensionality reduction by selecting
informative k-mers both improves downstream analyses
as well as computational complexity. Depending on the
downstream application, we explore a few different stra-
tegies for dimensionality reduction. Because our data was
derived from WGA assays, we only select k-mers present
in all samples. In the absence of this technical limitation,

we propose an alternate procedure of unsupervised filter-
ing [27] based on minimum variance or interquartile
range (IQR) on normalized data (counts or composi-
tional). We further select informative k-mer features by
testing for differential abundance followed by adjustment
for the multiple testing. Such a reduced k-mer feature set
can be further probed for classification or functional
relevance.

Step 4: Applications: classification and phylogeny
inference
We present two applications for k-mer feature sets
derived from k-mer count matrices in this paper: (1) pre-
dictive classification of tumor cells into different stages
of progression and (2) inference of tumor phylogenies.
Assuming we have samples with different class labels -
different stages of tumor progression or case-control
designs, the reduced set of informative features can be
used to build classifiers for predictive classification of
cells.
The second application is in tumor phylogeny inference.

Interpretation of phylogenies depends on the characteris-
tics of the starting data. Character-based phylogenies use
discrete representations of features for each sample going
into the phylogeny, usually a vector of binary features.
Selecting robust markers of progression and discretizing
them are usually challenging steps. The resulting phyloge-
nies are easier to interpret as each split in the tree repre-
sents changes in specific features that underly the
transitions between nodes, e.g., coordinates of copy num-
ber change, single nucleotide variations, etc. Distance-
based phylogenies are simpler in that they start with a
matrix of similarities between individual samples but the
non-leaf nodes are harder to interpret in terms of specific
changes in features that lead to inter-node transitions.
Distance-based trees thus provide a global picture of evo-
lution. Here, we restrict ourselves to distance-based phylo-
genetics and derive evolutionary trees using distance
matrices computed from the k-mer count matrix.

Demonstration on real single nucleus sequencing data
To illustrate our method, we downloaded the raw
sequence reads from genomes of 200 breast tumor cells
[18] from the NCBI sequence read archive (SRA) [28] as
fastq files. 100 cells came from a primary ductal breast
carcinoma patient; referred to as T10. The remaining 100
were a combination of 48 liver metastatis cells and 52
primary breast tumor cells, referred to as T16M and
T16P respectively, from a second patient T16. Matched
normal cell data was not available. The original single
nucleus sequencing experiment employed whole genome
amplification (WGA) with random priming resulting in
deep sequence reads with coverage of 138 reads per bin
of reference genome mapped [18] and an average read
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length of 48 bp. Amplification artifacts were ignored for
lack of information on PCR sequences. We checked
sequencing base quality control using FastQC [29] and
found varying quality. Instead of trimming poor quality
reads, which is often used as a quality control step, we
correct for this error source by filtering out sequences
with low abundances, as we would expect with reads con-
taining sequencing errors. Due to the short size of reads,
FastQC could not identify any Illumina single-read adap-
tors that we provided in the configuration file. We expect
to lose k-mers uniquely coding for adaptors during the
k-mer selection and filtering stage.

k-mer inference
We used the fast k-mer counter Jellyfish [30] to count
k-mers of lengths 5, 10, 15, 20 and 25 from the indivi-
dual cells. The command jellyfish count -c k -o output -t
32 input.fastq creates the k-mer count hash, and the
command jellyfish dump -c output recovers the count of
each k-mer from the hash. The hashes from all cells
were then merged to generate the count data matrix.
The rows of the matrix are k-mer features and the col-
umns are individual samples. The counts were normal-
ized using TSS as described earlier to derive count
fractions. Only k-mers present in all samples were
retained for downstream analyses.

Data survey
For an exploratory analyses of data substructure in the
k-mer space, we perform ordination by the method of
t-Distributed Stochastic Neighbor Embedding (t-SNE)
[31] which is capable of capturing manifolds and non-
linear substructures. We first generate dissimilarity
matrices from the compositional matrix of k-mer rela-
tive abundances using the Bray-Curtis dissimilarity mea-
sure. Bray Curtis dissimilarity is commonly used for
handling compositional data matrices in molecular ecol-
ogy [32] and is hence, an appropriate measure in our
context of k-mer relative abundances. We use the R
package vegan for the dissimilarity computation and
Rtsne for ordination. We additionally visualize the k-mer
occurrence space by means of histograms.

k-mer feature selection
We used minimum interquartile range (IQR) filtering
and filtered out k-mers with IQRs in the first quartile of
all k-mer IQR values. We chose the non-parametric
Wilcoxon’s rank-sum test to identify filtered k-mers dif-
ferentially abundant in primary and metastatic stages of
tumor progression. To adjust for multiple hypothesis
testing, we used a conservative Bonferroni correction on
a p-value cutoff of 0.1%. This step of global feature
selection is important both for dimensionality reduction

as well as for deriving a small subset of informative
k-mer features. Such a set can be further validated by
meta-analyses for consistent differential abundance in
addition to use in various downstream applications. We
describe methods for two such applications in next two
subsections. All statistical analyses was done using the R
language for statistical computing (version 3.1. or
higher).

k-mer counts as features for learning tasks
To test the discriminative power of the selected k-mer fea-
tures to classify the tumor cells as primary or metastatic,
we performed classification tasks on the k-mer feature
count distribution matrix. We used two classifiers – sup-
port vector machines (SVMs) and classification decision
trees – for comparison using 10-fold cross validation to
avoid overfit. We used the SVM function in the e1071 R
library and the rpart function in the rpart library for
model-fitting and class prediction. We assessed perfor-
mance by computing average classification error for
10 replicates of 10-fold cross-validation.

Distance-based phylogeny reconstruction
We computed Euclidean distance matrices in which
each non-diagonal matrix element is a measure of evo-
lutionary distance between two samples. Thus, when
comparing across samples, we are comparing fractions
of the genome occupied by different k-mers which
approximately captures the differences in genome com-
position across the samples. Neighbor-joining trees were
built using neighbor program in PHYLIP[33]. 50,000
bootstrap replicates were used to construct consensus
neighbor joining trees.

Analyses of resulting phylogenies
In the absence of ground truth for comparisons, we
defined a test statistic for analyzing the phylogenies that
would capture how well the tree partitions cells belonging
to different stages of tumor progression. We would expect
cells belonging to the same stage from the same tumor to
be clustered closer together than cells from different
tumors or stages. We defined a test statistic that would
serve as the metric of separation, to be the ratio of the
average distance between cells in the same class and the
average distance between cells in different classes. We
then sought to reject the null hypothesis that cells are ran-
domly distributed in the phylogeny. We performed 10,000
permutation tests to derive the distribution of the test sta-
tistic for the null hypothesis. We ascertain p-values at a
significance threshold of 0.001 for interpretation.

Test Statistic =

∑
pairwise distances between cells in the same class

∑
pairwise distances between cells in different classes
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Results and discussion
Data survey
We demonstrate our methods through the analyses of
the breast tumor single nucleus sequencing data [18]
described earlier. We used Jellyfish to count k-mers. As k
increases, the size of the hashes per sample also scale
non-linearly. Combining hashes of all cells further
increases data matrix file sizes. For example, when k =
25, the merged table is as large as 3.6TB. Since the k-mer
count matrices tend to get sparse with increasing k, data
subsampling can effectively reduce the matrices to sizes
that can be easily manipulated. As described in the pre-
ceding section, we reduce the size of the matrices by only
keeping those k-mers present in all samples. Table 1
describes the distribution of k-mer counts with expected
and observed occurrences of unique k-mers. As k
increases, the number of unique k-mers actually found in
the samples decreases as we would expect the size of the
genome to be a limiting factor. While the true number of
k-mers would be expected to saturate around the length
of the non-repetitive regions of the genome, a smaller
fraction of these will be observed as the k-mer length
approaches the length of the sequence read. Our strict
criterion of screening out k-mers not found in all samples
would be expected to greatly amplify the loss of k-mers
as they get longer, either because of chance mutations in
one or more samples, failure to amplify the entire region
in one or more samples, or failure to produce a read
covering an entire k-mer. On normalization by Total-
Sum-Scaling, the distribution of compositional values
appears log-Laplacian, as seen in Figure 2. During quality
control, we noticed two metastatic cells from T16 have
identical k-mer counts across values of k and, hence,
removed one sample from downstream analyses.
Figure 3(a) shows ordination of the tumor cells based

on 20-mer relative abundances in 2-dimensional space.
The tumor cells spread into three distinct clusters.
There is one cluster comprised mostly of primary breast
tumor cells from patient T10 along with representative
primary cells from patient T16. A second cluster is
comprised entirely of cells from patient T16 with a mix
of primary and metastatic stages of progression. The
third cluster is most interesting, as it is dominated by

metastatic cells from T16 but has a fair share of primary
cells from T10 and a few T16 primary cells suggestive of
a stage in transition from primary to metastatic across
patient samples. The ordination suggests that the k-mer
count distributions may by themselves have information
to effectively separate the data into meaningful
phenotypes.

k-mer feature selection
Using the minimum IQR filtering approach described
above, we found a 25% reduction in both 20-and 25-mer
space respectively resulting in 96319 20-mers and 8795
25-mers respectively. Differential abundance testing
using a Wilcoxon rank-sum test further reduced the
space by 48.2% and 38% for 20-and 25-mers, respectively,
at a Bonferroni-corrected p-value significance threshold
of 0.001. This results in a selected k-mer feature set of
49874 20-mers and 5549 25-mers. Figure 3(b) shows the
ordination of samples in the reduced k-mer feature
space. The samples appear separated into two groups,
one groups composed entirely of primary cells, and the
other has all the metastatic cells from T16 and a smaller
set of primary cells from T10 and T16, potentially in
more advanced stages of primary tumor evolution.
We used NCBI BLAST [34] to query a few 25-mer

sequences against the database of sequences of known
cancer genes in order to determine specific hits of func-
tional significance. ERBB2 is a gene which is commonly
over expressed or amplified in breast tumori-genesis is a
well known breast tumor marker [35,36]. We report 3
25-mers which align to the ERBB2 gene with a single
mismatch in Table 2. While there may be interesting
information to mine in the remaining 25-mers, we tested
only for the presence of a known amplicon we expected
to find for validation purposes. We would expect that
most biases in k-mer distributions would simply reflect
random CNV diversification, but there may be other
amplicons or regions of loss of heterozygosity that may
be discovered in a detailed functional analysis.

Classification performance
10-fold cross-validation with 10 replicates gave us med-
ian prediction errors of 0.0053 for both SVMs with linear

Table 1. Distribution of k-mer counts found in the breast tumor single-nucleus sequencing data

k-mer Size of k-mer space Observed k-mer space Reduced space of k-mers

5-mer 45 = 1024 1024 1024

10-mer 410 = 1048576 1048576 1002150

15-mer 415 = 1073741824 1010206155 749386

20-mer 420 = 1.0995 × 1012 5667547542 128425

25-mer 425 = 1.1259 × 1015 1087589480 11966

Column 1 lists the different “k"s explored. Columns 2 and 3 describe the total number of possible unique k-mers for a given k and the actual number of unique
k-mers observed in the data respectively. Column 4 describes the k-mer counts after adjusting for sparsity and amplification noise.
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basis functions and classification decision trees (CART).
Both methods classify the cells with very high accuracy.
Given the uneven class distribution of cells (ratio of pri-
mary to metastatic cells is 3:1), we expect the overall

accuracy to be slightly exaggerated. So, we subsampled
the primary cells to yield even class distribution and per-
formed the classification tasks described above for 10
replicates. The median prediction errors for SVMs and

Figure 2 Histogram of k-mer relative abundances. Both 20- and 25-mer relative abundance densities appear log-laplacian. These data
included 20- and 25-mers found in all tumor cells. (a) Histogram of 20-mer relative abundances in log10 scale. (b) Histogram of 25-mer relative
abundances in log10 scale.

Figure 3 tSNE ordination of single tumor cells. (a) Projection of tumor cells in the space of 20-mers present in all cells. The 20-mers separate
the cells into 3 loose groups, the rightmost of which is dominated by primary cells and the others by metastatic cells. The cluster in the middle
is equally represented by primary and metastatic cells from patient T16, suggesting a state of transition. The cluster on the upper right is mostly
metastatic with some primary cells. This suggests two distinct stages of advancing tumor cells based on k-mer composition. (b) Projection of
cells in the space of only those 20-mers that remain after the differential abundance test for k-mer selection. Cells group into 2 clusters, one of
which is entirely composed of primary cells and the other a mix of primary and metastatic cells.
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CART continued to remain high at 0.02 and 0.016. We
report the classification performance error in Table 3.
The relatively high accuracy is suggestive of the utility of
k-mer based features for staging and classification.

Distance-based phylogenies
We report phylogenies for k = 20, which yielded the lar-
gest number of distinct kmers after filtering. Figure 4
shows the bootstrap consensus tree constructed using
all cells from both samples. We may distinguish among
3 classes: primary cells of T10 (prefixed C), primary
cells of T16 (prefixed P), metastatic cells in T16 (pre-
fixed M). There are 5 broad clusters of cells based on
phenotype: Clusters A and D are entirely composed of
primary cells from T10. Cluster E is similarly entirely
composed of cells from T16. Cluster C is mostly a pri-
mary cluster dominated by T10 primary cells and a few
metastatic cells, potentially early in their infiltrating
stage. Cluster B is a primary cluster with cells from both
patients and a small number of metastatic cells. The
phylogenies in the original tree [18] have 3 distinct clus-
ters for T10 based on ploidy and we observe that T10
cells are found in 4 distinct clusters, two of which are
entirely filled with T10 cells. While it is hard to deter-
mine the biological meaning of the placement of tumor
cells because of the lack of ground truth, we test for the
quality of clustering by statistical analysis using the test
statistic described in Methods. The test statistics
obtained for k = 5, 10, 15 and 20-mer trees are
described in Table 4. In all cases, the values had a
p-value of less than 0.0001 when compared to the mean
value obtained from the permutation tests. This con-
firms that the placement of samples is the tree is non-
random. The phylogenies in the paper that originally
generated the data used [18] were built by aligning the
genomes to a reference. A full head-to-head comparison

to their approach is not feasible because (1) information
on leaf node labels are not available (2) the authors
color leaf nodes by ploidy and this information cannot
be matched to the cell names provided in SRA and
(3) we do not actually know the ground truth answers.
While lack of a ground truth is often handled in the
phylogenetics literature through simulated data, technol-
ogies for single-cell sequencing are sufficiently new and
advancing sufficiently rapidly that we do not have simu-
lation models one can trust to faithfully capture the
challenges of real data. To better address these issues
despite the challenges, we have conducted an indirect
comparison using phylogenies built per patient and
looking at the number of major clusters and ordering of
cells on the tree for T16 to check for similarities to the
clusterings found in the original paper. Figure 5 shows
the bootstrapped consensus neighbor-joining tree con-
structed from both primary and metastatic cells in T16
for k = 20. We observe 3 distinct clusters: Cluster A has
sub-clusters, majority of which have no mixing and are
either entirely metastatic or primary. Cluster B is domi-
nated by primary cells. Cluster C is a more even mix of
primary and metastatic cells. The original paper has
neighbor-joining trees built based on copy number pro-
files and breakpoint regions for the two patients indivi-
dually. The trees in the original paper for T16 have two
major clusters colored by ploidy, both of which are a
mix of primary and metsatatic more similar to Clusters
A and C. Our phylogenies show a more granular clus-
tering scheme. While we cannot definitively say our
results are better or worse than theirs, our analyses do
show that they yield comparable groupings of cells. We
can therefore establish that our method yields a qualita-
tively similar partitioning of cells to Navin et al.’s [18]
reference-based method, while avoiding the computa-
tional issues raised by mapping to a reference genome.

Table 2. Ascertaining possible functional roles for k-mers

Examples of 25-mers that align to the ERBB2 gene Location on ERBB2 gene (bp)

TCACCCAGGTTGGAGTGCAGTGGCA 9592-9616

CACACCTGTAACCCCAGCACTTTGG 16172-16196

CACTCTAGCCTGGGCGACAGAGCGA 36185-36161

Column 1 lists 3 25-mers that aligned to the ERBB2 gene with a single-base difference in DNA sequence. ERBB2 is one of the most frequently amplified genes in
primary breast cancer and a widely recognized tumor progression marker.

Table 3. Performance of SVM and classification trees

Classifier Class Distribution Min Median Mean Max Standard
deviation

SVM Uneven, all samples
Even, subsampled

0.003
0.003

0.005
0.02

0.006
0.02

0.01
0.03

0.002
0.008

CART Uneven, all samples
Even, subsampled

0.004
0

0.005
0.016

0.008
0.02

0.016
0.04

0.002
0.013

Values shown are classification errors computed as the average ratio of incorrectly classified test samples to the total number of test samples per replicate. We
report results both including the entire dataset and results from 10 replicates of subsampling to ensure an even class distribution.
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Conclusions
We have described a strategy to derive distance-based
tumor phylogenies from whole genome sequencing data.

k-mer counting provides an efficient way to go from
genome sequences to informative markers of differences
in genome copy numbers. In addition, selecting k-mer
counts as features to represent genomic imbalances
adds utility for practical applications of classification
and staging. We show how evolutionary models derived
from the k-mer relative abundances can be used to
build phylogenies and demonstrate a method to analyze
the resulting phylogenies as a measure of how well they
partition different stages of tumor progression. While
the current contributions are mainly methodological,
future directions include applying the strategy to larger
real datasets towards inferring biologically significant
observations from the resulting phylogenies. The avail-
ability of single-cell sequencing data is still limited and
the method is likely to have more potential, especially with
regard to novel biological discovery, when more data with
clinical covariates become available. Further, the list of
k-mer features can be used in other applications not
explored in the paper. For e.g., they can be further tested
for consistent differential abundance through meta-analy-
sis or specific experiments to gauge functional relevance.
We have demonstrated that genome dosage differences

represented by k-mers can separate tumor progression
phenotypes with reliable classification performance. Our
results suggest that there is enormous redundancy in
phylogenetically informative copy number variation
across the genome and, in particular, that one does not
need to see more than a small fraction of the genome in
a solid tumor to identify cells from a given lineage.
Extensive diversification by copy number variations is a
common feature of solid tumors [37,38], so it is unsur-
prising that examining copy number status of a random
subset of the genome would often allow one to robustly
distinguish between two possible tumors of origin for a
given sample. This observation has important implica-
tions for efforts at tumor phylogeny construction, since it
argues that one can perform tumor phylogenetics reliably
with fairly little data on individual tumor cells. Our
k-mer approach is so far unusual for the field, though, in
exploiting this enormous redundancy of phylogenetically
informative variation in single tumors.

Figure 4 20-mer bootstrap consensus neighbor-joining tree
built from T16 primary (prefix P) and metastatic data (prefix
M). Distinct groupings of cells are labeled as clusters.

Table 4. Results of permutation tests to assess
phylogenies

k-mer Test Statistic Distribution mean, sv p-value

5-mer 0.6484 1, 0.0048 ≤0.0001

10-mer 0.7333 1, 0.0058 ≤0.0001

15-mer 0.6196 0.99, 0.0058 ≤0.0001

20-mer 0.8266 1, 0.0049 ≤0.0001

Column 2 is the test statistic that served to capture how well cells from the
same stage of progression cluster. Column 3 describes null distribution
characteristics derived from permutation testing. Column 4 is the probability
of occurrence of the test statistic in the null.
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