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Abstract

Background: Recently, a wide range of diseases have been associated with changes in DNA methylation levels,
which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to
understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work,
we have used expression and methylation data of thyroid carcinoma as a case study and explored how to
optimally incorporate expression and methylation information into the disease study when both data are available.
Moreover, we have also investigated whether there are important post-translational modifiers which could drive
critical insights on thyroid cancer genetics.

Results: In this study, we have conducted a threshold analysis for varying methylation levels to identify whether
setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to
decide on best-performing analysis strategy, we have performed data integration analysis including comparison of
10 different analysis strategies. As a result, combining methylation with expression and using genes with more
than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20
functional enrichment results. Furthermore, pooling the data from different experiments increased analysis
confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-
translational modifiers with more than 15% methylation change which may be important in understanding
underlying mechanisms of thyroid cancer.

Conclusion: While only expression or only methylation information would not reveal both primary and secondary
mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid
cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have
certain level of methylation change improved the functional enrichment results, revealing the core pathways
involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and
Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-
cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer
aetiology.
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Introduction

Most common endocrine cancer observed in follicular
cells is the Human Papillary Thyroid Cancer. It has
highest incident rate among endocrine cancers, and it
occurs in all age groups from children to older adults.

Biology of thyroid cancer includes both genetic and
epigenetic alterations as driving forces of the disease
state [1]. In literature, certain precursor genes have been
associated with Human Thyroid Cancer. RAS gene muta-
tions have been detected in 5-20% and BRAF gene muta-
tions have been reported in 28-69% of papillary thyroid
cancer cases [2,3]. Variations in RET gene have also been
frequently observed in papillary thyroid cancer cases
[4,5]. Additionally, there are several genes reported in the
work of Cancer Genome Atlas Research for Papillary
Thyroid Carcinoma such as; PPARG, ALK, NTRK3 [6].

In addition to the studies on investigating genetic rea-
sons behind thyroid cancer, various studies have been
conducted to understand epigenetic alterations in thyr-
oid cancer. In papillary thyroid cancer, numerous
methylation studies have revealed that RARB (Retionoic
Acid Receptor), CDKN2A (Cyclin-Dependent Kinase
Inhibitor 2A), TSHR (Thyroid Stimulating Hormone
Receptor), CDHI (Cadherin 1, type 1), DAPK (Death-
Associated Protein Kinase 1), MLH1 (mutL Homolog 1)
and RASSF1A(Ras associated gene) are observed to have
significantly altered methylation levels [7,8]. Specifically
RAS-MAPK signal activation via RASSF1A methylation
has been detected in 20% of papillary thyroid cancer
cases [9]. Additionally, tumour suppressors and onco-
genes such as KISSIR, ADAMTSS, HOXB4, TCLIB,
NOTCH4, TIMP3 can also be added to previous gene
list of differentially methylated genes that have been
observed in various disease conditions [10].

Besides individual genes, some signalling pathways are
also reported to be affected with thyroid cancer such as;
MAPK Signalling Pathway, the Natural Killer Cell path-
way, The HIF1a pathway and Thyroid-stimulating hor-
mone receptor pathway [1]. Additionally, Toll-like
receptor signalling pathway [11], Pentose-phosphate
pathway [12] and ErbB pathway (Mtor pathway) have
previously been linked with thyroid cancer [7]. Other
pathways such as; TGF-beta signalling pathway [13],
VEGEF signalling pathway [14], Neurotrophin signalling
pathway [15], Focal adhesion [16], Extracellular matrix
activity [17], Adherens junction [18), p53 signalling path-
way [19], Notch signalling pathway [20] are described as
being active at thyroid cancer pathogenesis. Also
observed at other cancer types, Apoptosis, Fc epsilon RI
signalling pathway, Leukocyte transendothelial migra-
tion, T cell receptor signalling pathway, B cell receptor
signalling pathway, GnRH signalling pathway and Tran-
scriptional misregulation in cancer are shown as being
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involved in thyroid cancer as well [21-23]. Overall, even
though there are several reported genes and pathways that
are linked with thyroid cancer, mechanisms employed in
the disease development still remain unclear.

In recent decades, the nature of DNA methylation
became a hot research topic with ongoing developments
in technology. There are concrete evidences about epige-
netics that, it plays a crucial role in disease development,
especially in cancer [24-26]. From this perspective, incor-
porating epigenetic information into disease identification
studies would shed light on the disease aetiology, thus
improving the treatment procedure. For this purpose, a
highly preferred way is to conduct both expression and
methylation experiments. However, integrating methyla-
tion and expression data is a problem that is commonly
confronted due to the complex relationship between
methylation and expression. Recent studies show that
searching for correlation between methylation and expres-
sion data is the most adopted strategy on tackling this pro-
blem. In this type of analysis, statistical analysis of both
methylation and expression data are conducted separately
and at the final stage, these results are compared with
each other [27-32]. Another approach is to merge methy-
lation and expression data prior to any kind of analysis by
implementing general data integration algorithms [33,34].
Although general data integration algorithms enable mer-
ging of multi-layered data in an efficient way, they do not
yield optimal results as they omit the nature of biological
relationship between methylation and expression.

Methylation is a way to regulate the gene expression
level mediated by environmental factors as well as post-
translational modifications and noncoding RNAs [35].The
biological relation between methylation and gene expres-
sion is believed to be so that, for most of the genes, methy-
lation has crucial role in repressing gene expression by
blocking the promoters at which transcription factors can
bind and initiate the expression process. Thus, it is
expected to observe an inverse correlation between
expression and methylation. However, there are also other
works showing that there is not always inverse correlation
between methylation and expression, hence transcription
is defined as being independent of methylation for some
of the genes [36].

Experimental results show that a change in methylation
level does not always lead to a corresponding change in
expression level due to variety of factors. At this point,
the definition of a certain threshold considering the high
correlation between methylation and expression may be
beneficial when both methylation and expression data are
available. In microarray expression experiments, a simple
fold change of 2 is recommended between two conditions
to obtain more reliable results. In methylation experi-
ments, Beta-value () is defined as the ratio of methylated
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probe intensity over the overall intensity composed of
methylated and unmethylated probes. However, delta
beta (AB) threshold is not well defined in the publica-
tions. The question “whether methylation significance
values always correspond to significant alteration in
methylation level”, remains unanswered. In this sense,
B-Value threshold in methylation experiments is an issue
that needs to be seriously addressed; hence setting a valid
threshold for methylation change between two conditions
may be helpful in obtaining more accurate list of signifi-
cantly methylated or unmethylated genes.

In this study, we have investigated how to obtain optimal
results when both expression and methylation information
are available and we have tried to understand the interplay
between methylation and expression in thyroid cancer. For
this purpose, our research focused on two main topics;
whether setting a methylation level threshold improves the
outcome of the analysis and how to obtain optimal results
when expression and methylation information are both
available. In this sense, we have conducted a threshold ana-
lysis for varying methylation levels considering the inverse
correlation between methylation and expression. Similarly,
in order to further understand whether using expression or
methylation reveals more information about disease aetiol-
ogy, we have made comparisons between 4 different data-
sets and 10 different analysis strategies. To support our
findings and to show generalizability, we have also applied
our framework to independent thyroid cancer dataset.
Overall, in addition to a novel analysis framework, our
study reveals potentially important thyroid-cancer related
mechanisms and secondary molecular alterations which
can contribute to better understanding of thyroid cancer
aetiology.

Methods

Dataset

Dataset consisting of 8 normal and 10 tumour samples are
obtained from Batch230 and dataset consisting of 6 normal
and 6 tumour samples are obtained from Batch250 Thyr-
oid Cancer Carcinoma data in The Cancer Genome Atlas
(TCGA) [6]. This dataset was used as a case study and
training dataset. Additionally, we have also downloaded
another 30 samples from the same source to test our find-
ings on another independent dataset. In TCGA, while
selecting normal tissue samples we have focused on includ-
ing samples which are “matched” to the anatomic site of
tumour. In correlation, while selecting tumour samples we
have carefully chosen samples which have “matched” nor-
mal samples included in the same experiment.

We have only selected the samples that contain both
RNA sequencing and methylation data at our study.
According to data providers, all methylation data was
obtained from Illumina Human Methylation 450k Chip,
whereas all RNA sequencing data was obtained from
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Illumina HiSeq machine. Data consisting of intensity
values corresponding to each region for methylation
chip and counting values corresponding to each gene
for RNA-Seq are downloaded for our study.

For both methylation and RNA sequencing (RNA-Seq)
experiments, statistical analyses are conducted for each
batch independently and also by pooling both batches
together before pre-processing the data.

Methylation analysis

Methylation is not a gene-specific but a region-specific
phenomenon. Methylation occurring at different gene
regions may end up having different outcomes. In our
methylation analysis, we have investigated methylations
occurring in first exon, 3’'UTR, 5’'UTR, gene body, inter-
genic region and transcription start sites using ChAMP
package [37] which is available in R. ChAMP pipeline is
specifically designed for analysis of Illumina Human-
Methylation450k chip and it involves a sliding window
approach (Probe Lasso) for annotating CpG regions
with genomic locations [38].

In array-based methylation experiments, both Beta-
value and M-value statistics are used as metrics to mea-
sure methylation levels. Beta-Value in methylation
experiments is the estimate of methylation level using
the ratio of the methylation probe intensity and the
overall intensity whereas M-value is a logit transforma-
tion of Beta-Value. For easier functional interpretation
of the results, we have used Beta-Value at our analysis,
which provides more intuitive biological interpretation
as it roughly corresponds to the percentage of a methy-
lation on a specific site [39].

After obtaining intensity data from TCGA, intra-array
normalization is done using BMIQ normalization
method [40] to avoid the bias introduced by the Infi-
nium type 2 probe design. In order to assess the similar-
ity of normalized methylation samples in both batches
and the pooled data, multidimensional scaling plots
based on top 1000 most variable probes and corre-
sponding hierarchical clustering plots are shown in
Figures 1 and 2. When looked at the MDS and cluster-
ing plots, not all tumour samples were clustered
together and specifically in Batch230, control samples
were in separate clusters. In order to validate the pro-
blem, we have conducted the same analysis three times
by double-checking the parameters. Overall, the picture
was better for the pooled dataset, where there were pre-
cise “control” clusters in the plot. Adding that TCGA is
a well-designed database, we had doubts on excluding
the outlying samples and thus, we have continued our
analysis without any elimination but focusing on pooled
dataset. The reason behind enhanced performance of
pooled data against individual batch data may be due to
the fact that pooled data increases the confidence rate
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Figure 1 Multidimensional scaling plots for batch230, batch250 and the pooled dataset. Visualisation of the similarity of the normalized
methylation samples based on top 1000 most variable probes among all samples in Batch230, Batch250 and the pooled dataset. Label “C" refers
to Control samples (coloured in green), Label “T" refers to Tumour samples (coloured in orange). The expected was to see control and tumour
samples discretely. When looked at the plots, there is one tumour sample (T1) for Batch230 and one tumour sample (T13) for Batch250 which
are observed closer to the control groups. When looked at the pooled data, although two tumour samples (T13 and T1) are seen as nested with
control samples, there is more discrete difference observed between Tumour and Control samples.
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Figure 2 Clustering images for each dataset in our analysis. An alternative to Multidimensional Scaling Plots to visualise the similarity of
samples based on all probes using hierarchical clustering. Label “C" refers to Control samples, Label “T" refers to Tumour samples. The expected
was to see control and tumour samples discretely. When looked at the plots, control samples were discretely separated from tumour samples in
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of measuring methylation and expression levels in genes,
leading to an increase in the significance corresponding
to each gene.

After BMIQ normalization, magnitude of batch effects
are assessed and corrected using the ComBat normaliza-
tion method, which is an empirical Bayes based method to
correct for technical variation related to the slide [41].
After pre-processing, analysis for Copy Number Aberra-
tions (CNA) and segmentation of methylation variable
positions (MVPs) into biologically relevant differentially
methylated regions (DMRs) was conducted using the
“champ.MVP” function of CHAMP package. In order to
have better knowledge about false positive results, Benja-
mini-Hochberg calculation [42] is applied for all p-values.

RNA sequencing analysis

RNA sequencing analysis for both batches are con-
ducted using edgeR [43] which is available as a Biocon-
ductor [44] package. It was not possible to download
raw sequencing data from TCGA Server, hence quality
control, pre-processing, mapping and counting proce-
dures were carried out by the providers of the data [6].
We have worked on counting data and applied EdgeR
for detection of differential expression between tumour
and control samples, which benefits from empirical
Bayes estimation and tests based on the negative bino-
mial distribution [43]. Similar to the methylation analy-
sis, Benjamini-Hochberg correction [42] is conducted
for all p-values.

Combining significance values

For each gene, expression and methylation significances
(Benjamini-Hochberg false discovery rates) are com-
bined using survcomp package [45] which is a R [46]
package that provides functions to assess and to com-
pare the performance of risk prediction models.. In
more detail, Fisher’s weighted Z-method is applied while
merging expression and methylation data.

\/flx)_( \/fly?
wx ~ + Wy ~
X Sy
\/w)z( +w}

As suggested by Zaykin et al. [47] weights are assigned
as square root N, where N = sample sizes. Functional
enrichment results obtained from separate batches are
integrated in a similar fashion (Dataset option C for
each analysis model).

HumanMethylation450k chip informs about methylation
in 450,000 different regions, whereas RNA Sequencing is
not region-specific, hence it informs about genes instead of
specific regions leading to discrepancy between methylation
and expression. As an alternative to individual differential
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expression and differential methylation results we have
merged the two by simply combining the significance
values corresponding to each gene. However, regarding the
methylation data, there was more than one differentially
methylated region falling into the borders of same gene
which was causing discrepancy in the data. In our analysis,
we have selected the region with the most significant
methylation change for each gene. Hence although there
were a total of 98366 significantly altered regions for the
pooled dataset, after filtering the regions which fall into the
same gene, there were a total of 4530 affected unique genes
at the end.

Functional enrichment

Functional analysis for each data set is conducted via
PANOGA Functional Enrichment tool [48]. PANOGA
incorporates protein-protein interaction information
while extracting significant pathways. It helps to identify
disease related genes and devise functionally essential
KEGG pathways through the identification of genes
within the pathways.

PANOGA analysis for results of ten different analysis
models were conducted with the help of Cytoscape [49].
At Cytoscape, we have benefitted from JactiveModules
package [50] and while using JactiveModules “Number
of Modules” was set as 1000 and overlap threshold was
set as 0.5.

However, before giving gene lists as an input to
PANOGA we have noticed that some of the genes
observed in methylation results were not observed in
expression results. For example, PLEC1 gene. As there
was no expression information regarding PLEC1 gene,
we have excluded that gene from the analysis hence there
were a total of 452 genes filtered out in a similar way.

At our analysis, in order to understand the biological
distribution of our genes, Gene Ontology (GO) [51] ana-
lysis is conducted using ConsensusPathDB functional
annotation tool [52]. We have used the option of “over-
representation analysis” and queried our gene list
against Gene Ontology Level 4: Biological Process data-
base with the p-value cut-off of 0.01. While interpreting
the results of ConsensusPathDB, we have searched for
20 most important annotation clusters that were defined
by DAVID functional enrichment clustering [53]. More-
over, we have conducted KEGG functional analysis for
each term to understand the association between the
genes inside of GO terms and the cancer state.

Particularly for our case, significant alteration at post-
translational modification and regulation of transcription
pathways were of higher importance as they possess the
potential of affecting many biological processes. In order
to find out the genes with critical effects, we have
searched for transcription factors in TFCat database [54].
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Analysis performance measure

In order to evaluate different analysis strategies, we have
extracted the list of thyroid cancer-related pathways and
genes from previous thyroid cancer researches. For each
data and significance merging strategy, our main perfor-
mance measure was to observe thyroid related pathways
in top 20 rankings.

On the other hand, for the purpose of understanding
whether combining expression and methylation informa-
tion results in better significance values for thyroid-can-
cer associated genes, we have compared significances of
differential expression, differential methylation and com-
bination of expression and methylation for Batch 230,
Batch 250 and the Pooled dataset. At these tables, we
have also included the information of methylation level
change for all cases, which is taken as difference in
Beta-value corresponding to each gene between two
experiment conditions.

Methylation change threshold analysis

With the aim of comparing the effects of putting various
threshold levels for methylation change, a custom script
(will be made available upon request) was written which
computes inverse correlation between expression and
methylation for all regions in the dataset. We have only
included the regions having differential methylation and
differential expression significance (FDR) below 0.1,
which was picked not to be too stringent.

Simply, if methylation of a certain gene is upregulated
and expression of the same gene is downregulated, that
gene is counted as “inversely correlated”. Same is
applied for vice versa and as a next step, the ratio
between number of inversely correlated genes and total
number of genes are calculated for all datasets; in our
case Batch230, Batch250 and the pooled dataset.

Lastly, the difference in ratio between above and below
varying thresholds in the range of 0.05 (5%) and 0.5
(50%) are computed in order to find out the optimal
threshold which favours inverse correlation. This way, for
example if the threshold is set at 25%; number of regions
with methylation change bigger than 25% and number of
regions with methylation change less than 25% are com-
pared considering the inverse correlation between
expression and methylation at that certain gene. Inverse
correlation gains corresponding to each dataset is linearly
added together and the threshold with highest overall
inverse correlation gain was picked as the best-performer.

Results

Methylation analysis

While exploring differentially methylated regions, we
have only included the regions having a False Discovery
Rate (FDR) lesser than 0.01. As a result, we had a list of
1807 significant differentially methylated regions in
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1310 different genes for Batch230 and 946 differentially
methylated regions in 730 different genes for Batch250.
When both batches were pooled together, we were able
to obtain 9333 differentially methylated regions in 4729
different genes.

RNA sequencing analysis

Likewise, in RNA Sequencing analysis we have only
included genes with False Discovery Rate (FDR) lesser
than 0.01. As a result of the analysis, there were 2610
differentially expressed genes for Batch230 and there
were 1482 differentially expressed genes for Batch250.
When normalized expression values of Batch 230 and
Batch 250 were pooled together (Pooled dataset), we
were able to obtain 4790 differentially expressed genes.
(Additional File 1).

Methylation threshold analysis
In order to test whether setting a valid threshold for
methylation change yields enhanced functional enrich-
ment results, an analysis is done for varying thresholds
between 0.05 (5%) and 0.5 (50%) focusing on inverse
correlation between expression and methylation. In both
Batch230 and Batch250, genes with methylation change
larger than 35% yielded highest ratio (69.23%, 66.45%
respectively) of inverse correlation with expression. In
the pooled dataset on the other hand, setting 40%
methylation change threshold enabled us to reach high-
est inverse correlation ratio (69.00%) (Figure 3).
Optimal threshold would be the one that maximizes
the difference between ratios above and below of a cer-
tain threshold. Although genes having more than 40%
methylation change may be informative about the dis-
ease state, setting a 40% threshold may not be beneficial
for finding the optimal results. At our analysis, highest
gain of inverse correlation ratio (29.77%) was obtained
by using the threshold of 0.15 (15%) (Figure 4).

Functional enrichment analysis

Ten different analysis models and their short summaries
are shown in Table 1. Results regarding first four mod-
els are represented in Table 2 and next four models in
Table 3. For each of these categories we have set four
different result reporting options; only Batch230 results,
only Batch250 results, combination of individual batch
results (Pathways combined dataset) and Batch230
+Batch250 (Pooled) dataset results. In the pooled dataset
as threshold of 40% yielded highest ratio of inversely
correlated genes, we have also made comparison
between thresholds of 40% and 15% (Table 4). As a result,
setting a methylation change threshold of 15% clearly out-
performed setting a threshold of 40%. Moreover, we have
compared the effects of inverse and positive correlation
and whether which model informs more about the disease
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Figure 3 Ratio of genes inversely affected from methylation changes for different methylation change threshold levels. Figure showing
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state (Table 5). When only inverse correlated genes were
taken, we have observed 9 pathways in top 20 rankings
(Model 8) and when only positively correlated genes were
taken (Model 9), we have observed 8 pathways in top 20
rankings. On the other hand, when no filter applied and
all genes above the 15% threshold were taken, we were
able to reach the optimal analysis model with 12 pathways
in top 20 (Model 7).

Overall, Model 7 was superior to other models at
finding thyroid cancer related pathways in top 20 func-
tional enrichment rankings. From this reason, identifica-
tion of important transcription factors and more
detailed functional enrichment analysis using Consen-
susPathDB are conducted for the genes in Model 7
(Additional File 2 & Additional File 3).
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Table 1 Analysis models and their short descriptions.

Analysis Model Descriptions (FDR<0.01 for all models)

Models

Model 1 Only differentially expressed genes

Model 2 Only differentially methylated regions

Model 3 Differentially expressed and differentially methylated genes

Model 4 Significant genes when methylation and expression significances combined

Model 5 Genes with more than 15% methylation change and inversely correlated with expression

Model 6 Genes with more than 15% methylation change

Model 7 Significant genes with methylation level change more than 15% and obtained after combining methylation and expression

significance values

Model 8 Significant genes with methylation level change more than 15%, inversely correlated with expression and obtained after combining
methylation and expression significance values

Model 9 Significant genes with methylation level change more than 15%, positively correlated with expression and obtained after
combining methylation and expression significance values

Model 10 Significant genes with methylation level change more than 40% and obtained after combining methylation and expression
significance values

Short summary of each analysis model. For the search of finding the optimal analysis strategy, we have applied 10 different analysis models on different data
selection options.

Table 2 Rankings of functional enrichment results - Part 1.

Model 1 Model 2 Model 3 Model 4
(Differential (Differential (Both Diff. Meth and Diff. (Meth, Expr. Significances
Expression FDR<0.01) Methylation Expressed FDR<0.01) Combined FDR<0.01)
FDR<0.01)

KEGG TERMs A B C D A B C D A B C D A B D
MAPK Signalling 6 7 4 1 10 7 7 17 7 - 12 13 17 8 9 8
ECM Receptor 5 5 3 8 26 - 52 8 8 - 13 1 6 1 5
ErbB Signalling 13 28 20 45 28 1 6 28 14 - 20 43 20 22 20 7
NF-KB Signalling 32 N 17 85 11 40 18 24 29 - 33 47 71 33 46 17
Wnt-Catenin Signalling 51 25 35 73 14 27 16 13 - - - 35 86 46 60 28
VEGF Signalling 46 47 47 105 42 13 23 85 36 - 42 - 85 84 82 56
Thyroid Cancer 30 52 34 66 55 42 43 - 12 4 4 65 88 65 74 69
Adherens Junction 34 16 19 24 21 19 20 1 34 5 16 9 21 19 15 9
p53 Signalling 11 18 11 15 68 - 77 5 1N - 18 23 34 16 2 30
TGF-beta Signalling 3 62 12 5 18 6 12 23 - 1 5 5 28 29 29 19
Notch Signalling 60 58 60 57 93 18 42 6 - - - 29 59 9 25 13
GnRH Signalling 61 27 42 26 32 24 24 40 31 - 38 26 73 41 54 68
Neurotrophin Signalling 16 9 8 14 8 4 3 30 5 - 10 24 12 5 6 15
Focal Adhesion 8 1 2 7 1 2 1 2 3 - 3 2 7 2 2 3
Transcr. Misregulation 42 21 29 65 13 - 40 - - - - 37 31 23 28 34
Apoptosis 17 19 16 10 12 - 39 20 15 - 21 16 29 35 31 6
Pathways in Cancer 1 2 1 3 2 3 2 16 1 - 1 3 1 2 1
Toll-like receptor signalling pathway 14 57 24 32 67 - 76 60 28 - 32 - 102 85 92 43
Pentose-phosphate pathway 91 70 80 88 - 43 99 88 - - - 81 112 87 101 85

Rankings of previously identified thyroid-cancer associated pathways in PANOGA functional enrichment results. For each analysis strategy four different results
are shown in order to understand differences between different data selection strategies; A) Batch230 Results B) Batch250 Results C) Functional Enrichment
Results of different Batches combined D) Batch230+Batch250 (Pooled) results. Model 1 represents, genes with differential expression FDR<0.01, Model 2
represents, genes with differential methylation FDR <0.01, Model 3 represents, genes having both differential expression and differential methylation FDR <0.01,
Model 4 represents, genes that have FDR<0.01 after significance values of methylation and expression are combined.
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Table 3 Rankings of functional enrichment results - Part 2.

Model 5 Model 6 Model 7 Model 8
(>15% Methylation (>15% . (>15% Methylation (>15% Methylation Change,
Change and Inversely Methylation Change, Significances Inverse Correlated,

Correlated) Change) Combined) Significances Combined)
KEGG TERMs A B C D A B C D A B C D A B C D
MAPK Signalling - - - 45 16 3 2 2 29 4 8 6 - - - 59
ECM Receptor 14 - 28 6 8 - 35 3 3 10 3 3 18 - 34
ErbB Signalling - 15 13 5 26 6 7 7 28 8 13 10 31 3 4 4
NF-KB Signalling 22 - 35 29 18 - 41 31 20 - 39 22 5 - 19 11
Wnt-Catenin Signalling 21 - 34 72 64 28 40 46 51 - 62 72 - - - -
VEGF Signalling 25 24 17 51 44 34 36 37 50 30 33 30 34 21 17 60
Thyroid Cancer 28 14 15 88 32 27 22 106 39 20 22 45 28 17 13 65
Adherens Junction 9 8 5 7 25 24 15 6 26 7 9 14 8 - 24 10
p53 Signalling - - - 26 - - - 80 40 - 50 54 - - - 25
TGF-beta Signalling - - - 12 41 32 32 9 10 3 4 13 - - - -
Notch Signalling 5 9 2 49 - 4 26 24 54 18 28 12 - 22 50 55
GnRH Signalling - 6 23 21 19 33 21 40 - 41 78 56 2 - 8 37
Neurotrophin Signalling 7 2 3 15 15 14 8 12 13 13 7 17 20 - 36 21
Focal Adhesion 4 - 16 1 3 17 4 1 1 6 2 2 7 - 23 2
Transcr. Misregulation - - - 40 30 - 48 77 58 - 68 51 - - - 65
Apoptosis 2 - 7 20 - 42 20 6 - 27 4 25 - 38 1
Pathways in Cancer 3 - 8 1 1 1 8 2 1 1 1 3 - 11 3
Toll-like receptor signalling pathway - - - 75 - - - - - - - 8 - - - 5
Pentose-phosphate pathway 18 12 10 25 - 30 64 - 34 31 29 18 4 - 14 17

Rankings of previously identified thyroid-cancer associated pathways in PANOGA functional enrichment results - Part2. For each analysis strategy four different
results are obtained in order to understand differences between different data selection strategies; A) Batch230 Results B) Batch250 Results C) Functional
Enrichment Results of different Batches combined D) Batch230+Batch250 (Pooled) results. Model 5 represents, genes having more than 15% methylation change
and are inversely correlated with expression values, Model 6 represents genes having more than 15% methylation change, Model 7 represents genes having
more than 15% methylation change and having FDR<0.01 after significance values of methylation and expression are combined and finally Model 8 represents,
genes having more than 15% methylation change, inversely correlated with expression values and having FDR<0.01 after significance values of methylation and
expression are combined.

Table 4 Ranking comparison for 15% threshold level; between positive correlation, inverse correlation and
all together.

Model 7 Model 8 Model 9
(>15% Methylation Change, (>15% Methylation Change, Inverse (>15% Methylation Change, Positively
Significances Combined) Correlated,Significances Combined) Correlated,Significances Combined)

KEGG TERMs Pooled Dataset Pooled Dataset Pooled Dataset

MAPK Signalling 6 59 7

ECM Receptor 3 7 4

ErbB Signalling 10 4 5

NF-KB Signalling 22 1 -

Wnt-B-Catenin 72 - -

Signalling

VEGF Signalling 30 60 53

Thyroid Cancer 45 65 27

Adherens Junction 14 10 11

p53 Signalling 54 25 -

TGF-beta Signalling 13 - 42

Notch Signalling 12 55 49

GnRH Signalling 56 37 50
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Table 4 Ranking comparison for 15% threshold level; between positive correlation, inverse correlation and
all together. (Continued)

Neurotrophin 17 21 6
Signalling

Focal Adhesion 2 2 1
Transcr. 51 65 -
Misregulation

Apoptosis 4 1 -
Pathways in Cancer 1 3 3
Toll-like receptor 8 5 -
signalling pathway

Pentose-phosphate 18 17 15
pathway

Rankings of KEGG functional enrichment results on pooled dataset to investigate the differences between positive and inverse correlation. When only inverse
correlated genes were taken, we observed 9 pathways in top 20 rankings and when only positively correlated genes were taken, we observed 8 pathways in top
20 rankings. On the other hand, when no filter applied and all genes above the 15% threshold were taken, we reached the optimal analysis model with 12
pathways in top 20.

Table 5 Ranking comparison between thresholds of 15% and 40% in the pooled dataset.

Model 7 Model 10
(>15% Methylation Change, Significances (>40% Methylation Change, Significances
Combined) Combined)
KEGG TERMs Pooled Dataset Pooled Dataset
MAPK Signalling 6 -
ECM Receptor 3
ErbB Signalling 10 10
NF-KB Signalling 22 -
Wnt-Catenin Signalling 72 -
VEGF Signalling 30 24
Thyroid Cancer 45 -
Adherens Junction 14 13
p53 Signalling 54 -
TGF-beta Signalling 13 -
Notch Signalling 12 -
GnRH Signalling 56 15
Neurotrophin Signalling 17
Focal Adhesion 2 -
Transcr. Misregulation 51 -
Apoptosis 4 1
Pathways in Cancer 1 -
Toll-like receptor signalling 8 -
pathway
Pentose-phosphate pathway 18 -

Rankings of KEGG functional enrichment results on pooled dataset. After combining methylation and expression significances, genes having FDR<0.01 and
having methylation change >15% and >40% are compared. As a result, threshold level of 15% is better at detecting thyroid related pathways.

Thyroid cancer - associated genes Batch230 there were a total of 6 differentially methylated
We have investigated thyroid cancer-associated genes with  and 13 differentially expressed genes whereas for Batch250
respect to their methylation and expression significances  there were only two differentially methylated and nine dif-
in our datasets (Tables 6, 7, 8). Out of 25 thyroid-cancer  ferentially expressed genes with FDR<0.01. On the other
associated genes retrieved from previous researches, for  hand, we observed a decent increase in the numbers of
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Table 6 Methylation, expression analysis of Batch230 focusing only on thyroid-cancer associated genes.

Batch230
DMR(FDR) DE (FDR) FDRs Combined Methylation Change (percentage)
RAPTGAP 9.85E-04 442E-10 1.28E-11 -15.75%
TIMP3 - - - -28.98%
DAPK 261E-03 2.38E-06 1.23E-07 24.97%
SLC5A8 - - 1.03E-03 -3.96%
RARB - 741E-03 267E-03 -3.22%
TSHR 2.98E-03 - 7.10E-03 -9.23%
RASSF6 2.59E-04 - 1.54E-03 -37.42%
CDKN2A - 6.15E-05 1.22E-04 3.38%
MLH1 - - - -1.34%
FN1 - 1.86E-09 1.27E-09 -33.47%
FOXE1 - - - 1.17%
HGF - - - -14.98%
KRT19 - 4.26E-11 1.64E-10 -33.47%
LGALS3 8.55E-03 1.27E-13 3.85E-14 -11.78%
MET - 113817 7.35E-18 -46.44%
RET - 1.22E-03 4.33E-04 -18.49%
KISSTR - 2.84E-05 3.77E-05 -4.81%
ADAMTS5 - 3.53E-03 8.71E-04 27.62%
HOXB4 - - - -3.01%
TCL1B 3.50E-03 - - -35.18%
NOTCH4 - - 9.04E-03 -12.10%
RASSF1 - - - 16.56%
PPARG - 3.04E-03 1.21E-03 -2.92%
ALK - 3.27E-09 9.25E-10 -2.57%
NTRK3 - - - -2.15%

Batch230 Results showing Differential Methylation (DMR), Differential Expression (DE), Combination of Differential Methylation and Differential Expression
Significances (FDRs Combined) and Methylation Change in %. Only the values with Differential Expression and Differential Methylation Significances below 0.01
are shown on the table. FDR>0.01 are shown as blank. Moreover, methylation change >15% are shown as bold. Combining methylation and expression values

greatly improves detecting thyroid-associated-genes as significantly altered.

thyroid cancer-associated genes for the pooled dataset
where 16 of the genes were found as differentially methy-
lated and 19 as differentially expressed.

When significance values of differential methylation
and differential expression were combined for each gene,
we were able to capture two additional genes (SLC5A8
and NOTCH4) for Batch230 and one additional gene
(RAP1GAP) for Batch250. Upon performing the same
analysis for the pooled dataset, we observed 18 differen-
tially altered genes, which was the highest compared to
the previous dataset options. The results for the pooled
dataset covered all of the genes that were captured on
individual batch results, therefore besides combining sig-
nificance values, pooling, i.e. expanding the dataset, aids
at capturing disease-related genes with higher ratio.

Discussion

For the purpose of understanding the interplay between
expression and methylation in thyroid cancer, we have
conducted comparisons between four data and ten

analysis strategies with respect to the observance rate of
thyroid related pathways in the functional enrichment
results (Tables 2, 3, 4, 5). Moreover, we have also con-
ducted a threshold analysis to understand whether set-
ting a methylation change threshold improves the
outcome of the experiment.

Methylation threshold analysis

In order to identify the benefits of setting a methylation
level threshold, we have conducted a threshold analysis
for various threshold levels by calculating the inverse cor-
relation ratio between methylation and expression. When
only inverse correlation ratios above different thresholds
were looked at, best performing threshold was 35% for
both Batch230 and Batch250 and 40% for the pooled
dataset (Figure 3). However, the reason behind setting a
threshold is to witness a concrete difference between
above and below thresholds. In this sense, optimal
threshold would be the one that maximizes the difference
between ratio above and below of a certain threshold.
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Table 7 Methylation, expression analysis of Batch250 focusing only on thyroid-cancer associated gene.

Batch250
DMR(FDR) DE (FDR) FDRs Combined Methylation Change (percentage)

RAPTGAP - - 8.31E-03 -18.04%
TIMP3 - - - -36.24%
DAPK - 4.38E-06 2.60E-06 -23.55%
SLC5A8 - - - -11.37%
RARB - 9.34E-04 5.75E-04 -23.60%
TSHR - - - -17.94%
RASSF6 - - - -14.54%
CDKN2A - 1.58E-07 1.65E-06 14.95%
MLH1 - - - -18.74%
FN1 - 6.59E-10 345E-10 -39.00%
FOXE1 - - - 2.18%

HGF - - - -11.01%
KRT19 - 9.45E-09 1.17E-08 -27.31%
LGALS3 - 2.58E-07 1.21E-07 -2.92%

MET - 1.10E-09 2.25E-09 -44.72%
RET - - - -12.35%
KISSTR - 1.64E-04 4.23E-04 -1.33%

ADAMTS5 - - - 30.39%
HOXB4 - - - -4.06%

TCL1B 8.97E-04 - 7.54E-04 -37.49%
NOTCH4 - - - -22.75%
RASSF1 5.14E-03 - - 20.21%
PPARG - - - 7.98%

ALK - 1.05E-03 8.55E-04 -19.68%
NTRK3 - - - -4.02%

Batch250 Results showing Differential Methylation (DMR), Differential Expression (DE), Combination of Differential Methylation and Differential Expression
Significances (FDRs Combined) and Methylation Change in %. Only the values with Differential Expression and Differential Methylation Significances below 0.01
are shown on the table. FDR>0.01 are shown as blank. Moreover, methylation change >15% are shown as bold. Combining methylation and expression values

greatly improves detecting thyroid-associated-genes as significantly altered.

When investigating the total inverse correlation gain
for all three datasets, best performing threshold level
was found at “15%” with 29.77% correlation gain where
improvement in inverse correlation between change in
methylation level and expression reached its highest
value (Figure 4).

Consequently, when 15% methylation change thresh-
old was added to Model 4, which previously possessed
maximum number of thyroid-cancer associated path-
ways in top20 functional enrichment rankings, we were
able to reach the optimal analysis strategy with 12 thyr-
oid-cancer associated pathways in top 20 rankings
(Model 7) (2, 3, 4, 5). Similarly, when Model 2 and
Model 6 were compared to each other, addition of 15%
methylation change threshold improved the functional
enrichment results by additionally identifying ErbB sig-
nalling, TGF-beta signalling and Neurotrophin signalling
pathways in top 20 rankings. Thus, it can be argued that

the genes with more than 15% methylation change may
be the core reason behind changes in these pathways,
which were all associated with thyroid-cancer in pre-
vious works.

Moreover, we have also compared functional enrich-
ment results between Model 7, 15% methylation threshold
and Model 10, 40% methylation threshold, which did not
have the highest correlation gain but had the highest
inverse correlation percentage in the pooled dataset. As a
result, setting 15% threshold level clearly outperformed
threshold of 40% (Table 4), implying that the information
of a “gain of inverse correlation” above and below the
threshold is more important than “overall inverse correla-
tion” ratio above the threshold.

Combining methylation and expression data
Due to the reason that methylation and gene expression
have different roles in the development of thyroid cancer,
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Table 8 Methylation, expression analysis of pooled dataset focusing only on thyroid-cancer associated genes.

Pooled Dataset

DMR(FDR) DE (FDR) FDRs Combined Methylation Change (percentage)
RAPT1GAP 1.29E-05 442E-10 1.93E-13 -32.37%
TIMP3 - 146E-03 - -31.69%
DAPK 2.14E-04 1.26E-11 3.35E-12 24.69%
SLC5A8 - 4.80E-04 1.99E-04 -11.61%
RARB 743E-03 6.77E-07 1.01E-07 -17.92%
TSHR 6.58E-06 1.05E-07 8.96E-06 -18.12%
RASSF6 - 1.05E-07 2.31E-08 3.85%
CDKN2A - 1.57E-11 487E-11 2.92%
MLH1 - - - -1.10%
FN1 7.00E-04 3.78E-16 1.16E-17 -39.43%
FOXE1 - - - 1.00%
HGF - 7.65E-03 - -1.54%
KRT19 2.36E-03 2.83E-18 3.17E-19 -9.87%
LGALS3 9.21E-05 146E-19 7.22E-22 -9.98%
MET 1.09E-04 1.99E-26 1.50E-28 -45.69%
RET 3.08E-03 1.01E-04 4.96E-06 -15.86%
KISSTR 1.08E-03 5.98E-11 2.02E-12 -4.12%
ADAMTS5 7.80E-05 - 8.94E-03 28.55%
HOXB4 1.07E-03 - 7.07E-03 -3.21%
TCL1B 5.29E-03 - 1.55E-06 -35.67%
NOTCH4 6.85E-03 4.37E-04 4.10E-05 -13.05%
RASSF1 1.62E-03 - 5.08E-03 19.06%
PPARG - 141E-05 7.76E-06 -2.22%
ALK 4.69E-04 3.79E-13 6.63E-15 9.44%
NTRK3 - 4.74E-03 4.15E-03 -144%

Pooled dataset results showing Differential Methylation (DMR), Differential Expression (DE), Combination of Differential Methylation and Differential Expression
Significances (FDRs Combined) and Methylation Change in %. Only the values with Differential Expression and Differential Methylation Significances below 0.01
are shown on the table. FDR>0.01 are shown as blank. Moreover, methylation change >15% are shown as bold. Combining methylation and expression values

greatly improves detecting thyroid-associated-genes as significantly altered.

combining significance values obtained from methylation
and expression studies leads to a better detection of thyr-
oid-related genes (Tables 6, 7, 8). To exemplify, for
Batch230, SLC5A8 gene was not detected as significantly
expressed or significantly methylated. However when the
significances of expression and methylation were com-
bined, we observed SLC5AS8 as significantly altered with
false discovery rate of 0.001. Similar cases were also
observed for Batch250 and pooled dataset, hence com-
bining methylation and gene expression information on
pooled data enabled us to obtain highest ratio (21 out of
25) of detecting thyroid-cancer associated genes as signif-
icantly altered.

Moreover, for the purpose of understanding the reflec-
tion of combining methylation and expression signifi-
cances on functional enrichment results, we have
compared Model 6 (>15% methylation change) with
Model 7 (>15% methylation change and methylation,

expression significances combined) and Model 4 (Only
methylation, expression significances combined) with
Model 1 (Only differential expression) and Model 2
(Only differential methylation).

Considering the pooled dataset, for Model 6, we
have observed 9 thyroid-cancer associated pathways in
top20 functional enrichment results whereas for
Model 7, which is the same dataset with only methyla-
tion and expression significances were combined, we
have detected 12 thyroid-cancer associated pathways in
top20 functional enrichment results. Similarly, for
Model 1 there were 7 and for Model 2 there were 8
thyroid-cancer associated pathways in top20 functional
enrichment results. When expression and methylation
significances were combined instead of treated sepa-
rately, we were able to observe 11 important pathways
in top 20 functional enrichment results (Model 4).
Moreover, there were various pathways that were not
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captured at all in Model 1 and 2, which were only
captured when the significances of expression and
methylation were combined. For example; in Batch250
differential methylation functional enrichment results
(Model 2, B dataset), p53 signalling pathway was not
listed as significant at all, with Bonferroni Score above
0.01. When methylation and expression significances
were combined (Model 4, B dataset), p53 signalling
pathway was observed at 16th rank with Bonferroni
Score 1.51E-12. Similar improvement was also
observed among Model 5 and Model 8, as combining
significances led to an improved performance with
additional detection of toll-like receptor pathway in
top 10 rankings.

Consequently, incorporating methylation and expres-
sion information together not only improved detection
rate of disease-specific genes but it also increased the
rankings of disease-specific pathways in functional
enrichment results.

Overall, when the data was pooled, methylation,
expression significances were combined and only genes
with more than 15% methylation change were selected,
best performing results were reached with 12 pathways
in top20 functional enrichment results (Table 2, 3, 4, 5)
namely; MAPK signalling, Extracellular matrix receptor,
ErbB signalling, TGF-beta signalling, Notch signalling,
Neurotrophin signalling, Apoptosis, Focal adhesion,
Pathways in cancer, Toll-like receptor signalling, Pen-
tose-phospate and Adherens junction pathways.

Testing on an independent dataset

In addition to the supporting articles from the literature,
for the purpose of proving the generalizability and effi-
ciency of our proposed framework, we have applied the
same procedures described above on another indepen-
dent dataset with 30 samples retrieved from thyroid can-
cer experiments in TCGA. To achieve that, firstly we
have calculated the methylation threshold value with
“maximum inverse correlation gain”, which was also 15%
for the test dataset and secondly, we have combined
methylation and expression significances by using Fish-
er’'s weighted Z-method. As a result, compared to our
training dataset results, we were able to obtain similar
pathways in similar rankings in the test dataset, hence
there were 11 thyroid cancer-associated pathways in top
20 functional enrichment rankings (Table 9). These find-
ings also support that our approach can be applied to dif-
ferent, independent cancer datasets, which may aid at
detecting important pathways for other cancer types as
well.

Disease aetiology
Although there may be other mechanisms at play leading
to the thyroid cancer state, in this work we have mainly
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investigated pathways which were mainly influenced by
expression changes highly correlated with methylation
changes. While searching for the optimal model, several
common pathways were observed at different rankings in
almost all of the models, reassuring that methylation
change may disturb certain pathways that might be
involved in thyroid cancer aetiology. When focusing only
on differential methylation results, we have observed sig-
nificant changes in important pathways such as MAPK
Signalling, Wnt-B-catenin Signalling, Notch signalling,
Apoptosis and TGF-beta signalling pathways. Besides the
pathways that were directly affected by methylation,
other secondary molecular mechanisms were also trig-
gered, such as Transcriptional misregulation, Thyroid
cancer and p53 signalling pathways, which were only cap-
tured by expression experiments. Specifically when
pooled data results which possess more than 40% methy-
lation change were being investigated (Additional File 4),
we observed significant changes in Apoptosis, Extracellu-
lar matrix, ErbB, VEGF, GnRH and Neurotrophin signal-
ling pathways. Thus, it is more probable that the core
reason behind major changes in these pathways may be
due to high methylation level change between disease
and normal state (Table 4).

In our analysis, optimal analysis strategy which yielded
maximum number of thyroid-cancer associated path-
ways in top rankings was found to be Model 7. When
the functional enrichment results of the best-performing
analysis model was investigated in detail, all of the
top20 ranked pathways on the list could be associated
with thyroid cancer (Additional File 2). In addition to
the thyroid-cancer related pathways that were extracted
from literature at the beginning, Endocytosis [55], Glu-
tamate [56], Proteasome [57], Gluconeogenesis and gly-
colysis [58] pathways are found as linked to thyroid
cancer in previous works about thyroid cancer.

Furthermore, when the details of 2826 genes that have
>15% methylation change were explored, some of the
GO: Biological Process terms with high significance
were: regulation of signal transduction, cell differentia-
tion, phosphate containing metabolic process, morpho-
genesis and neuron development. For each annotation
term, we have performed KEGG functional analysis
to examine the association with the cancer state
(Table 10). Almost all of the terms were found to be
associated with “Pathways in Cancer” which was also
supported by the recent literature works [16,37,59-66].

Moreover, since post-translational modification and
regulation of transcription pathways are critical for can-
cer diagnosis and therapy [67,68], we have searched for
transcription factors in TFCat database [54] and as a
result, 207 out of 2826 genes (7.32%) were annotated as
transcription factors (S2 Table) and 245 out of 2826
genes (8.66%) were annotated as being involved in post-
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Table 9 Validating the proposed framework with a new dataset.

Training Dataset Test Dataset
(>15% Methylation Change, Significances (>15% Methylation Change, Significances
Combined) Combined)

KEGG TERMs Pooled Pooled
MAPK Signalling 6 11
ECM Receptor 3 1

ErbB Signalling 10 16
NF-KB Signalling 22 25
Wnt-Catenin Signalling 72 80
VEGF Signalling 30 69
Thyroid Cancer 45 68
Adherens Junction 14 19

p53 Signalling 54 17
TGF-beta Signalling 13 7
Notch Signalling 12 83
GnRH Signalling 56 15
Neurotrophin Signalling 17 12
Focal Adhesion 2 2
Transcr. Misregulation 51 -
Apoptosis 4 20
Pathways in Cancer 1 4
Toll-like receptor signalling 8 -
pathway

Pentose-phosphate pathway 18 75

Comparison between the training and test dataset. For the training dataset, optimal results were obtained using Model 7. When the same analysis procedure of
training dataset is applied to the test dataset (30 samples), similar results were obtained. There were 12 KEGG functional annotation terms for the training
dataset whereas this number was 11 for the test dataset, which shows that our proposed framework is also applicable to independent datasets.

Table 10 GO - Biological process functional annotation results for Model 7.

GO: Biological Process Terms No. of genes that overlap Associated g- No. of genes in cancer  Association with cancer
with our list value pathway pathway
Regulation of Signal Transduction 540 (21.5%) 1.54E-29 56 2.06E-15
Cellular Development Process, Cell 633 (19.2%) 2.16E-21 74 4.02E-23
Differentiation
Phosphate Containing Compound 653 (19.1%) 2.16E-21 59 2.35E-14
Metabolic Process
Anatomical Structure Formation, 271 (22.7%) 8.04E-17 34 1.72E-11
Morphogenesis
Neuron Development 229 (23.9%) 847E-17 29 1.57E-09
Actin Cytoskeleton Organization 2 (27.6%) 1.53E-15 13 1.46E-03
Regulation of Catalytic Activity 1 (19.8%) 3.30E-15 48 5.03E-15
Circulatory System Development 9 (23.3%) 1.67E-13 40 145E-19
Cell Junction Assembly 70 (33.8%) 3.87E-12 10 3.12E-04
Vasculature Development 9 (24.9%) 1.28E-11 28 1.27E-13
Regulation of Adhesion 7 (24.7%) 271E-11 25 1.46E-11
Regulation of Programmed Cell Death 339 (19.3%) 5.69E-11 48 2.25E-17
Protein Kinase Activity 0 (22.0%) 4.18E-10 30 3.16E-15
Response to External Stimulus 2 (23.1%) 1.83E-09 20 495E-07
Epithelium Development 4 (20.5%) 447E-09 46 1.07E-25
Response to Growth Factor 1 (22.1%) 9.85E-09 35 5.21E-19
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Table 10 GO - Biological process functional annotation results for Model 7. (Continued)

Protein Modification Process 526 (17.0%) 5.44E-08 57 6.96E-17
Regulation of Developmental Process 190 (19.6%) 1.19E-06 36 749E-17
Regulation of Cell Growth 71 (21.5%) 462E-05 9 3.88E-03
Mesonephros Development 27 (26.0%) 3.82E-04 12 2.08E-10

Biological Process annotation table for significantly altered genes in Model 7 obtained using ConsensusPathDB. Out of 340 GO: Biological Process terms with g-
value <0.01, information of 20 important terms are reported. For each annotation term in the list, we have conducted KEGG Pathway Analysis. Almost all of the

terms were significantly associated with “Pathways in Cancer”.

translational modification processes with Benjamini sig-
nificance of “7.98E-05” in ConsensusPathDB analysis.
Consequently, these genes may be active at altering
other pathways, revealing other mechanisms involved in
thyroid cancer.

Conclusion

Overall, we define a comprehensive analysis strategy for
incorporating methylation and expression information,
which enables detection of primary and secondary
mechanisms associated with the thyroid cancer. As a
result of our case study, incorporating methylation and
expression information is a viable strategy at detecting
disease-related genes and disease-related pathways more
efficiently. Moreover, while increasing the number of
samples improves the analysis confidence of the experi-
ment, optimal results with respect to disease-related
pathways were obtained after setting a valid threshold
for change in methylation level, which is defined by con-
sidering the inverse correlation gain above and below of
a certain threshold. From biological perspective, MAPK
signalling, Extracellular matrix, Focal adhesion, ErbB sig-
nalling, Apoptosis, TGF-beta signalling, Glutamatergic
synapse and Toll-like receptor signalling pathways were
found as significantly altered in our analysis, hence
these pathways may be the core pathways that are
involved in thyroid cancer. Furthermore, significantly
altered transcription factors and post-translational modi-
fiers distinguished by our analysis strategy may be crucial
at identifying secondary mechanisms lying behind thyroid
cancer. We believe that our approach on incorporating
methylation and expression data reveals insights of thyroid
cancer which cannot be extracted using only methylation
or only expression data.

Additional material

Additional file 1: Gene Expression MA plots of Batch230, Batch250
and Pooled Dataset. Vertical axis represent log ratios between two
measurements, which are colored in black and red. Horizontal axis
represent mean values of two measurements.

Additional file 2: Panoga Top20 functional enrichment results when
methylation and expression significances are combined for the Pooled
dataset, and only genes with >15% methylation change are selected
(Model 7).

Additional file 3: List of transcription factors that have more than
15% methylation change in pooled dataset.

Additional file 4: Top 20 functional enrichment result for the
pooled dataset with genes having >40% methylation change.
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