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Abstract

Background: Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders,
cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children.
The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant
differences of personal genomes of patients from the reference human genome) can help physicians to improve
treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles
are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of
interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes
project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs.

Results: We cross-validated the output of two computer-based methods: DNA sequence analysis using Web
service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding
to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers,
including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy);
rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal
women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular
complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused
hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529,
rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic
inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium
conditions, we empirically validated the statistical significance (a < 0.00025) of the differences in TBP affinity values
between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and
rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation
rate constants, ka and kd, of the TBP-DNA complex for these SNPs.

Conclusions: Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong
rationale and may advance postgenomic predictive preventive personalized medicine.
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Background
Metabolic syndrome, one of the main global challenges
for modern health care [1], involves elevated risk of sev-
eral interrelated disorders: obesity, ischemic heart dis-
ease, hypertension, insulin resistance, type II diabetes
mellitus, and dyslipidemia. It is commonly believed that
obesity is among the key risk factors of metabolic syn-
drome [2]. Obesity affects quality of life and life expec-
tancy and is associated with cardiovascular disorders [3]
(such as hypertension [6,7]), cancer [4,5], diabetes [8,9],
and damage to kidneys and liver [10]. It has also been
reported that obesity correlates with reproductive disor-
ders in women [11-13], prostate diseases in men [14],
and elevated risk of congenital anomalies in children [15].
The discovery [16] that the leptin gene LEP is “the

obesity gene” (OB; i.e., LEP ≡ OB) shed light on the reg-
ulation of energy metabolism [17]. Leptin is a peptide
hormone with molecular mass ~16 kD [18]. Its secretion
by adipocytes is directly proportional to adipose-tissue
weight. Recessive mutations in the leptin gene are
strongly associated with obesity in mice and humans
[19]. Leptin circulates with blood and regulates food
consumption and energy demand of the brain. With a
decrease in fat weight, the plasma leptin level decreases to
increase appetite and suppress energy consumption until
the recovery of fat weight. When fat weight increases, the
level of circulating leptin increases and suppresses appetite
until a fat weight reduction [19]. Initially, it was believed
that leptin is produced mainly by adipocytes [20], but later
it was found that leptin is also produced in such organs as
the stomach [21], heart [22], and placenta [23]. In addition
to body weight control, leptin plays other physiological
roles. It modulates vascular tone and blood pressure and
enhances angiogenesis and calcification of vascular cells
[22-24]. Numerous studies showed a direct correlation
between blood leptin concentrations and blood pressure
[25]. Elevated blood pressure contributes to atherosclerosis
[26]. Recent studies on the development of obesity in male
Wistar rats uncovered an association of diet-induced fatty
liver (steatosis) with insulin/leptin resistance [27].
Recent years have witnessed an increasing number of

women with metabolic imbalance during pregnancy,
with a variety of consequences; the mechanism of this
metabolic imbalance is still poorly understood [28]. The
molecular pathways linking obesity to the above disor-
ders are unclear [29] mostly because of the large num-
ber of genes related to the nervous system, endocrine
system, and metabolic system that regulate energy meta-
bolism. The contribution of a single gene is estimated to
be 1-6% [14], which is close to the statistical significance
threshold with the current accuracy of these estimates.
Postgenomic predictive preventive medicine [30] offers a
way around this obstacle (poor understanding of the

pathogenesis of obesity as a whole) by taking into
account numerous SNP markers of various partially obe-
sity-related complications in the above-mentioned or
other disorders [31,32].
Analysis of SNP markers, which show differences

between an individual human genome and the reference
human genome (hg19), as part of postgenomic preven-
tive personalized medicine allows for effective treatment
[33], improvement of treatment [34], and prevention of
complications of treatment [35]. Genome-wide SNP
identification is the goal of the project 1000 Genomes
[36]. The dbSNP database [37] documents current
results of this project [36]; thus, the reference human
genome, hg19, which is thought to contain the ancestral
versions of all SNPs, is constantly refined. It is available
in the Ensembl database [38] via the Web service UCSC
Genome Browser [39]. Ensembl contains data on gene
knockouts in animals, and this information is helpful,
for example, for reconstruction of perturbation networks
of various disorders and for development of therapeutic
strategies [40].
Computer-based analysis of hundreds of millions of

unannotated SNPs in 1000 Genomes [36] that are docu-
mented in the dbSNP database [37] may accelerate the
search for biomedical SNP markers [41,42]. For this
purpose, all the identified SNPs were mapped onto
whole-genome maps of genes [38,39] and onto protein-
binding sites in DNA that were predicted in silico
[43,44] and detected in vivo using chromatin immuno-
precipitation (ChIP), interchromosomal contacts,
nucleosomes, transcriptomes either in health [45], dur-
ing infection [46], disease [47], or after treatment [48].
On the basis of these data, many Web services such as
TFBS [49], ACTIVITY [50], is-rSNP [51], RegulomeDB
[52], rSNP-MAPPER [53], RAVEN [54], SELEX_DB
[55], FunSeq2 [56], APEG [57], FeatureScan [58,59],
SNPChIPTools [60], SNP-MED [61], SNAP [62], Fun-
ciSNP [63], SPOT [64], rSNP_Guide [42,65], and Chro-
MoS [66] facilitate the search for candidate SNP
markers in terms of ranking of unannotated SNPs by
their similarity to biomedical SNP markers in accor-
dance with projections of these SNPs onto whole-gen-
ome maps. According to the Central Limit Theorem,
the accuracy of this similarity-based search for candidate
SNP markers should increase as the number, diversity,
representativeness, and completeness of genome-wide
maps increase [67].
Due to this mainstream approach, the most impressive

progress has been achieved with SNPs located in protein-
coding gene regions [68] because of the invariant types of
disruption in both structure and function of the altered
proteins regardless of the cellular conditions [69]. On the
other hand, the effects of SNPs that are located in
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regulatory regions of genes [38,70] are still difficult to pre-
dict in silico [71]. Most studies in this field deal with regu-
latory SNPs in binding sites of TATA-binding protein
(TBP) in the region [-70; -20] upstream of the transcrip-
tion start of various mRNAs encoded in the human gen-
ome [72,73] (assembly of the preinitiation complex starts
with binding of RNA polymerase to the anchoring TBP/
DNA complex [74,75]). For this reason, model animals
with a null-mutation [76] or a knockdown of TBP [77] are
always inviable.
Previously, we developed a computer-assisted method

for estimation of significance (Fisher’s Z-score) of the
difference between ancestral and minor SNP variants in
terms of their effects on gene expression [78]. Later, we
confirmed the predictions of this method by our inde-
pendent experiments in vitro under both equilibrium
[79] and nonequilibrium [80] conditions of the electro-
phoretic mobility shift assay (EMSA). Then, we verified
these empirical findings using a wide range of real-time
assays, such as surface plasmon resonance, stopped-flow
(on a ProteOn™ XPR36 biosensor; Bio-Rad Lab., USA)
[81], and fluorescence resonance energy transfer (on an
SX20 spectrometer; Applied Photophysics, UK) [82]. In
addition, we utilized independent results of over 100
experiments by others [83-90]. On the basis of this com-
prehensive validation [79-90] of the method [78], we
designed the Web service SNP_TATA_Comparator
(http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.
pl) [91,92] for the researchers who would like to analyze
certain changes in core promoters of human genes.
In the present work, we cross-validated the output of

two computer-based methods: DNA sequence analysis
using Web service SNP_TATA_Comparator and keyword
search for articles on biochemical markers of obesity. Near
the TBP-binding sites of human gene promoters, we
found 22 obesity-related candidate SNP markers, including
rs201381696 (obesity), rs200487063 and rs34104384 (both:
obesity-caused hypertention) in the human gene (LEP) of
leptin and rs183433761 (obesity resistance during a high-
fat diet) in the human gene (GCG) of glucagon. We char-
acterized them empirically and in terms of quantitative
estimates of the equilibrium dissociation constant (K0

D).
We then validated these estimates in terms of the apparent
dissociation constant, K*

D ≡ kd/ka, the ratio of the associa-
tion rate constant (ka), and the dissociation rate constant
(kd) of the TBP-DNA complex by means of EMSA under
nonequilibrium conditions in vitro. We found a significant
linear correlation (r = 0.99; a < 0.01) between K0

D values
predicted in silico and K*

D values determined by measure-
ments in vitro for the obesity-related candidate SNP mar-
kers rs200487063, rs201381696, rs34104384, and
rs183433761, which may be useful for postgenomic pre-
dictive preventive personalized medicine.

Results
The results of in silico analysis of the known and
candidate SNP markers in the TBP-binding sites of the
human gene promoters
We applied our Web service SNP_TATA_Comparator
[91,92] to 68 biomedical and candidate SNP markers in
the TBP-binding sites of the human gene promoters
taken from our recent review [92]. Table S1 (Additional
file 1) shows the results.
The human IL1B gene
(interleukin 1b) promoter contains the biomedical SNP
marker rs1143627. This SNP is associated with greater
body fat in older men [93], Graves’ disease [94], gastric
cancer [95], hepatocellular carcinoma [96], non-small cell
lung cancer [97], gastric ulcer and chronic gastritis [98],
and major recurrent depression (99). It is a widely stu-
died regulatory SNP marker in the TBP-binding sites of
human gene promoters. Previously, we also studied this
SNP in vitro by EMSA under both equilibrium [79] and
nonequilibrium [80] conditions as well as in silico [83].
The human APOA1 gene
(apolipoprotein A-I) has the -35A®C substitution rela-
tive to the start of transcript number 3 of this gene.
This SNP is inside a proven TATA box (the canonical
form of TBP-binding sites) [10]. It is associated with
obesity, fatty liver, and hematuria [10]. Using this SNP
marker of obesity, we validated the suitability of our
Web service SNP_TATA_Comparator for analysis of
obesity-related polygenic human diseases (see Methods).
The human NOS2 gene
(inducible nitric oxide synthase 2) contains an SNP mar-
ker of epilepsy [100] and resistance to malaria [101]. It
is a -51T®C substitution relative to the start of tran-
script number 1 [102] that causes NOS2 overexpression
according to clinical research [100-102]. We have pre-
viously studied this SNP in depth using EMSA [79,80]
and our computer-based method [83].
In this work, an additional keyword search (hereinafter,

see Methods) pointed to new data suggesting that NOS2
overexpression may be a biochemical marker of obesity
[103]. On the basis of this empirical observation [103],
we propose the -51T®C substitution in the NOS2
gene promoter as a candidate SNP marker of obesity
(Table S1, Additional file 1).
The human PGR gene
(progesterone receptor) contains the biomedical SNP mar-
ker rs10895068 causing de novo appearance of a spurious
TBP-biding site along with an additional pathogenic tran-
scription start site (TSS) at position +270 relative to the
normal TSS for transcript number 2 of the same gene.
This SNP is associated with endometrial cancer in obese
women [104]. It was previously analyzed by our compu-
ter-based method [83].
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Here, using a keyword search, we found new clinical
data showing that PGR overexpression is a biochemical
marker of male breast cancer (T4 tumor) in obesity
[105]. With this in mind, we propose rs10895068 as a
candidate SNP marker of breast cancer in obese men
(Table S1, Additional file 1).
The human ESR2 gene
(estrogen receptor b) contains the SNP marker
(rs35036378) of a primary ESR2-deficient pT1 tumor
that can transform into breast cancer without preventive
treatment [106]. An additional keyword search pointed
to new clinical data showing that an ESR2 deficiency
can reduce the risk of obesity after ovariectomy [107].
According to these data, we propose the SNP s10895068
as a candidate marker of the low risk of obesity after
ovariectomy (Table S1, Additional file 1).
The human HSD17B1 gene
(placental 17-b-hydroxysteroid dehydrogenase) contains
an SNP marker (rs201739205) of breast cancer [108].
Nevertheless, using a keyword search, we found a new
promising study suggesting that weight loss in HSD17B1-
deficient obese postmenopausal women by means of the
appropriate diet and/or exercise reduces the risk of obe-
sity-related cancers [109]. Thus, we propose rs201739205
as a possible predictive SNP marker of effectiveness of pre-
ventive anticancer treatment among obese postmenopau-
sal women (Table S1, Additional file 1).
The human MBL2 gene
(soluble mannose-binding lectin 2, synonym: protein
C) contains the SNP marker (rs72661131) of variable
immunodeficiency [110], preeclampsia [111], and stroke
[112] caused by deficient expression of this gene as we
have also predicted in silico [83] and confirmed under
both equilibrium [79] and nonequilibrium [80] condi-
tions in vitro. A keyword search for “MBL2,” “deficiency,”
and “obesity” pointed to clinical findings that an MBL2
deficiency can increase the risk of obesity [113]. There-
fore, rs72661131 may be a candidate SNP marker of obe-
sity (Table S1, Additional file 1).
Near this biomedical SNP marker, we found one more

SNP: rs562962093 (unannotated), and then, predicted
that it can impair the expression of MBL2, too. This is
why we propose rs562962093 as a candidate SNP marker
of obesity [113] (Table S1, Additional file 1).
The human F7 gene
(coagulation factor VII; synonym: proconvertin): its pro-
moter contains a biomedical SNP, namely, the -35A®C
substitution relative to the start of transcript number
1 of this gene. This SNP is a marker of moderate bleed-
ing caused by an F7 deficiency [114].
An additional keyword search pinpointed the clinical

finding of a statistically significant correlation between the
total F7 level in obese patients with type 2 diabetes melli-
tus and the risk of cardiovascular complications [115].

Hence, we suggest the -35A®C substitution within the
human F7 gene promoter as a candidate SNP marker of
the low risk of cardiovascular complications in obese
patients with type 2 diabetes mellitus (Table S1, Additional
file 1).
Near this biomedical SNP marker, we found two unan-

notated SNPs, rs367732974 and rs549591993, that can
cause overexpression of the F7 gene (Table S1, Additional
file 1). On the basis of the correlation [115], we propose
the two SNPs rs367732974 and rs549591993 as candidate
markers of the high risk of cardiovascular complications in
obese patients with type 2 diabetes mellitus (Table S1,
Additional file 1).
The human F3 gene
(coagulation factor F3, synonym: tissue factor) contains
a known SNP marker (rs563763767) of obesity [116],
myocardial infarction, and thromboembolism caused by
F3 overexpression [117] (Table S1, Additional file 1).
The human HBB and HBD genes
(b- and δ-chains of hemoglobin, respectively) contain the
best-studied TBP-binding sites that are altered by a number
of SNP markers of resistance to malaria and thalassemia
(Cooley’s anemia) [118], namely: rs34500389, rs33981098,
rs33980857, rs34598529, rs33931746, rs397509430, and
rs35518301. Previously, we have analyzed most of them in
depth using our computer-based method [83,91] as well as
using EMSA under both equilibrium [79] and nonequili-
brium [80] conditions in vitro.
Using a keyword search, we found new clinical data

showing that a hemoglobin deficiency can serve as a bio-
chemical marker of chronic inflammation in comorbid-
ities of obesity. This finding allows us to propose
rs34500389, rs33981098, rs33980857, rs34598529,
rs33931746, rs397509430, and rs35518301 as candidate
SNP markers of inflammatory complications in obesity
(Table S1, Additional file 1).
Near these biomedical SNP markers, we found three

unannotated SNPs: rs63750953, rs281864525, and
rs34166473. Our analysis predicted that they can cause
a hemoglobin deficiency. Consequently, we propose
them as candidate SNP markers of inflammatory com-
plications of obesity (Table S1, Additional file 1).
After that, we analyzed all unannotated SNPs in the

[-70; -20] region (where all proven TBP-binding sites are
located) in the only known promoter of the human LEP
gene, which we selected due to Friedman’s discovery that
the LEP gene (encodes hormone leptin) is the “obesity
gene": OB ≡ LEP [16] (Fig. S1, see Additional file 2).
Table S1 (Additional file 1) shows three unannotated
SNPs–rs201381696, rs200487063, and rs34104384–
which can alter TBP’s affinity for this promoter according
to our prediction (see Additional file 2). The first one in
the list can reduce the TBP-promoter affinity, whereas
the two others can increase this affinity. Using a keyword
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search, we found literature data showing that the leptin
deficiency is a biochemical marker of obesity [120],
whereas leptin overexpression can serve as a marker of
obesity-caused hypertension [6,7]. This is why we pro-
pose three more candidate SNP markers (rs201381696 as
well as rs200487063 and rs34104384) of obesity-caused
hypertension (Table S1, Additional file 1).
Finally, we selected one more unannotated SNP

(rs183433761) within the TBP-binding site of the pro-
moter of the human GCG gene of glucagon because
this SNP’s association with obesity has not yet been
examined. Similarly, we predicted a GCG deficiency and
found (using a keyword search) that it is a biochemical
marker of the resistance to obesity during a high-fat diet
[121]. Accordingly, we propose rs183433761 as a candi-
date SNP marker of obesity resistance during a high-fat
diet (Table S1, Additional file 1).
We reviewed all of the above findings and

selected four of our obesity-related candidate SNP
markers–rs201381696, rs200487063, rs34104384, and
rs183433761–for empirical biochemical verification
using EMSA under nonequilibrium conditions in vitro
because these SNPs have not yet been verified experi-
mentally on their possible association with obesity.

The results of in vitro analysis of the four selected
candidate SNP markers
The primary experimental data from the in vitro analysis
of the four selected candidate SNP markers are depicted
in Figure 1. Table 1 shows these results for rs200487063,
rs201381696, rs34104384, and rs183433761 in terms of
the primary experimental ka and kd values that character-
ize the kinetics of TBP’s binding to the ancestral and
minor variants of the TBP-binding site in the only pro-
moter of the LEP gene that is documented in the human
reference genome hg19.
First, the above-mentioned results show that the variant

-38a in the LEP gene promoter increases the rate of for-
mation of the TBP-DNA complexes (ka) by 50%, the var-
iant -30t fivefold, and variant -35g by 24-fold. The rate of
decay (kd) for -38a increased by 20%, and for -35g by 14-
fold, whereas for -30t, it decreased 4.4-fold. Affinity (K*

D)
of TBP for ODN containing -38a increased by 50%, and
for the -30t variant it increased by 12%, whereas for the
-35g variant, the affinity diminished 2.8-fold. Meanwhile,
the minimal half-life of the complex (t1/2) of 9 min was
observed for the -35g variant; this situation was caused
by the increase in the rate of day (kd) 14-fold relative to
the norm and by very low affinity. It should be noted
that the variants -38a and -30t are located in the flanks
of the TATAbox (the canonical form of a TBP-binding
site), and only variant -35g affects the sequence of the
TATAbox itself, thereby causing a massive decrease in
affinity to 230 nM.

As shown in Table 1 the greatest increase in the rate of
formation and decay of the TBP-TATA complex was
observed for variant -35g (24-fold and 14-fold, respec-
tively), which affects the sequence of the TATA-box and
replaces its most conserved base “A” with “G” [122]. This
change reduces affinity (K*

D) to a virtually nonspecific
level (230 nM) and reduces half-life of the complexes
more than sevenfold. This alteration is associated with
obesity [120].
In contrast, variant -41g of the promoter of GCG low-

ers the rate of formation (ka) of the complex TBP-ODN
2.3-fold, whereas the rate of dissociation (kd) of the
complex and its half-life decrease by 20%. The calcu-
lated KD value, characterizing the change in TBP-ODN
affinity, decreased 2.25-fold.
At the same time, their ratio, kd/ka, which determines

the apparent dissociation constant K*
D and affinity TBP-

ODN, decreased more than threefold in the case of
-35g, which disrupts the TATA-like subsequence (by
converting it to g-38cTg-35TAA) but increased 1.6-fold
for -38a flanking the normal a-38cTA-35TAA pentanu-
cleotide. We estimated the half-life of the TBP-ODN
complexes (Table 1). Its values, 9-77 min, fit the time
interval, 5-180 min (Figure 1), of nonequilibrium in
vitro conditions for our measurement of the kinetics of
TBP’s binding to each ODN corresponding to our three
possible obesity-related SNP markers. The minimal half-
life, 9 min, was observed for the allele -35G which cor-
responds to minimal binding affinity and to a maximal
dissociation rate of the complex TBP-TATA.
Thus, judging by the effects of rs200487063,

rs201381696, rs34104384, and rs183433761, the con-
stants ka and kd describe qualitatively different and inde-
pendent characteristics. This observation is in agreement
with the commonly accepted notion that K*

D, ka, and kd
independently characterize different features of the
kinetics of intermolecular binding.
Figure 2 shows significant correlations between none-

quilibrium in vitro measurements of K*
D (Table 1) and

equilibrium in silico estimates of K0
D (Table S1, see Addi-

tional file 1). Assessment by three independent statistical
tests is provided: Pearson’s simple linear correlation (r =
0.99; a < 0.00025), Kendall’s rank correlation (τ = 1; a <
0.005), and Goodman-Kruskal’s generalized correlation
(g = 1; a < 0.005). These data are indicative of robustness
of the correlation, and this robustness is consistent with
our analyses of various SNP markers of monogenic dis-
eases under equilibrium [79], nonequilibrium [80], and
real-time [82] experimental in vitro conditions and with
independent studies by other authors [74,123,124].
The different ranges of K0

D and K*
D reflect the differ-

ences in uncontrollable factors under equilibrium and
nonequilibrium in vitro conditions, which do not influence
the relative values of TBP affinity for different variants of
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the TBP-binding site (Figure 2). Because of this property
of TBP-binding sites (Figure 2), which was proven empiri-
cally by many research groups [74,123,124], leptin produc-
tion in a patient with the minor variant -35g of
rs201381696 may be proportionately lower (in each tissue
expressing the LEP gene, regardless of its tissue specificity)
in comparison with a person carrying the variant WT.
Consequently, the total plasma leptin level in this patient
will be lowered: this is a clinically established risk factor of
obesity [120]. By the same token, the minor variants -38g
of rs200487063 and -30t of rs34104384 may cause a pro-
portional increase in leptin production (by any tissues)
and a proportional increase in the overall plasma leptin
level, which is a known risk factor of hypertension as a
complication of obesity [6,7]. This combined empirical
and computer-based identification of rs200487063,
rs201381696, rs34104384, and rs183433761 (never consid-
ered in association with obesity) as obesity-related candi-
date SNP markers is the main result of this work.

Discussion
Here, we focused only on the TBP-binding site because
it is the best-studied site in human gene promoters
[125]; we detected known SNP manifestations: “suscept-
ibility/resistance” to diseases. In comparison with our
previous applications of the Web service SNP_TATA_
Comparator [91,92] to the research on monogenic dis-
eases [78-92], here we found a number of different asso-
ciations, such as complications of obesity (e.g.,
rs10895068, male breast cancer [T4 tumor] in obesity),
a phenotypic trait (e.g., rs1143627, greater body fat in
older men), consequences of surgery (e.g., rs35036378,
reduced risk of obesity after ovariectomy), eating beha-
vior (e.g., rs183433761, obesity resistance during a high-
fat diet), and the preventive effect of a lifestyle (e.g.,
rs201739205, low risk of obesity-related cancers due to
weight loss by diet/exercise in obese postmenopausal
women). These findings can extend the practical utility
of our Web service because of the cross-validation of its

Figure 1 Measurement of the kinetics of TBP binding to the oligodeoxyribonucleotide atcgggccgctataagTggggcgggc corresponding
to rs34104384 (minor allele). A: Dependences of reaction rates on ODN concentration. B: Electropherograms from which these curves were
derived. TBP concentration was 0.3 nM in all experiments; the concentrations of ODN were as indicated in the TBP/TATA-associated
isotherms. The ka and kd values were calculated from the electropherograms using the GraphPad Prism 5 software (http://graphpad-prism.
software.informer.com/5.01).

Table 1 EMSA-based analysis of the complex of TBP and one of oligodeoxyribonucleotides (ODNs) in vitro.

Gene probe 32P-labeled synthetic ODN, 26 bp, double-stranded DNA ka, × 103 M-1s-1 kd, × 10-4 s-1 K*D, nM t1/2, min -ΔG Kcal/mol

LEP WT atcgggccgcTATAAgaggggcgggc 2.3 ± 0.6 1.8 ± 0.6 78 64 ± 13 9.7 ± 0.9

LEP -38a atcgggccacTATAAGaggggcgggc 3.5 ± 0.5 1.5 ± 0.2 43 77 ± 16 10.0 ± 1.0

LEP -30t atcgggccgcTATAAGtggggcgggc 11.0 ± 2.0 8.0 ± 1.0 73 14 ± 3 9.7 ± 1.0

LEP -35g atcgggccgcTgTAAGaggggcgggc 5.6 ± 0.8 13.0 ± 2 232 9 ± 1 9.0 ± 0.9

GCG WT agctggagagTATATAaaagcagtgc 70 ± 10 5 ± 1.0 8 23 ± 5 11.1 ± 1.0

GCG -41g agctggagagTgTATAaaagcagtgc 30 ± 10 6 ± 1.0 18 19 ± 4 10.5 ± 0.9

Notes: For each TBP-ODN-complex, ka is the association rate constant, kd is the dissociation rate constant, half-life (t1/2) equals (ln2)/kd, and K*D = kd/ka is the
apparent dissociation constant. TATA-like subsequence: uppercase letters; ΔG = -RTln(ka/kd) is a change in Gibbs free energy, where R = 1.38 × 10-23 JK-1 is
Boltzmann’s constant, T is temperature in degrees Kelvin; the substitution corresponding to the minor allele of each SNP is shown in boldface.
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output with a keyword search for available literature on
an appropriate biochemical marker of the diseases
under study.
In addition to the commonly used textual analysis of

DNA sequences, we take into account quantitative values
of the minor-groove width of B-helical DNA [125]
because TBP binds to DNA via incorporation of side
chains of two amino acid residues into DNA’s minor
groove [126]. This additional criterion increases the accu-
racy of our prediction (Figure 2), in agreement with inde-
pendent findings of some other researchers [127]. This
result means that the computer-based SNP analysis may
be improved if various quantitative parameters of confor-
mational and/or physicochemical features of B-helical
DNA [128,129] are taken into account in addition to the
textual data.
Furthermore, population frequencies of the minor alleles

of unannotated SNP can serve as another information
source that may improve the predictions of candidate SNP
markers of a disease. Accordingly, Table S1 (Additional
file 1) characterizes all the SNPs under study in terms of

the population frequencies taken from the “1000 Genome
Browser” [131]. As one can see, these parameters vary
from sample to sample in a wide range (e.g., the popula-
tion frequency rates of rs1143627 vary from 27% to 65%,
see Table S1, Additional file 1). In addition, many
biomedical SNP markers still had no values of population
frequencies within the framework of the “1000 Genome
Browser” [131] (e.g., rs397509430, rs33980857,
rs34598529, rs33931746, rs33981098, rs34500389,
rs63750953, rs281864525, rs35518301, and rs34166473;
see Table S1, Additional file 1). Moreover, many biomedi-
cal SNP markers were not still documented by the data-
base dbSNP [37] (e.g., the substitutions -35A®C
(APOA1), -51T®C (NOS2), -35A®C (F7); see Table S1,
Additional file 1). At present, the above-mentioned popu-
lation frequency values correspond to ethnic groups in
regional subpopulations (for studies on human migration
flows) rather than cohorts of patients with certain risk
factors of diseases–overweight, smoking, and alcohol
intake–to prioritize the candidate SNP markers according
to the biomedical standards [109]. This is why the type

Figure 2 The significant correlations between the predicted K0D values and K*D values determined by measurement in vitro. Legend:
Solid and dashed lines denote the linear regression and boundaries of its 95% confidence interval, calculated by the software package
STATISTICA (Statsoft™, USA); ● and ○ are the ancestral (hg19) and minor alleles, respectively, of the four possible obesity-related SNP markers
within the human LEP and GCG gene promoters; r, τ, g, and a are coefficients of the Pearson’s simple linear correlation, Kendall’s rank correlation,
and Goodman-Kruskal’s generalized correlation and their significance, respectively.
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of biomedical standardization of whole-genome
data available today may advance postgenomic predictive
preventive personalized medicine [30].
Our in vitro assays (Table 1) and in silico predictions

(Table S1, Additional file 1) all indicate that the greatest
changes in the leptin level may be expected for the minor
allele -35g, which disrupts the TATA-like TBP-binding
site and decreases the TBP-DNA affinity threefold. In con-
trast, the minor alleles -30t and -38a flanking this site
seem to enhance this affinity by 25% and 50%, respectively.
We have already observed this pattern empirically in a
previous study, namely, three SNP markers of b-thalasse-
mia (rs34598529, rs33931746, and rs3393174) within the
well-known TATA box decrease TBP’s affinity for the
human HBB gene promoter 10-fold, whereas another bio-
medical SNP marker, -27A®t (flanking this TATA box),
yields only a 20% decrease [80]. As for the smallest change
in the binding affinity of TBP for the promoter variant
-30t (rs34104384, LEP), one can see in Table S1 (Addi-
tional file 1) that the same or even smaller effects are
observed for some biomedical SNP markers, such as
rs35036378 (25%, ESR2), the -35A®c substitution (25%,
APOA1), rs34500389 (17%, HBB), and the -35A®c substi-
tution (15%, F7). In addition, one can see in Table 1 that
the quantitative values of the Gibbs free energy change
(ΔG) are an unreliable criterion for distinguishing between
variants of ODNs binding to TBP. In contrast, the kinetic
constant ka of the association rate of the TBP-ODN com-
plex does it best (see Results). This finding means that the
binding of TBP to a promoter is under kinetic control
rather than under thermostatic one. Therefore, additional
empirical measurements can enrich the preliminary bioin-
formatics predictions on the candidate SNP markers of
diseases.
Finally, our combined in silico and in vitro data may

serve as a good rationale for clinical researchers who
wish to validate promising candidates for SNP markers.
The definitive proof of an SNP as a clinical marker is
demonstration of a significant difference in its frequency
between patients and healthy people, with adjustments
for various confounding factors such as the ethnic and
gender composition of the regional subpopulation in
question, lifestyle, living conditions, climate, environ-
ment, and expressivity and penetrance of the disorder
under study [71].

Conclusions
Changes in the affinity of a transcription factor for a reg-
ulatory DNA sequence are commonly an appreciable but
not a crucial factor of a disease; for this reason, diverse
clinical manifestations of the interactions between
genetic and environmental factors are typical of polygenic
diseases [132]. In the case of metabolic syndrome [1],
obesity is a strong contributing factor [2] in addition to

genetic predisposition. Prevalence of obesity among over-
weight Europeans exceeds 50% and results in elevated
risk of respiratory failure, atherosclerosis, and heart
failure [133]. In this work, we identified 22 obesity-
related candidate SNP markers. Their validation in
accordance with proper biomedical standards may help
to solve the global problem of treatment of metabolic
syndrome [1] by means of the postgenomic predictive
preventive personalized medicine [30].

Methods
In vitro analysis
Recombinant full-length human TBP (native amino acid
sequence) was expressed in Escherichia coli BL21 (DE3)
cells transformed with the pAR3038-TBP plasmid (the gen-
erous gift of Prof. B. Pugh, Pennsylvania State University)
by a previously described method [134] with two modifica-
tions: the IPTG concentration was 1.0 instead of 0.1 mM,
and the induction time was 3 instead of 1.5 h. For a more
detailed description of our protocol for production and
purification of human TBP, see [79].
Oligodeoxyribonucleotides (ODNs) 26 bp long were

synthesized by the Biosynthesis Enterprise (Novosibirsk,
Russia) and were purified by PAGE. The ODN sequences
correspond to either the ancestral or minor allele of SNPs
of the TBP-binding site in the promoters of human genes
LEP and GCG that are analyzed here in vitro (Table 1).
Labeled double-stranded ODNs were prepared by 32P
labeling of both strands by means of T4 polynucleotide
kinase (SibEnzyme, Novosibirsk) with subsequent anneal-
ing by heating to 95°C (at equimolar concentrations) and
slow cooling (no less than 3 h) to room temperature. The
duplexes were analyzed in 15% nondenaturing polyacryla-
mide gel (1 × Tris-borate-EDTA buffer) and isolated by
electroelution. For a detailed description of our protocol
for labeling of ODNs with 32P, see [79].
The association rate constant (ka) and dissociation rate

constant (kd) were determined for the complexes of TBP
with each 26-bp ODN corresponding to the 26-bp
sequence of either the ancestral or minor variant of the
human LEP gene promoter. Association kinetics experi-
ments were performed at four ODN concentrations: 10,
20, 40, and 60 nM as shown in Figure 1(B). The experi-
ments with TBP/ODN binding were performed at 25°C in
binding buffer (20 mM 4-[2-hydroxyethyl]-1-piperazi-
neethanesulfonic acid [HEPES]-KOH pH 7.6, 5 mM
MgCl2, 70 mM KCl, 1 mM dithiothreitol [DTT], 100 μg/
mL BSA, 0.01% NP-40, and 5% glycerol) at a fixed concen-
tration (0.3 nM) of active TBP. The gels were dried and
Imaging Screen-K (Kodak, Rochester, NY, USA) was
exposed to these gels for analysis on a Molecular Imager
PharosFX Plus phosphorimager (Bio-Rad, Herts, UK). The
resulting autoradiographs were quantitated in the Quantity
One 4.5.0 software (Bio-Rad) as shown in Figure 1(A).
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Using these data, we calculated the association rate con-
stant (ka) and dissociation rate constant (kd) in the Graph-
Pad Prism 5 software (http://graphpad-prism.software.
informer.com/5.01) by global fitting of the data onto the
association kinetics model. For a detailed description of our
protocol for in vitro measurement of association and disso-
ciation rate constants for TBP/ODN complexes, see [80].

In silico analysis
We analyzed DNA sequences of the human gene promo-
ters taken from the database Ensembl [38] using their
locations within the human reference genome (hg19)
taken from the database GENCODE [135], as shown in
Fig. S2 (Additional file 3). For each DNA sequence, we
assessed the maximal “-ln(K0

D) ± δ” affinity of TBP for the
[-70; -20] promoter region (where all the known sites are
located) using our Web service [91,92] as described in
Additional file 4. For each case of predicted significant
overexpression or downregulation of the human genes (as
clinically relevant biochemical markers), we manually per-
formed a keyword search in the NCBI databases [136] as
described in detail elsewhere [137] and schematically
shown in Fig. S3 (Additional file 5). Our heuristic interpre-
tation of these predicted cases of significant overexpres-
sion and underexpression of the human genes is shown in
the second rightmost column of Table S1 (Additional file
1): these are clinical data identified by our manual key-
word search, with citations in the rightmost column.
Finally, using the software package STATISTICA

(Statsoft™, Tulsa, USA), we estimated statistical signifi-
cance of three correlations: Pearson’s simple linear cor-
relation (r), Kendall’s rank correlation (τ), and
Goodman-Kruskal’s generalized (g) correlation between
the K0

D values predicted in silico and the K*
D values

obtained by measurement in vitro as shown in Figure 2.

Additional material

Additional file 1: Table S1. Obesity-related known and candidate SNP
markers altering affinity of the TATA-binding protein (TBP) for human
gene promoters.

Additional file 2: Figure S1. The obesity-related candidate SNP markers
(in the human LEP gene promoter) predicted using
SNP_TATA_Comparator [92]. (A) The only promoter of the human LEP
gene and the six unannotated SNPs (analyzed in this study) in the region
[-70; -20] (double-headed arrow, ↔) where all proven TBP-binding sites
are located. Single-headed arrow (®): transcription start site (TSS), box:
TATA-like subsequence TATAA, ellipse: three possible obesity-related SNP
markers predicted in this work. (B-D) The results produced by our Web
service SNP_TATA_Comparator [92] for the three possible obesity-related
SNP markers (rs200487063, rs201381696, and rs34104384) located in the
human LEP gene promoter. The symbols are explained in the legend of
Fig. S2 (see Methods; Additional file 3).

Additional file 3: Figure S2. The result produced by
SNP_TATA_Comparator [92] for a known SNP marker of obesity [10].
Legend: Solid, dotted, and dashed arrows indicate queries for the gene

list, list of transcripts of a certain gene, and DNA sequence of the
promoter corresponding to the specified transcript of the gene in
Ensembl [38] and GENCODE [135] editions of the reference human
genome hg19, respectively. Dash-and-dot arrows: estimates of
significance of the aberration of gene product abundance in patients
with the minor allele (relative to the ancestral allele: reference human
genome hg19) expressed as Fisher’s Z-score. Two circles indicate the
ancestral allele (-35A) and minor allele (-35c) of this SNP marker of
obesity (-35A®c); this SNP causes underexpression the human APOA1
gene [10].

Additional file 4: Supplementary method. A quantitative estimate of
binding affinity of TATA-binding protein (TBP) for a promoter of the
human gene as a function of DNA sequence of this promoter.

Additional file 5: Figure S3. A flow chart of the keyword search for
comorbidities of obesity where biochemical markers correspond to a
change in expression of a given gene containing the SNP marker of
interest.
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