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Abstract

Background: Recent progress in next-generation sequencing technology has afforded several improvements such
as ultra-high throughput at low cost, very high read quality, and substantially increased sequencing depth. State-of-
the-art high-throughput sequencers, such as the lllumina MiSeq system, can generate ~15 Gbp sequencing data
per run, with >80% bases above Q30 and a sequencing depth of up to several 1000x for small genomes. lllumina
HiSeq 2500 is capable of generating up to 1 Tbp per run, with >80% bases above Q30 and often >100x
sequencing depth for large genomes. To speed up otherwise time-consuming genome assembly and/or to obtain
a skeleton of the assembly quickly for scaffolding or progressive assembly, methods for noise removal and
reduction of redundancy in the original data, with almost equal or better assembly results, are worth studying.

Results: We developed two subset selection methods for single-end reads and a method for paired-end reads
based on base quality scores and other read analytic tools using the MapReduce framework. We proposed two
strategies to select reads: MinimalQ and ProductQ. MinimalQ selects reads with minimal base-quality above a
threshold. ProductQ selects reads with probability of no incorrect base above a threshold. In the single-end
experiments, we used Escherichia coli and Bacillus cereus datasets of MiSeq, Velvet assembler for genome assembly,
and GAGE benchmark tools for result evaluation. In the paired-end experiments, we used the giant grouper
(Epinephelus lanceolatus) dataset of HiSeq, ALLPATHS-LG genome assembler, and QUAST quality assessment tool for
comparing genome assemblies of the original set and the subset. The results show that subset selection not only
can speed up the genome assembly but also can produce substantially longer scaffolds. Availability: The software is
freely available at https://github.com/moneycat/QReadSelector.

Background

With the introduction of next-generation-sequencing
technology, a vast amount of sequencing data can be
generated in a short period of time. A major application
in genome sequencing is de novo assembly, which aligns
overlapping reads into super-sequences known as con-
tigs and uses paired-end (PE) reads to further connect
contigs into scaffolds [1]. To produce longer contigs and
scaffolds, sequencing data with sufficient sequencing

* Correspondence: yjchang@iis.sinica.edu.tw
'Institute of Information Science, Academia Sinica, Taipei, Taiwan
Full list of author information is available at the end of the article

depth and low error rate are required. However, DNA
sequencing reads from Illumina sequencers have
previously generated errors at the rate of 0.5-2.5% [2],
forcing researchers to develop various error correction
algorithms in order to be able to use as many sequencing
reads as possible. Recently, state-of-the-art high-through-
put sequencers, such as the Illumina MiSeq series, have
been reported to generate sequencing reads of around
2500x sequencing depth in small genomes, with >80% of
bases above Q30 [3,4]. Another example is the Illumina
HiSeq 2500 that is capable of generating up to 1 Tbp per
run with >80% bases above Q30 [5]. Sequencing depth of
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the HiSeq data is often 100x or more for large genomes.
The availability of such high sequencing depth and high-
quality reads leads us to wonder if it is possible to select
useful reads and read pairs from the original sequencing
data, in order to assemble genomes without affecting
assembly results or with even better results.

Results

Datasets and preprocessing

We downloaded two genome sequencing datasets,
Escherichia coli MG1655 and Bacillus cereus ATCC
10987, from Illumina’s MiSeq Scientific Data [4] (Table
1). Each dataset was sequenced on the MiSeq System,
using the new MiSeq Reagent Kit v3 with a read length
configuration of 2 x 300 bp. As shown in Table 1, both
datasets have coverage of above 2500x. In addition,
more than 80% of the bases are above Q30 for each
dataset. The base quality score distribution and cumulative
distribution of the two datasets are given in Additional
files 1 and 2. The complete genomes from NCBI library
are used for evaluation.

To test subset selection for more complex genomes, we
included the grouper NGS data, generated by HiSeq 2500,
as the third dataset (Table 1). The grouper dataset consist
of two PE libraries with a read length configuration of 2 x
200 bp and insert lengths 400 bp and 500 bp. The two
libraries are similar in size and have the total size of 125G
bp after adaptor and quality trimming by Trim Galore
scripts [6]. The base quality score distribution and
cumulative distribution of the grouper dataset are given
in Additional file 3. In addition, there are five mate-pair
libraries, with insert lengths ~2K, ~4K, ~6K, ~8K, ~10K
bp, of the grouper. The size of each mate-pair library is
~4.4G bp. Note that the grouper dataset is sequenced by
Prof. Lin’s team (coauther of this paper) and is under
preparation for publication.

The sequencing data were stored in FASTQ format,
which provides information on the sequence identifier,
read sequence and quality values for each base. The

Table 1 The sequencing datasets used in the
experiments.

Dataset 1 2 3
Species'’ E. coli B. cereus Grouper
Genome size 46 Mbp 52 Mbp  ~1.1 Gbp?
Read length 2x300bp 2x300bp 2x200bp
Mean quality score 34 34 35
% Bases with quality score > 30 83% 85% 92%
Depth 2853x 2669 ~110-120%°

! The full scientific names of those species are Escherichia coli, Bacillus cereus
and Epinephelus lanceolatus.

2 Those are estimated values by ALLPATHS-LG, because the complete
reference genome is not yet available.
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quality values are in ASCII format, and can be trans-
formed into a probability p, which indicates the prob-
ability of the corresponding base call being incorrect.
The quality value information contained in FASTQ files
enables the selection of reads based on quality values. In
order to process large-scale datasets more quickly, we
developed preprocessing and analytic programs using
Hadoop [7] and MapReduce [8] framework. The FASTQ
format were converted into the key-value format before
further processing, where the key field is the read identifier,
and the read sequence and quality values are put as two
fields of the value.

Subset selection for single-end reads

Here, we propose two strategies to select a subset of reads
based on quality value of each base. We use Velvet [9] to
assemble the subset of single-end reads with k-mer size
221 (the reason is given in Additional file 4).

MinimalQ

Since the base with the lowest quality value is most likely to
cause misassembled contigs, the MinimalQ strategy identi-
fies the minimal quality value of each read, and sets a
threshold of selecting reads with minimal quality value no
smaller than the threshold. As shown in Figure la and
Figure 2a, although both the E. coli and B. cereus datasets
have bases quality values of 80% or above at Q30
(Table 1), the E. coli dataset has a peak at minimal
quality value 9 with 51% (Figure 1a), and the B. cereus
dataset at minimal quality value 8 with 26% (Figure 2a)
in terms of reads’ minimal quality statistics. This sug-
gests that within these subsets of reads, although the
other bases are correct, a few bases with low quality
represent potential candidates that make reads unable
to align. Thus, it is reasonable to filter out reads with
low minimal quality value. The percentage of reads fil-
tered out is shown in Figure 1b and 2b. For example, if
we set 10 as the threshold, 81% of the E. coli reads and
73% of the B. cereus reads were filtered out.

ProductQ

The read selection strategy, MinimalQ, mentioned above
only takes the minimal quality value into account. How-
ever, bases other than the base with the lowest quality
value may also affect the quality of assembly. In this strat-
egy, we take all the bases in the read into consideration.
For a base with quality score Q of Sanger format (Phred
+33), its base-calling error probability p is p = 10C%/*),
Thus, its “probability of correct identification” is P, = 1-p.
De novo assemblers are generally divided into two cate-
gories: overlap/string graph based assemblers and de
Bruijn graph based assemblers [1]. Thus, for a given read
of length L in overlap/string graph based assemblers, the
probability of a read being correct is the product of the
correctness probability P. (i) of every base i. We denote
the product of P, (i) as ProductQ and calculate ProductQ
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Figure 1 Statistics of minimal quality value for the reads in the Figure 2 Statistics of minimal quality value for the reads in the
E. coli dataset. (a) The percentage of reads for a minimal quality B. cereus dataset. (a) The percentage of reads for a minimal quality
value. (b) The cumulative percentages of (a). value. (b) The cumulative percentages of (a).

* 100 as the ProductQ score, For de Bruijn graph based
assemblers, there are L-k+1 k-mers for a read of length L.
The read’s correctness score is defined as the minimal
value of its k-mer ProductQ scores. Figures 3a and 4a
represent the distribution of correctness score of the reads
of E. coli and B. cereus, respectively. Figures 3b and 4b
show the percentage of reads filtered out; for example, if
we set 10 as threshold, 30% of the E. coli reads and 23% of
the B. cereus reads were filtered out.
Results of read subset selection for single-end reads
Our investigation was aimed at determining whether it
is possible to select correct reads from raw data, in
order to assemble contigs without affecting contig N50
result, achieving high sequence depth with high quality
data. In order to determine this, we designed our experi-
ments for single-end reads in three steps.

Step 1: Different subsets of reads were selected using
MinimalQ and ProductQ strategies.

Step 2: Velvet assembler was used to obtain contigs

Step 3: The assembly results were evaluated using
GAGE benchmark

The detailed results are shown in Additional files 5
and 6. The first column of these Tables represents the
subsets of reads that were assembled. “Q>x“ represents
reads with minimal quality under x, that were filtered
out. “PQ>yy"“ represents reads with minimal correctness

probability under 0.yy, that were filtered out. The refer-
ence genomes obtained from NCBI library enabled the
calculation of the sequencing depth of the selected
reads, and the determination of the percentage of reads
left over compared to the original sequence data. The
information in the rest of the columns was obtained
using GAGE [10] tools. In Additional files 5 and 6, the
variances in columns coverage%, #misjoin, and #indel
are relatively slight, but the contig N50 and #contig col-
umns, no matter uncorrected or corrected by GAGE,
changes significantly.

Figure 5 and 6 summarized the results of Tables 52-S3
to analyze the subset sizes with corrected contig N50 for
MinimalQ and ProductQ strategies. As shown in Figures
5,6, MinimalQ strategy obtained better corrected contig
N50 results comparing to ProductQ strategy in general.
We also ran simple random selection of reads and put
the results in Additional files 7 and 8 as references. For
the E. coli dataset, as shown in Figure 5, both MinimalQ
and ProductQ strategies can use 20% to 40% of the
dataset to obtain the optimal corrected N50 result,
which is longer than the corrected N50 of using all the
original data and outperformed the corresponding ran-
dom selection results (Additional file 7). For the B. cer-
eus dataset, as shown in Figure 6, the best corrected
N50 results occurred at the subset size of 70%-100% for
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Figure 3 Statistics of correctness score for the reads in the E.
coli dataset. (a) The percentage of reads for a correctness score. (b)
The cumulative percentages of (a).
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Figure 4 Statistics of correctness score for the reads in the B.
cereus dataset. (a) The percentage of reads for a correctness score.
(b) The cumulative percentages of (a).

MinimalQ strategy and the subset size of ~90%-100%
for ProductQ strategy; besides, in the subset size of
20%-60% for both strategies provided choices to speed
up the assemblies with graceful decay of the corrected
contig N50. Note that the random selection results for
the B. cereus dataset (Additional file 8) beat the values at
the subset size of 20%-40% in Figure 6 and had similar
ranges at the subset size of 40%-60% in Figure 6.

Subset selection for paired-end reads

PE subset selection selects not only reads but also the
paired relations, and it directly affects both results of con-
tigs and scaffolds. A feasible and reasonable way to PE
subset selection is to treat a pair of reads as a whole and
use the MinimalQ or ProductQ to select the pair is
removed or not. Since the constraint of MinimalQ is stric-
ter to obtain an accurate PE subset, we chose MinimalQ
as the method for the experiments of PE subset selection.
That is, a pair of reads will be selected if the minimal qual-
ity value of the two reads is larger than a given threshold.
We used the grouper dataset (Table 1) in the experiment
of PE selection. We first selected a PE subset of the
grouper dataset by MinimalQ, and then used ALLPATHS-
LG [11] to assemble the subset into contigs and scaffolds.
Since ALLPATHS-LG requires both PE libraries and

mate-pair libraries as the input, the five mate-pair libraries
mentioned in the Datasets section were also used. To
compare genome assemblies of the original set and the
subset without the reference genome, we used QUAST
[12] for quality assessment.

Results of PE subset selection

The sequencing depth of the grouper dataset is ~110-
120x, which is much smaller than the depths of the
E. coli and B. cereus datasets in Table 1. Referring to [13]
and considering the grouper genome is large, we used
60x as the target coverage depth, and consequently set
the threshold of MinimalQ as 21 to select the PE subset,
which is ~50% of the original dataset, as shown in
Figure 7 and Table 2. The mean length of reads of the
selected subset is 198.6 bp and is slightly longer than the
value of the original set. Comparing the statistics of con-
igs in Table 2, the subset produced more number of con-
tigs with substantially less contig N50 and less total
length of the contigs than those values produced by the
original dataset. It seems that the subset selection has no
help; however, the results of scaffolds are dramatically
different. The largest scaffold of the subset is 21.8 Mbp
compared to the original 12.7 Mbp. The N50 scaffold
size increased from the original 3354 Kbp to 5443 Kbp of
the subset and the number of scaffolds used in the N50
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Figure 5 Corrected contig N50 size vs. subset size of the E. coli assemblies using MinimalQ and ProductQ strategies.
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Figure 6 Corrected contig N50 size vs. subset size of the B. cereus assemblies using MinimalQ and ProductQ strategies.
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decreased from the original 97 to 61 of the subset. The
same trend can also be found for the N75 scaffold size.
We also listed the minimal number of the scaffolds whose
total length are at or above 1G bp as the last row of Table
2, That is, above 90% of the grouper genome coverage is
covered by the top 304 long scaffolds produced by the

selected subset, which costs 178 less compared to the ori-
ginal scaffolds. In addition, the original scaffolds contain
above 10% more undetermined base ‘N’. To compare the
scaffolding results for the original dataset and the subset
in more details, three figures provided in the QUAST
report, i.e., the cumulative length of scaffolds, the Nx plot
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Figure 7 Statistics of minimal quality value for the PEs in the
grouper dataset. (a) The percentage of PEs for a minimal quality
value. (b) The cumulative percentages of (a).

of the largest scaffold sizes, and the GC% of scaffolds, are
listed as Additional files 9, 10, and 11 respectively. As
shown in Additional file 9, the cumulative lengths of the
scaffolds produced by the subset obviously are longer than
the values of the original scaffolds for the cumulative
lengths no larger than 1.05 Gbp. Additional file 10 shows
the Nx scaffold sizes, e.g., N50 and N75 scaffold sizes in
Table 2, produced by the subset are substantially larger
the corresponding Nx scaffold sizes of the original scaf-
folds for most cases. Note that Nx (where 0<x<100) is the
largest scaffold length, L, such that using scaffolds of
length > L accounts for at least x% of the bases of the
assembly. Additional file 11 shows the GC content of scaf-
folds for the two grouper assemblies of the original dataset
and the subset are highly similar. As for the runtimes, the
assembly of the whole grouper dataset used ~50 days with
~600 GB peak RAM usage on a virtual machine of 32
cores and 1 TB RAM, and the assembly of the PE subset
used 7.2 days with ~390 GB peak RAM usage on a physical
machine of 40 cores and 1.5TB RAM. Because the two runs
of ALLPATHS-LG were at different machines, we cannot
compute the ratio but the runtime and RAM usage were
greatly reduced. Note that the runtime of getting Figure 7
and generating the selected subset was a few hours.
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Table 2 Comparing the assembly results of PE subset
selection for the grouper dataset.

Original dataset Selected subset

Dataset characteristics

Dataset size (G bp) 125 63

# read pairs 319,878,932 158,651,599
Mean length of reads 1953 1986

%GC content of reads 41.0% 39.7%
Assembly statistics '

# contigs 39911 53,488
Total contig length 996,203,993 991,109,739
N50 contig size (K bp) 822 435

# scaffolds 3917 4,043

Total scaffold length 1,076,396,971 1,062,462,514
Largest scaffold length 12,701,604 21,777,629
N50 scaffold size (K bp) ( L50 3,354 (97 5443 (61
number)? scaffolds) scaffolds)
N75 scaffold size (K bp) (L75 1429 (218 2493 (131
number)? scaffolds) scaffolds)
%GC of scaffolds 41.23% 41.17%
#'N's 79,902,759 71,510,549
# 'N's per 100K bp 7/423.10 6,730.57

# scaffolds for 1G bp? 482 304

' All statistics are based upon the size of contigs and scaffolds both > 1K bp.

2 L50/L75 denotes the minimal number of the scaffolds that produce the
50%/75% bases of the assembly (i.e., all the scaffolds).

3 The minimal number of the scaffolds whose total length = 1G bp.

Discussion and conclusions

We proposed the subset selection problem of high-
depth reads for de novo genome assembly and developed
two selection strategies, MinimalQ and ProductQ, to
select subsets of reads and paired ends. The experiments
of read subset selection on two bacteria datasets
(Figures 5, 6 and Tables S2-S3) show that both the selec-
tion strategies can largely reduce the subset size with
graceful decay of the corrected contig N50 and possibly
with even better corrected contig N50 sizes. Meanwhile,
the results of the experiments of PE subset selection on
the grouper data (Table 2) are more promising. It shows
that the PE subset reduced much of the runtime and gen-
erated substantially longer scaffolds with >10% less
unknown bases compared to the original data.

One important issue is how to determine the thresh-
olds of MinimalQ and ProductQ. This issue is affected
by multiple factors, including sufficient coverage depths
for genome assemblies, characteristics of genome assem-
blers (e.g., tolerance of variance in coverage depths), and
characteristics of datasets and genomes (e.g., read biases
and genomic structures that affect assemblies will make
the subset selection harder). One feasible solution is to
select a small subset initially and perform the assembly
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to get the contig/scaffold N50. Note that the minimal-
quality thresholds of the subset selection methods can
be obtained at the x-axis of the cumulative-percentage
Figures 1b, 2b, 3b, 4b and 7b by choosing a percentage
of subset size at the y-axis. Then we can relax the
thresholds to select until a satisfying contig/scaffold N50
is obtained. To speed up the aforementioned solution,
we suggest determining the initial subset sizes by suffi-
cient coverage depths. Desai et al suggest that 50x data
is enough to get good genome coverage for assemblies
of small and moderate sized genomes [13]. But if the
goal is to get the longer contig N50, their results show
that the higher depths are still useful. Note that in de
novo genome assemblies, the genome size is unknown
but can be estimated by computing the total number of
k-mers in reads divided by the k-mer coverage depth,
and then the estimated coverage depth is the total bases
of reads divided by the estimated genome size [11].

Despite the aforementioned results already show the
usefulness and potentials of the subset selection problem,
there are not-yet-solved questions and limitations
observed. First, it is difficult to determine the optimal
thresholds to get the best subsets producing the best scaf-
folds/contigs without a certain amount of trial-and-errors.
Besides, the functionality of the read selection strategies
may be dependent on the datasets involved. For example,
we can obtain better corrected N50 using 15% of the origi-
nal data for the E. coli dataset; but for the B. cereus dataset,
we can only obtain a satisfactory corrected N50 using
around 50% of the data. In future work, we will investigate
the reasons for the results of the PE subset selection
experiments to try to understand how the dataset charac-
teristics and ALLPATHS-LG characteristics affect
the results and then improve the subset selection methods.
In addition, we plan to integrate the proposed subset
selection methods into the CloudDOE software [14] to
improve usability.

Methods

In order to handle large-scale data faster, we developed sev-
eral tools in Java for preprocessing and analyzing data using
MapReduce framework. We developed two pipelines of
subset selection for single-end reads, i.e., the MinimalQ
pipeline and the ProductQ pipeline. The MinimalQ pipeline
contains five main steps, including 1) preprocessing (men-
tioned in Datasets and Preprocessing), 2) computing Mini-
malQ values (the MinimalQ program), 3) computing the
MinimalQ statistics (the Qstatistics program), 4) analyzing
the statistics and determining the thresholds (mentioned in
Results and Discussion), and 5) obtaining the selected sub-
set (the MinimalQFilter program). The ProductQ pipeline
shares the aforementioned steps 1 and 4, and replaces the
steps 2, 3, and 5 with the programs MinimalProductQ,
MinimalProductQsta, and PQFilter respectively. The result
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generated by MinimalQ or MinimalProductQ program is a
list of records, and each record contains a read followed by
its corresponding minimal quality value (MQYV) or correct-
ness score, respectively. The Qstatistics program can pro-
duce two types of quality statistics, depending on the input
type. It generates the distribution of base quality scores for
raw data as the input. For the MinimalQ file as input, the
Qstatistics program generates the distribution of MQV. The
MinimalProductQsta program takes MinimalProductQ
program’s output as input and generates the distribution of
correctness score. The MinimalQFilter program allows
users to set a threshold for selecting the reads with MQV
above the threshold; similarly, the PQFilter program is for
selecting the reads with correctness score above a given
threshold. Both the outputs of MinimalQFilter and PQFilter
programs are in FASTA format.

For selecting paired-end (PE) reads, we developed two
MapReduce programs PEMQExtractor, PEMinimalQFilter
and a single machine program PEMQsta. The PEMQEx-
tractor program takes shuffled FASTQ data as input to
extract a MQV pair for each pair of reads. The PEMQsta
program reads the MQV pairs, computes the minimal
value of each paired MQVs as the PE-MQV, and generates
the distribution of PE-MQV. The PEMinimalQFilter pro-
gram allows users to set a threshold for selecting the PE
reads with PE-MQVs above the threshold.

Additional material

Additional file 1: Base quality score distribution of the E. coli
dataset. (a) Base quality score distribution in ascending order. (b)
Cumulative base quality score distribution in descending order.

Additional file 2: Base quality score distribution of the B. cereus
dataset. (a) Base quality score distribution in ascending order. (b)
Cumulative base quality score distribution in descending order.

Additional file 3: Base quality score distribution of the grouper
dataset. (a) Base quality score distribution in ascending order. (b)
Cumulative base quality score distribution in descending order.

Additional file 4: Testing different k values for the Velvet
assemblies of the E. coli and B. cereus datasets. (a) The £ coli dataset.
(b) The B. cereus dataset.

Additional file 5: Read selection results of the E. coli dataset. (a)
Using MinimalQ. (b) Using ProductQ..

Additional file 6: Read selection results of the B. cereus dataset. (a)
Using MinimalQ. (b) Using ProductQ.

Additional file 7: Distribution of corrected contig sizes of the E. coli
assemblies using the simple random selection. 102 points were run
for the subsets with sizes ranging from 20% to 40% of the original data
size.

Additional file 8: Distribution of corrected contig sizes of the B.
cereus assemblies using the simple random selection. 117 points
were run for the subsets with sizes ranging from 20% to 60% of the
original data size.

Additional file 9: Comparison of the cumulative length of scaffolds
for the two grouper assemblies of the original dataset and the
selected subset. The x-axis denotes the top x long scaffolds (ordered
from largest (scaffold #1) to smallest). The y-axis denotes their cumulative
length. The original dataset uses blue curve; the selected subset uses red
curve.
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Additional file 10: Comparison of the scaffold Nx for the two
grouper assemblies of the original dataset and the selected subset.
Nx (where 0<x<100) is the largest scaffold length, L, such that using
scaffolds of length > L accounts for at least x% of the bases of the
assembly The original dataset uses blue curve; the selected subset uses
red curve.

Additional file 11: Comparison of the GC content of scaffolds for
the two grouper assemblies of the original dataset and the
selected subset. Scaffolds are broken into nonoverlapping 100 bp
windows. The figure shows numbers of windows for each GC
percentage. The original dataset uses blue curve; the selected subset
uses red curve.
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