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Abstract

Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV
typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral
strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named
EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and
recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of
prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most
possible genotype is determined based on the closest neighbor among the selected references. To detect possible
recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences
of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an
interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and
revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the
database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity.
EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with
updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE
can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution.

Introduction
The Enterovirus (EV) genus (family Picornaviridae) con-
tains twelve species, including Enterovirus A to H and J,
and Rhinovirus A to C. These viruses cause a wide range
of diseases in humans and mammals. The single-stranded
RNA genome of EV contains a single open reading frame
(ORF) flanked by 5’ and 3’ untranslated regions (UTRs).
The ORF encodes a polyprotein, which is further pro-
cessed into 11 proteins: VP1-4 (structural proteins), and
2A-2C and 3A-3D (non-structural proteins) [1]. The
genetic diversity of EVs arises from the accumulation of
single-base changes during viral propagation, as well as

from recombination events that cause genome segments
to be swapped between or within EV genotypes. To date,
308 Enterovirus genotypes have been reported (http://
www.picornaviridae.com/enterovirus/enterovirus.htm, on
2015/04), and the number is rising.
Different enterovirus genotypes cause different clinical

symptoms [1]. Classical serotyping methods, such as
serum neutralizing test and immunofluorescent assay,
are not sufficient to specify all genotypes. For example,
Tsao et al. (2010) reported that 15~30% of EV isolates
failed to be serotyped in Taiwan [2]. To overcome this
problem, many clinicians have turned to sequence-based
molecular typing methods, which assign viral genotypes
based on nucleotide sequences; such techniques are
more successful at resolving EV isolates to the corre-
sponding genotype, and also provide rapid diagnosis [3].
The VP1 capsid-coding region has been suggested to be
the most suitable region for EV genome genotyping [4,5].
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In addition, the 5’UTR [6,7], VP2 [8,9], VP4 [10,11] and
3D [11,12] regions, as well as combinations of more than
two regions, including the 5’UTR and VP4/VP2 [13], the
5’UTR and VP1[14], and VP1 and 3D [15], have been
evaluated for their usefulness for improving the sensitiv-
ity and specificity of diagnosis. However, incongruent
results may be obtained from different typing methods
based on either single or multiple coding regions of the
genome [16-19].
At present, there are two EV genotyping tools: entero-

virus genotyping tool (version 0.1; National Institute of
Public Health and the Environment (RIVM), the Nether-
lands) [20] and the genotyping tool of the NCBI [21].
Both of these resolve genotypes on the VP1 region, and
disregard the rest of the EV genome. This approach lim-
its the ability to distinguish between strains that origi-
nated from recombination events. Moreover, EV
genotype reference sequences are never updated in
these libraries.
A fast, highly sensitive, and specific molecular typing

tool is essential for clinical diagnosis and medical treatment.
In this study, we developed a web tool, EVIDENCE (Enter-
oVirus In DEep coNCEption), a workbench for phyloge-
netic-based genotyping and recombination detection in EV
genomes. Up-to-date EV classification data, nomenclature,
and GenBank accession numbers for each genotype’s pro-
totype sequence were collected from the Picornaviridae
Study Group website at http://www.picornaviridae.com/
[22], and these were combined with sequences collected
from the NCBI to build the genotyping reference set
(GTRefSet). Phylogenetic inference was used to resolve the
best-fit genotype of novel EV sequences using single or
multiple genomic regions of interest. For detection of

recombination events, the closeness between the suspected
recombinant and reference sequences was measured as
bootscanning supports by the phylogenetic method, and as
sequence similarity by the distance method. The pipeline
design enables users to seamlessly run recombination ana-
lyses with guidance for the choice of references. Further-
more, we revised the EV sequences in GenBank to
standardize the nomenclature and to clarify genotype
assignments. The collected sequences were built into the
database, and can be retrieved in an indexed catalog or be
searched for by keyword or sequence similarity.
EVIDENCE is the first web-based tool providing pipe-

lines for genotyping and recombination detection based
on both sequence context and phylogenetic inference.
Furthermore, EVIDENCE uses the most complete and
regularly updated reference sequences to maintain high
sensitivity and specificity, thereby accelerating genotype
identification in clinical diagnosis and enhancing our
understanding of EV evolution. EVIDENCE is available
at http://symbiont.iis.sinica.edu.tw/evidence.

Materials and methods
Reference sequence sets
Nucleotide sequences of EV prototype strains (Addi-
tional file 1: Table S1) listed in the Picornaviridae Study
Group website (http://www.picornaviridae.com/) were
fetched from GenBank database. If the complete genome
of a prototype strain was not available, we collected
sequences of all the other available regions instead. For
a genotype without a reference prototype assignment,
the longest and/or earliest reported sequence was
selected as the genotype’s representative reference.
Finally, 396 nucleotide sequences are selected to build

Table 1

Species GenBank Nomenclature Assigned by EVIDENCE Sequences with Congruent
Assignment (%*)

Enterovirus A 15875 16057 15794 (99.49%)

Enterovirus B 16432 16502 16238 (98.82%)

Enterovirus C 8224 8202 8146 (99.05%)

Enterovirus D 1031 1132 1031 (100%)

Enterovirus E 73 43 41 (56.16%)

Enterovirus F 5 43 5 (100%)

Enterovirus G 196 216 190 (96.94%)

Enterovirus H 10 10 10 (100%)

Enterovirus J 9 11 5 (55.56%)

Rhinovirus A 2733 5088 2697 (98.68%)

Rhinovirus B 608 1101 592 (97.37%)

Rhinovirus C 2309 3690 2259 (97.83%)

unclassified Enterovirus unclassified Rhinovirus 4957 367 119 (7.4%)

Remark: * The percentage is calculated as follows:
Sequences with Congruent Assignment
Sequences in GenBank nomenclature

× 100%
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the three hundred and eight prototype models (the gen-
otyping reference set, GTRefSet). Furthermore, we
expanded the prototype GTRefSet to the extended refer-
ence set (ExRefSet, Additional file 1: Table S2) by
including the sequences that is highly similar (sequences
identity >75%) [23] to the representative prototype
sequence of the same genotype. GTRefSet was the core
reference set for phylogenetic analysis and recombina-
tion analysis, and ExRefSet was used for automatic re-
assignment of EV sequence genotypes.

Re-classification of all EV sequences in GenBank
Nucleotide sequences from the Enterovirus genus depos-
ited in GenBank (release 206) were collected, with the
exception of sequences that are denoted as being from
environmental samples. To unify the sequence taxono-
mical nomenclature in accordance with the decisions of
the International Committee on Virus Taxonomy
(ICTV) 2014 [24,25] and to identify sequences with
potentially misassigned genotypes, the collected EV
sequences were run through the following procedures
(Figure 1). First, we performed a BLAST search (dc-
megablast, BLAST+ package, version 2.2.28) [26] using a
query sequence q against reference sequence x in ExRef-
Set (E), and extracted the following information: BLAST
raw score (brawqx), % of query coverage per reference
sequence (covqx), and % identity (identityqx). Cq is a sub-
set of E with all high blast-scored alignments to q,

Cq =
{
x ∈ E

∣
∣ covqx > 70%, identityqx > 75%

}
.

Let rank(brawqx),rank(covqx),rank(identityqx) be the
ascending sorting rank of BLAST raw score, alignment

coverage, and identity between q and x in Cq, respec-
tively. We build a set of the rank sums rSCq where

rsCq =
{
rank(brawqx) + rank(covqx) + rank(identityqx)

∣
∣x ∈ Cq

}
.

Finally, the best mixed-ranking score (BMS) for the
query q is defined as the largest rank sum r in rSCq,

BMSq = max(r |r ∈ rscq) .

Sequences are assigned to the genotype/species of
their BMS references if the BMS is only reached by one
reference sequence or multiple references with consis-
tent genotype/prototype assignment. If the BMS of a
query sequence is reached by two or more different gen-
otypes in one species, the nomenclature assignment of
this sequence is set to the species level. Query
sequences are assigned as “unclassified” species with
“unclassified” genotype if a BMS from a highly related
sequence is not detected in ExRefSet (e.g., Cq is an
empty set), or multiple references reach the BMS but
are incongruent at the species level.
The rationales of using three parameters in the mixed-

ranking score function are described below. The expec-
tation value (E-value) given by BLAST is often used to
indicate the significance of an alignment, and is often
inferred to the homology/similarity relationship of the
hit to the query sequences. Calculation of E-value is
affected by the content of searching database and the
length of the matching segment. For example, a small
E-value may be granted to a short region in high
sequence similarity, leading to false positive results if we
use an E-value cut-off for selecting sequence matches.

Figure 1 Genotype re-classification procedures.
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In contrast, the BLAST raw score is directly derived
from alignment segments can eliminate this artifact [27].
Thus, we use BLAST raw score instead. The BLAST raw
score is also depended on the scoring parameters being
used (i.e., reward for matching base and penalty for mis-
matching base/gap) [28,29]. In our case, the scoring para-
meters are using the defaults in discontiguous megablast
(dc-megablast), says, match = 2, mismatch = −3, gap
open = −5, and gap extension = −2. This empirical set-
ting is optimized for catching highly similar sequences
with gap allowance. Then, we calculated the BLAST raw
score for the query sequence q to the reference x in the
reference set, and granted the rank score Brawqx to each
q-x pair by the sorting order of the score.
Furthermore, we adopted the percentage of identity

and the coverage of the alignment in the algorithm to
address the importance of the conservation of the base
components and the overall alignments of any two
sequences in comparison. These two indexes are neces-
sary for identifying the closest homologous sequences.
The numeric values of the identity and coverage were
transformed to ranked scores, in which we can sum up
for the importance evaluated by three different scoring
scheme in a normalized scale. Therefore, the mixed-
ranking score is based on a measure of sequence simi-
larity, adding weights on the importance of the quality
of alignment.

Phylogenetic-based genotyping procedure
EV prototypes in GTRefSet were further segmented into
the thirteen genomic regions (5’UTR, 11 segments cor-
responding to the mature peptide-coding regions, and
3’UTR) according to the coordinates described in their
original GenBank documents. For sequences without
this information, we used NetPicoRNA [30] to predict
the polyprotein cleavage sites and then manually curated
ambiguous boundaries. The phylogenetic-based genotyp-
ing procedure consists of two steps: scan region and
phylogenetic analysis. In the scan region step, an input
query sequence is compared to the GTRefSet members
using BLAST. The index of the mixed-ranking score of
each genome region of each reference to the query is
then calculated (Figure 2). The region scan result table
is sorted by the sum of mixed-ranking score r of all
available genome regions; the reference sorting order is
changed dynamically according to the genome regions
selected.
Executing the phylogenetic analysis requires one query

sequence and at least two reference strain prototype
sequences. The genome regions of interest are cropped
from the query sequence and concatenated for phylogenetic
analysis. Multiple sequence alignments of the concatenated
query and reference fragments are performed by Clustal
Omega version 1.2.0 [31]. The phylogenetic inference was

done in by PhyML 3.0 [32] (model GTR + G + I) with user
defined bootstrap iterations. The circular phylogenetic tree
topology is generated by jsPhyloSVG library [33].

Recombination event detection
We implemented Bootscan [34] and SimPlot [35] methods
in EVIDENCE to detect possible recombination events
and graphically present the results. Briefly, multiple
sequence alignments between the query and reference
genotype sequences (built into GTRefSet or custom
uploaded) were performed using Clustal Omeg. The dis-
tance and similarity between sequences are calculated
using DNADIST in PHYLIP (package version 3.5c) [36]
and phylogenetic inference is analyzed using the Neigh-
bor-joining (NJ) method with the Kimura two-parameters
substitution model. Parameters, including sliding window
size, step size, bootstrapping iterations, and the use of
trimA1 (version 1.2) [37] to remove gaps, are adjustable.
For each sliding window, the bootstrap value of the refer-
ence that was the first neighbor clustered to the query was
used to derive the percentage of bootstrap support.
Finally, profiles of query-reference closeness, evaluated
by similarity or percentage of bootstrap support of each
query-reference pair in each sliding window segment,
were plotted along the EV genome. A clear crossing-
over of two query-reference profiles with sharp slopes
suggests a swap of best-fit reference and the presence of
a nearby recombination breaking point.

System framework
EVIDENCE (http://symbiont.iis.sinica.edu.tw/evidence/)
is constructed on an open-source Linux Arch (version),
Nginx (version 0.12.4), and SQLAlchemy and SQLite
relational database (version 3.8.4.3) structure. Graphical
visualization was provided using Canvas and SVG
library. Scripts for joining software packages to seamless
pipelines were written in Perl and Python. The whole
system is run in a virtual machine (CPUs of 2.27GHz, 8
cores, 16 GB RAM) located in the Institute of Informa-
tion Science, Academia Sinica, Taiwan.

Results and discussion
The usage of EVIDENCE
EVIDENCE is a searchable database for updated and
re-classified EV sequences and a workbench for EV gen-
otyping and recombination detection (Figure 2).
Database search
A total of 54,790 up-to-date EV sequences were curated
and built into an indexed category of virus species, geno-
type, and epidemiological annotations (host, continent,
country, and the reported year). This database can be
browsed through the hierarchical structure or searched by
keywords (Figure 2A, panel 1) or sequence similarity (e.g.,
BLASTN, TBLASTN, or TBLASTX) (Figure 2A, panel 2).
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For both sequence search functions, the basic features
extracted from GenBank records and reclassified geno-
types are shown in table format. The search results,
including the brief table of reported entries and the
FASTA file of hits, are made available for download.
Genotyping
EVIDENCE matches query sequences to references in
GTRefSet using the BLAST algorithm (Figure 2B,
panel 1). To perform genotyping, the query nucleotide
sequence in FASTA format is pasted or uploaded
through the sequence input interface, and then sub-
mitted by clicking on ‘scan region’. Scores for the
query to each EV genomic region of each prototype are
calculated and displayed in the results table. The table
functions like a flexible input interface for the next
phylogenetic analysis step. Clicking on the table col-
umn (the genome region) or table row (sequence title)
will select the region or the references, respectively.
The table is decreasingly sorted by the mixed-ranking
score of a single column, or by the sum of mixed-ranking
scores of all the selected columns (Figure 2B). The sorting

order implies the relative fitness of each query-reference
pair with respect to the region(s) of interest.
The phylogenetic analysis step calculates the related-

ness between the query and the selected references. A
tree topology is generated by PhyML with adjustable
bootstrap iterations (default: 100 iterations). Phyloge-
netic analysis outputs, including the tree topology as a
newick file and a png file, multiple sequence alignment,
and the selected reference sequences, are made available
for download (Figure 2B).
Recombination
The basic principle for detecting potential recombina-
tion events is to segment the whole EV genome into
small overlapping segments, in order to identify swaps
of the most similar reference (plot similarity) or changes
in the relatively closest neighbor (bootscanning) in the
successive segments; similarity is derived from the
sequence distance for each query-reference pair, and
sequence neighbors are determined based on the per-
centage of bootstrap iterations supporting the reference
as the closest neighbor to the query.

Figure 2 EVIDENCE interface. (A) Sequence Search. In DB search, keywords or multiple conditions can be used to search for related
sequences. In BLAST search, single or multiple sequences are used to BLAST against all EV sequences to search for similar sequences.
(B) Genotyping. First, the query sequence is compared to the GTRefSet (the scan region step). The result table contains indices of mixed-ranking
scores presenting segment similarity. References for phylogenetic analysis are selected from this table. (C) Recombination Detection. The
potential recombination events can be detected through observing swaps of the most similar reference (plot similarity) or changes of the
relatively closest neighbor (bootscanning) in the genome segments.
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The recombination analysis takes a single sequence
query, accompanied with three or more references to give
adequate estimations. The reference strains are selected
from those built into GTRefSet and/or from uploaded
‘custom references’. The parameters for phylogenetic
inference include sliding window (default: 200), step size
(default: 20), bootstrapping (default: 100 iterations), and
whether or not gaps in the multiple sequence alignment
are trimmed (default: no trimming); all of these para-
meters are adjustable (Figure 2C, panel 1).
Plotting of the similarity or bootstrapping results is

optional. The EV genome diagram is plotted on top to
help visualize the location of recombination events.
Dynamic figures are used to present the data and allow
the user to zoom into/out of the plot. The value of each
sliding window on the plot is shown via mouseover
events, and the user may zoom in on a specific region
of the plot by cropping the region through mouse drag-
ging (Figure 2C, panel 2). The bootscanning/similarity
plot, multiple alignment table, and bootstrap/similarity
value table can be downloaded.
The choice of reference strains for recombination

detection is crucial. Using inappropriate reference
strains to identify the recombination region may elimi-
nate the significance of the bootscanning result, and
increase the noise of recombination breakpoint determi-
nation. In EVIDENCE, users can start the analysis from
genotyping. References in GTRefSet are evaluated for
the fitness of each genome region, which can help users
select appropriate regions. The data, including the query
sequence and at least three selected references, are
redirected by clicking “push data to recombination
detection” after the phylogenetic analysis step.
It is worth noting that using too many reference

sequences in a recombination detection analysis may
return an insignificant bootscanning plot or a messy simi-
larity plot. We suggest that analysis should begin with less
than ten references, and then the non-informative ones
should be removed to improve the resolution.

Statistics of GTRefSet and ExtRefSet
The genotyping reference set (GTRefSet) of 308 reported
prototype models includes 204 full genomes, 17 partial
genomes, and 69 partial segments (data in 2015/04).
Eighteen genotypes are not related to any reference
sequence in the database and will not be included in the
present EVIDENCE reference sets. Figure 3 show statis-
tics for GTRefSet, by species and by genome region. Of
the 13 genome regions, VP1 is the most sequenced; the
VP1 regions of almost every prototype were reported. By
selecting sequences with an identity >75% to the repre-
sentative prototype sequence of the same genotype, 143
full genomes, 26 partial genomes, and one fragment were

appended to form ExtRefSet (Supplementary Table S2,
See Additional file 1).

Updating the classification of sequences using a BLAST-
based method
To date, 54,790 EV sequences are deposited in Gen-
Bank, but the genotype assignment of these sequences
in GenBank may be inaccurate. One possible reason for
any inaccuracies is that the genotype of a sequence is
assigned by individual researchers upon submission.
However, differences in the typing methods used may lead
to different conclusions. As mentioned above, serological
assays and molecular typing may generate conflicting
results if the examined strain has undergone a recombina-
tion event that changed the viral genome and the correla-
tion of epitopes with the reference virus strain; such
inconsistency is independent of the specificity of the anti-
body used to resolve strains at the genotype level. A sec-
ond possible reason is that the nomenclature and the virus
classification system are not synchronized between refer-
ence databases. Virus classification for NCBI taxonomy is
based on that of the International Nucleotide Sequence
Database Collaboration (INSDC) [38]. However, classifica-
tion of viruses is less stable than that of other organism
kingdoms due to the rapidly evolving nature of these
infectious life forms. Irregular updates have led to the
inconsistent nomenclature and taxonomic classification
used by GenBank and the International Committee on
Virus Taxonomy (ICTV). Moreover, the updated viral
classification scheme has not been applied to sequences
previously deposited in the database.
In order to unify the nomenclature and taxonomic

scheme of EV in accordance with the release by the ICTV
(2014), we revised the classification of EV sequences col-
lected from GenBank. To include the intragenic genetic
variation of a genotype, we used ExRefSet instead of
GTRefSet to enhance the sensitivity of the BLAST-based
method. The re-classification results showed high congru-
ence with GenBank classification (Table 1; details on the
congruence of each genotype are provided in Additional
file 1: Table S3). For example, sequences in the well-stu-
died and largest genotype, EV-A71, comprised 16.12% of
the EV-related sequences in GenBank, and over 99%
sequences in this genotype remained in their original
assignment after re-classification. In addition, 633 EV
sequences were newly assigned to EV-A71. About 1/3 of
these re-classified sequences were isolated from the EV-
A71 strain or identified as EV-A71 [39-49], but were
assigned to the species level (Enterovirus A) or misas-
signed to other genotypes; 68.8% of the remaining
sequences (308 sequences) were typed using the amplicons
derived from universal 5’UTR primer for all enteroviruses
(Table 2) [14,50-55]. It have been reported that the 5’
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UTR regions of Enterovirus A and Enterovirus B are indis-
tinguishable due to their highly conserved secondary
structures [7,56,57]. Therefore, the use of certain genotyp-
ing techniques may generate inadequate genotype assign-
ments, resulting in the inconsistencies in assignment
observed between those of the original records and those
obtained with EVIDENCE.
We further compared the performance of our reclassi-

fication procedure with that of the RIVM EV genotyping
tool (http://www.rivm.nl/mpf/enterovirus/typingtool), a
phylogenetic-based typing tool which uses a partial VP1

region and the neighbor-joining (NJ) method with
HKY85 or TamNei model, using the sequences identi-
fied and typed by traditional neutralization methods
[58-61] as a gold standard. As shown in Table 3
EVIDENCE generated more consistent results with anti-
genic typing. For example, one untyped human rhino-
virus (HRV) partial VP1 sequence (GenBank accession
number AF152281) has 89.37% similarity to HRV-A31;
RIVM genotyping tools assigned it to the HRV species,
whereas EVIDENCE returned HRV-A31 as the geneti-
cally closest genotype.

Figure 3 Statistics of GTRefSet. (A) The species composition of the database. Enterovirus B and Rhinovirus A collectively contribute to about
half of the total known genotypes. (B) Genome region view.
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A case study
Here, we demonstrate a genotyping and recombination
pipeline using two coxsackievirus A16 (CV-A16) strains
with distinct pathogenesis.
Coxsackievirus strains CV-A16 GD09/24 (GenBank

accession KC117317) and GD09/119 (GenBank acces-
sion KC117318), exhibiting differing levels of clinical
virulence, were isolated in Guangdong, China, in 2009
[62]. The authors performed phylogenetic analysis with
28 CV-A16 homologous strains and one EV-A71 proto-
type strain to assign GD09/24 and GD09/119 to the
CV-A16 genotype. To detect recombination events, the
authors compared two novel CA-A16 strains with two

EV-A71 strains and one CV-A16 prototype strain. Boot-
scanning results indicated that GD09/24 and GD09/119
underwent homologous recombination with EV-A71 in
the P2 and P3 regions.
In this study, we used our EVIDENCE analysis pipe-

line to study GD09/24 and GD09/119. First, the
sequences were submitted for analysis by the genotyping
tool. After the scan region step (alignment parameters
at the default settings), reported references were sorted
by the sum of mixed-ranking scores of all 13 genome
regions. We selected all genome regions and the top 10
ranked references to perform phylogenetic analysis with
500 bootstraps. The phylogenetic tree topology indicated

Table 2

Original Species Original Genotype #Sequences Region2 (sequence number)

Enterovirus A Coxsackievirus A2 11 5’UTR (1), 2C (2), 3D (8)

Enterovirus A Coxsackievirus A3 2 5’UTR (1), 3D (1)

Enterovirus A Coxsackievirus A4 13 2C (2), 3D (11)

Enterovirus A Coxsackievirus A5 2 3D (2)

Enterovirus A Coxsackievirus A6 74 5’UTR (69), 2C (2), 3D (3)

Enterovirus A Coxsackievirus A7 7 2C (2), 3D (5)

Enterovirus A Coxsackievirus A8 6 2C (1), 3D (5)

Enterovirus A Coxsackievirus A10 94 5’UTR (85), VP4-VP2 (2), 2C (3), 3D (4)

Enterovirus A Coxsackievirus A14 3 VP1 (1), 2C (1), 3D (1)

Enterovirus A Coxsackievirus A16 1 3D (1)

Enterovirus A Enterovirus A76 1 3D (1)

Enterovirus A NA1 54 5’UTR (28), 2BC (2), 3D (24)

Enterovirus B Echovirus 4 3 5’UTR (3)

Enterovirus B Echovirus 9 5 5’UTR (5)

Enterovirus B NA1 10 5’UTR (10)

unclassified Enterovirus UE1 22 5’UTR (10), VP4 (3), VP1 (3), 3D (6)

Remarks:

1. Abbreviations in use: NA, Not assigned; UE, including all classes under unclassified Enterovirus.

2. The sequenced region is a partial or complete segment.

Table 3

Species #Sequence Region #Genotype Number (%) of Genotype Discrepancies References

EVIDENCE RIVM Genotyping Tool

Enterovirus A 49 5’UTR 2 0 49 (100%)
(49 only typed to species level)

[72]

59 VP1 8 0 0 [27,28,52,53]

3 CG 3 0 0 [53]

Enterovirus B 101 VP1/
VP2

22 6 (5.9%)
(4 seqs typed to species level, 2

mistyped)

6 (5.9%)
(4 seqs typed to species level, 2

mistyped)

[27,28,52]

Enterovirus C 13 VP1 6 1 (7.7%)
(mistyped)

2 (15.4%)
(1 seq typed to species level, 1 mistyped)

[27,28]

Rhinovirus A 1 VP1 1 0 1 (100%)
(1 seq typed to species level)

[28]

Untypeable 5 VP1 NA 5 (100%)
(5 successfully typed)

5 (100%)
(1 seq typed to species level, 4

successfully typed)

[28]
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that the closest genotype to GD09/119 is CV-A16
(Figure 4A; Additional file 2: Figure S1 for GD09/24),
which is consistent with the findings of the previous
study. The five selected reference strains and the query
were piped to the recombination detection page by

clicking on the “push data to recombination detection”
button. The bootscanning (Figure 4B) and similarity
(Figure 4C) results revealed that GD09/119 is closely
related to CV-A4 in the 5’UTR region, to CV-A16 in
the P1 region, and to EV-A71, CV-A6, and CV-A7 in

Figure 4 Detection of recombination events in a highly virulent enterovirus strain CA16/GD09/119. The ML tree of the GD09/119
complete genome sequence to the ten top ranked prototype references in GTRefSet is shown in panel A. The five closest references (CV-A4,
CV-A16, CV-A7, EV-A71, and EV-A120) were selected for recombination detection, which was plotted using Bootscanning (panel B) and similarity
(panel C). The results of the potential recombination analyses of GD09/119 to CVA4, CVA16, and one of CV-A7 (panel D), EV-A71 (panel E), or
EV-A120 (panel F), are shown as bootscanning plots.

Lin et al. BMC Genomics 2015, 16(Suppl 12):S8
http://www.biomedcentral.com/1471-2164/16/S12/S8

Page 9 of 12



the P2 and P3 regions. GD09/24 showed the same
recombination pattern (Additional file 2: Figure S1). In
the earlier study [50], the authors used two references,
EV-A71 and CV-A16, to detect recombination events.
Thus, they did not observe the high correlation of 5’UTR
to CV-A4 described here. In addition, it is difficult to
determine the origin of the P2 and P3 regions of GD09/
119 and GD09/24. EV-A71, CV-A6, and CV-A7 all
showed high bootstrap values when individually sub-
jected to bootstrapping with CV-A4 and CV-A16, sup-
porting the hypothesis that recombination occurred in
the P2 and P3 regions (Supplementary Figure S1, See
Additional file 2). In fact, the P2 and P3 regions are
highly conserved in EV-A71, CV-A6, and CV-A7. The
results emphasize the limitations of phylogenetic-based
recombination-detecting methods. The non-structural
regions play major roles in viral replication, protein pro-
cessing, virulence, and virus shedding [63-66], and thus
influence host immune responses [67]. This may be the
reason for the distinct pathogenicity of these two isolates.
In addition, it has been reported that CV-A16 co-circu-
lated and/or co-infected with EV-A71, CV-A6, or CV-A4
[68-71] in China from 2008 to 2014. Therefore, the novel
epidemic strains of EV isolates GD09/24 and GD09/119
may have originated from recombination of CV-A16 to
EV-A71, CV-A4, CV-A6, CV-A7, or EV-A120.
This demonstration shows that the genotyping and

recombination pipeline in EVIDENCE can provide suita-
ble candidates as references for recombination detection.
Additionally, users can download all output files, and
perform analyses using different reference sequences or
genomic region(s) with a user-friendly interface.

Conclusions
Classical EV typing is largely dependent on serotyping
methods. VP1 has been the subject of extensive research
on account of the neutralization potency of its anti-
serum [23,58,72]. Typing specificity can be improved by
using a panel of antibodies against VP1 and other viral
proteins [73-77]. Thus, genotypes may be assigned
through observing the response of several antibodies
raised from epitopes in different genome regions. If a
novel EV strain emerged from a recombinant event that
joined epitopes of different parent strains, the serological
phenotype may fail to reflect clinical virulence. As more
EV sequences are reported, it is increasingly apparent
that recombination occurs frequently within inter- or
intra- genotypes. Moreover, each genomic region is sub-
ject to distinct selective pressures, and thus their evolu-
tion is independent of one another [78,79]. Increased
genetic diversity often leads to phenotypic variation,
which is problematic for clinical therapy.
EVIDENCE can be used to perform EV typing based

on sequence context. This tool disassociates reference

prototypes into functional components of the virus gen-
ome, and performs analysis in a modularized manner.
However, the correlation of individual genome regions with
genome virulence remains unclear. We hope that EVI-
DENCE can be used to address this question and provide
insights into EV evolution, as well as facilitate the diagnosis
of clinical specimens to ensure appropriate treatment.

Additional material

Additional file 1: Supplementary data files: Table S1: GTRefSet list, Table
S2: ExRefSet list and Table S3: Summary of congruence between
GenBank and re-classification in this study.

Additional file 2: Figure S1. Detection of recombination events in a
mild virulent enterovirus strain CA16/GD09/24. (*.pdf)
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