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Abstract

Background: Pathway analysis has been widely used to gain insight into essential mechanisms of the response to
myocardial infarction (MI). Currently, there exist multiple pathway databases that organize molecular datasets and
manually curate pathway maps for biological interpretation at varying forms of organization. However,
inconsistencies among different databases in pathway descriptions, frequently due to conflicting results in the
literature, can generate incorrect interpretations. Furthermore, although pathway analysis software provides detailed
images of interactions among molecules, it does not exhibit how pathways interact with one another or with
other biological processes under specific conditions.

Methods: We propose a novel method to standardize descriptions of enriched pathways for a set of genes/
proteins using Gene Ontology terms. We used this method to examine the relationships among pathways and
biological processes for a set of condition-specific genes/proteins, represented as a functional biological pathway-
process network. We applied this algorithm to a set of 613 MI-specific proteins we previously identified.

Results: A total of 96 pathways from Biocarta, KEGG, and Reactome, and 448 Gene Ontology Biological Processes
were enriched with these 613 proteins. The pathways were represented as Boolean functions of biological
processes, delivering an interactive scheme to organize enriched information with an emphasis on involvement of
biological processes in pathways. We extracted a network focusing on MI to demonstrate that tyrosine
phosphorylation of Signal Transducer and Activator of Transcription (STAT) protein, positive regulation of collagen
metabolic process, coagulation, and positive/negative regulation of blood coagulation have immediate impacts on
the MI response.

Conclusions: Our method organized biological processes and pathways in an unbiased approach to provide an
intuitive way to identify biological properties of pathways under specific conditions. Pathways from different
databases have similar descriptions yet diverse biological processes, indicating variation in their ability to share
similar functional characteristics. The coverages of pathways can be expanded with the incorporation of more
biological processes, predicting involvement of protein members in pathways. Further, detailed analyses of the
functional biological pathway-process network will allow researchers and scientists to explore critical routes in
biological systems in the progression of disease.
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Background
The emergence of publicly available pathway databases has
provided biologists excellent resources to attain a deeper
understanding of biological mechanisms by providing
organization to a large list of differentially expressed genes
and proteins. Knowledge of molecular-level interactions
and reactions has been curated in many knowledge data-
bases, forming biological pathways. These knowledge data-
bases include BioCarta (http://biocarta.com/), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome,
Protein Analysis Through Evolutionary Relationships
(PANTHER), and MetaCyc [1-5]. Most often, pathways
are organized as directed graphs of interacting molecules
and often are accompanied by visualizations that demon-
strate relationships among gene products, gene function
types (e.g., regulation, activation, and inhibition) and trans-
lated protein locations (e.g., extracellular matrix, cell mem-
brane, or nucleus). Recently, the integration of various
omics data such as proteomics, genomics, transcriptomics,
and metabolomics for knowledge discovery has drawn
much attention [6-9]. In addition to the aforementioned
pathway knowledge databases, the Gene Ontology (GO)
Consortium pursues approaches to standardize the repre-
sentation of gene products across different species and
databases [10]. GO consists of a controlled vocabulary of
terms, covering three domains: cellular components, mole-
cular functions and biological processes. A GO Biological
Process (GOBP) is a series of molecular events, with a
defined beginning and end. However, a biological process
is not equivalent to a pathway; GOBPs are assumed to be
independent and do not represent the interactions among
molecules.
Despite manual curation and careful revision, different

knowledge databases could have different descriptions,
participating molecules, interacting diagrams, and sup-
porting literature for similar pathways. For example, con-
sidering the Transforming Growth Factors Beta (TGF-
beta) signaling pathway in human, KEGG reported as
hsa04350: TGF-beta signaling pathway, Reactome
reported as REACT_111102.4: Signaling by TGF-beta
Receptor Complex, and Biocarta reported as h_tgfbpath-
way. In detail, KEGG annotated 80 genes/proteins, Reac-
tome annotated 120 genes/proteins, and Biocarta
annotated 17 genes/proteins with TGF-beta signaling
pathway. Descriptions of TGF-beta signaling pathway in
the nucleus were excerpted to show related yet distinctive
contents among KEGG, Reactome and Biocarta databases
(Material in quote marks and italic type represents verba-
tim quotation from the knowledge databases):
KEGG - “Once phosphorylated, R-Smads associate with

the co-mediator Smad, Smad4, and the heteromeric com-
plex then translocates into the nucleus. In the nucleus,
Smad complexes activate specific genes through cooperative

interactions with other DNA-binding and coactivator (or
co-repressor) proteins“.
(http://www.genome.jp/kegg-bin/show_pathway?

hsa04350)
Reactome - “The general signaling scheme is rather

simple: upon binding of a ligand, an activated plasma
membrane receptor complex is formed, which passes on
the signal towards the nucleus through a phosphorylated
receptor SMAD (R-SMAD). In the nucleus, the activated
R-SMAD promotes transcription in complex with a closely
related helper molecule termed Co-SMAD (SMAD4)“.
(http://www.reactome.org/PathwayBrowser/#DIA-

GRAM = 170834&PATH = 162582)
Biocarta - “The activated TGF-beta R1 phosphorylates

SMAD2 and SMAD3, which bind to the SMAD4 mediator
to move into the nucleus and form complexes that regulate
transcription. SMADs regulate transcription in several
ways, including binding to DNA, interacting with other
transcription factors, and interacting with transcription
corepressors and coactivators like p300 and CBP“.
(http://www.biocarta.com/pathfiles/h_tgfbpathway.asp).
These variations in knowledge representation among

different databases prompt an urgent need for standard
pathway representations. For a set of proteins or genes
with enriched pathways and GOBPs, we propose a
method that integrates molecular interaction, biological
pathways and GOBP to standardize descriptions of path-
ways using GOBPs through the establishment of the
functional biological pathway-process network. We
demonstrated with the set of 613 proteins related to
myocardial infarction (MI) from the MI-specific protein-
protein interaction network [11].

Methods
In this study, we started with 613 MI-specific proteins
to find enriched pathways and GOBPs [11]. We per-
formed analyses to statistically examine the similarities
between pathways and biological processes and identify
the hierarchical structures for the GOBPs. Based on the
similarity score matrix and the structure of GOBPs, we
established the logical circuitry between GOBPs and
pathways, and visualize the circuitry with networks.

Selection of condition-specific genes/proteins
We previously identified 613 proteins specific to MI in
an MI-specific protein-protein interaction network
(MIPIN); the network and its protein members were
used here to demonstrate the developed method [11].

Functional annotation analysis
Many tools are available to provide gene-annotation
enrichment analysis and pathway mapping. We per-
formed functional annotation analysis using DAVID
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Functional Annotation Tool, with the parameters Count
to be 2 and EASE to be 0.05, to obtain enriched GOBP
terms, KEGG and Reactome pathways [12].

Statistical measure of inter-annotator agreement
We evaluated the pairwise similarity between different
annotation terms, including GO terms and pathways
using Kappa statistics because annotation terms sharing
common members might be related to one another [13].
Considering a set of all annotated genes/proteins G, two
annotation terms Ti and Tj annotated by two set of genes
Gi and Gj (i≠j; i,j = 1, 2, ..., N), we denoted the number of
proteins annotated by both terms as aij, the number of
proteins annotated by Ti but not Tj as bij, the number of
proteins annotated by Tj but not Ti as cij, and the number
of proteins not annotated by neither terms among the
union of proteins annotated by N annotation terms as dij.
Thus, we have,

G =
⋃

N

Gi, aij = Gi ∩ Gj, bij = Gi\Gj, cij = Gj\Gi, dij = G\(Gi ∪ Gj)

The Kappa score �ij was defined as,

κij =
Pr(agreeij) − Pr(randomij)

1 − Pr(randomij)
,

where Pr(agreeij) was the observed percentage agree-
ment and Pr(randomij) was the overall probability of
random agreement for annotation terms Ti and Tj. The
observed percentage agreement Pr(agreeij) could be cal-
culated as follows,

P(agreeij) =
aij + dij

aij + bij + cij + dij
.

Out of total number of associated proteins, Ti annotates
(aij + bij)/(aij + bij + cij + dij) and Tj annotates
(aij + cij)/(aij + bij + cij + dij). Thus, the probability that
both annotation terms randomly annotate the same pro-
teins was(aij + bij)(aij + cij)/(aij + bij + cij + dij)2. Similarly,
the probability that neither pathway randomly annotate the
same protein was (bij + dij)(cij + dij)/(aij + bij + cij + dij)2.
As a result, the overall probability of random agreement Pr
(randomij) could be calculated as,

P(randomij) =
(aij + bij)(aij + cij) + (bij + dij)(cij + dij)

(aij + bij + cij + dij)
2 .

A high Kappa score indicated that two annotation
terms share many common proteins.

Construction of undirected GOBP graph
An undirected GOBP graph GraphGOBPenriched was con-
structed to describe the relationships among NenrichedGOBP

enriched GOBP terms, i.e., GraphGOBPenriched = (VGOBP,

EGOBP), |VGOBP|= NenrichedGOBP, and EGOBP defines the set of
edges in the graph. The relationships between GOBP
terms, represented by edges connecting them, were eval-
uated based on the ancestor/offspring relationships in
the complete directed acyclic graph of all GOBP terms
from the Gene Ontology Consortium. We mapped Nenri-

chedGOBP enriched GOBP terms to the corresponding
vertices of the complete directed acyclic graph of all
GOBP terms from the Gene Ontology Consortium using
the package “GO.db” from Bioconductor [14]. Let
GraphGOBPComplete = (VcompleteGOBP, EcompleteGOBP) be
the complete directed acyclic graph of all GOBP terms.
Then, VGOBP is mapped to VcompleteGOBP (VGOBP ⊂ V’
and V’ ⊂ VcompleteGOBP). Two GOBP terms would be
connected if there existed a link between this pair of ver-
tices in the complete graph of GOBP. All networks and
graphs in this study were constructed and analyzed with
the assistance of the package ‘igraph’ in R [15].

Construction of undirected Boolean bipartite pathway
and GOBP graph
The relationships between pathways and GOBP terms
were represented as an undirected graph where edges
between pathways and GOBP terms were evaluated
based on Kappa statistics. We computed the Kappa
similarity matrix of size NtotalGOBP x NtotalPathway, where
NtotalPathway is the total number of pathways including
Biocarta, KEGG and Reactome pathways. Each row of
the similarity matrix represents a GOBP term, and each
column represents a pathway. Top 1% of the most simi-
lar pairs of pathway and biological process were selected
and connected based on the Kappa similarity scores.
Figure 1 showed that choosing the top 1% of the most
similar pairs allowed the selection of a reasonable num-
ber of edges with high similarity scores (the average of
Kappa scores was 0.025, and the chose cut-off value was
0.27). The set of pairs of pathway and GOBP terms
satisfying such condition as was denoted as EPathway-

GOBP. We then established the pathway and GOBP
graph as an undirected bipartite graph BipartiteGraph-
PathwayGOBP = {VPathway, VGOBP, EPathwayGOBP} where
VPathway is the set of pathways and VGOBP is the set of
GOBP terms included in EPathwayGOBP (|VPathway| ≤ Nto-

talPathway and |VB| ≤ NtotalGOBP). Thus, the graph Bipar-
titeGraphPathwayGOBP would consist of pathways that
could be well represented by GOBP terms.
We further introduced Boolean rules to Bipartite-

GraphPathwayGOBP to represent pathways as Boolean
functions of biological processes, assuming that con-
nected biological processes have direct impacts on the
pathways. Since a pathway contains dynamics and
dependencies among participating molecules, which are
annotated by biological processes, we assume that differ-
ent combinations of biological process states can affect the
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state of the pathway, which is either ‘active’ (binary state 1)
or ‘inactive’ (binary state 0). For every pathway VPathwayi in
the graph BipartiteGraphPathwayGOBP, let VPathwayGOBPi

be the set of GOBP terms connected to that pathway and
VGOBP = ∪VPathwayGOBPi-, we performed Boolean mapping
such that the pathway VPathwayi could be described as a
Boolean algebra functions of its connected GOBP terms,
VPathwayi = f(VPathwayGOBPi).
The Boolean rules were derived from the relationships

between GOBP terms connected to the pathway. If two
GOBP terms were connected, then the Boolean relationship
between these GOBP terms would be “OR.” Such assump-
tion arose from the fact two connected GOBP terms would
share a significant amount of protein; thus, if a biological
process was active, then its connected process must be
simultaneously active as well. The relationship between two
unconnected GOBP terms would be “AND.” For example,
considering a small network with 3 GOBP terms, GOBP1,
GOBP2 and GOBP3, and a pathway P, where GOBP1 and
GOBP2 were connected, GOPB3 was not connected with
GOBP1 and GOBP2, and all GOBP terms were connected
to pathway P. Then, the Boolean function for P could be
written as, VP = (VGOBP1 ∪ VGOBP2) ∩ VGOBP3.

The functional biological pathway-process network and
the extracted MI network
We combined the GOBP graph GraphGOBPenriched
from section 2.4 and the bipartite graph BipartiteGraph-
PathwayGOBP from section 2.5 to have a complete

functional biological pathway-process network, where
there were connections among GOBPs, and pathways
communicated with each other through biological pro-
cesses. As the complete network had many vertices and
edges, we presented the MI pathway, h_amiPathway,
from Biocarta, to illustrate the result. We retained
important GOBP terms which were crossed by the
shortest paths among other pathways to the MI path-
way. Shortest paths were calculated using the un-
weighted breadth-first search method. The extracted
network allowed us to identify how the MI pathway
could lead to other pathways and vice versa, initiating
cardiac remodeling post-MI.

Results
Undirected GOBP graph
Using DAVID Functional Annotation Tool, we obtained
993 enriched GOBP terms from the list of 613 MI-spe-
cific proteins. From the ancestor/offspring relationships,
the graph GraphGOBPenriched was constructed, result-
ing in a network of 993 vertices and 4284 edges. Graph-
GOBPenriched had 16 connected sub-graphs having
more than 1 vertex and 46 isolated vertices. The largest
connected sub-graph consisted of 885 vertices and 4199
edges.
It is interesting to note that GOBP terms with the

highest degree, measuring the number of direct links
incident on a vertex in a graph, were related to phos-
phorylation, phosphate, phosphorus, and kinase activity
(Table 1). Since phosphorus and phosphate metabolic
processes have the highest connections, this could mean
that the chemical reactions and pathways involving
intracellular signaling might initiate the cascade of
events post-MI. In fact, serum phosphorus has been
shown to serve as a sensitive indicator of MI and is
linked to all-cause mortality and heart failure in patients
after MI [16,17]. Hypophosphatemia in MI is associated
with a greater degree of dysfunction of the left ventricle
(LV), resulting in increased 30 days mortality [18]. In
patients with MI, plasma sphingosine-1-phosphate con-
centration is reduced, leading to decreases protective
action on cardiomyocyte viability [19].
In addition, biological processes involved with phos-

phorylation accounted for 4 GOBP terms while there
were 5 kinase-activity-related GOBPs in Table 1. Phos-
phorylation is a major post-translational modification
to regulate protein function. In a phosphorylation pro-
cess, a protein kinase modifies target proteins, or sub-
strates, by chemically adding phosphate groups to
them. This result corresponded well with our previous
work which identified Kinase Pathways as one of the
major groups of pathways significantly enriched follow-
ing MI [11].

Figure 1 The graph showing Number of possible edges vs.
Cut-off value, and the selected number of edges. Choosing top
1% of the most similar pairs of pathway and biological process
considered a reasonable number of pairs of pathways and
biological processes with high similarity scores.
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Network of biological pathways and GOBP showed
similarities and differences among pathways in regard to
GOBP annotation
At selected parameters, we retrieved 98 pathways, includ-
ing 37 KEGG, 13 Reactome, and 48 Biocarta pathways
using DAVID Functional Annotation Tool. Analysing sta-
tistical measures of inter-annotator agreement between 98
pathways and 993 GOBP terms, we established a graph
BipartiteGraphPathwayGOBP with 544 vertices, contain-
ing 96 pathways 448 associated GOBPs, and 973 edges.
These edges represented the most significantly enriched
pairs of pathways and GOBP in the context of MI. This
graph consisted of 8 sub-graphs, with the largest con-
nected component having 76 pathways and 396 GOBP
terms.
Earlier, we mentioned the TGF-beta signaling pathway

and how it was defined differently among the KEGG,
Reactome, and Biocarta pathway databases. We further
examined the associated GOBP terms to compare these 3
pathways (Figure 2). The variations were due to different
literature being used to construct the pathways:
REACT_6844: Signaling by TGF beta were involved with
56 GOBP terms, hsa04350: TGF-beta Signaling Pathway
was associated with 14 GOBP terms, and the h_tgfbPath-
way was linked to 27 GOBP terms. Nonetheless, the com-
mon biological processes among these pathways included
phosphorylation of SMAD proteins, serine/threonine
kinase signaling pathway, epithelial-mesenchymal transi-
tion, and response to cholesterol and cell morphogenesis

involved in differentiation (Figure 2: Box 6). It can be seen
that the REACT_6844 provided a more complete descrip-
tion of TGFb signaling pathway (Figure 2: Box 1-2&5),
hsa04350 mainly focused on protein transport, transcrip-
tion, gene expression and cell development (Figure 2: Box
2-3), whereas h_tgfbPathway emphasized organ develop-
ment (Figure 2: Box 4-5). As a result, we can understand
the different characteristics assigned for each pathway
under the different circumstances. Individually, TGF-beta
signaling pathways from KEGG, Biocarta, and Reactome
annotated 21, 12, and 7 proteins, respectively, from the
initial 613 MI-specific proteins. Thus, by incorporating
the signaling pathways from different sources, we updated
the knowledge of TGF-beta signaling pathways with more
biological processes, and identified additional proteins par-
ticipating in the pathway. Using this approach, the total
number of proteins annotated with TGF-beta signaling
pathways, by combining proteins from KEGG, Biocarta
and Reactome, was expanded to 25 proteins.
Additionally, we investigated how this system acts using

three other cardiovascular disease processes, namely
hsa05412: Arrhythmogenic Right Ventricular Cardiomyo-
pathy (ARVC), hsa05410: Hypertrophic Cardiomyopathy
(HCM), and hsa05414: Dilated Cardiomyopathy (DCM).
These analyses provide additional examples to demon-
strate how representing pathways in terms of biological
processes helped us to quickly understand the characteris-
tics of such conditions under specific circumstances
(Figure 3). ARVC is an inherited disease that results in fat

Table 1. Top 20 GO Biological Processes ranked by degree measurements

GOBP ID Name Degree

GO:0006793 phosphorus metabolic process* 55

GO:0006796 phosphate metabolic process* 52

GO:0006955 immune response 47

GO:0010033 response to organic substance 47

GO:0016310 phosphorylation* 45

GO:0048584 positive regulation of response to stimulus 45

GO:0051174 regulation of phosphorus metabolic process* 44

GO:0019220 regulation of phosphate metabolic process* 43

GO:0043507 positive regulation of JUN kinase activity* 43

GO:0042325 regulation of phosphorylation* 39

GO:0043406 positive regulation of MAP kinase activity* 38

GO:0000187 activation of MAPK activity* 38

GO:0032268 regulation of cellular protein metabolic process 37

GO:0031659 positive regulation of cyclin-dependent protein kinase activity during G1/S* 37

GO:0006468 protein amino acid phosphorylation* 36

GO:0010604 positive regulation of macromolecule metabolic process 34

GO:0001932 regulation of protein amino acid phosphorylation* 34

GO:0001775 cell activation 34

GO:0045860 positive regulation of protein kinase activity* 33

GO:0006952 defense response 33

*GOBPs related with phosphorus, phosphate, phosphorylation, and kinase activity.
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and fibrous tissues replacing the heart muscle of the right
ventricle and subepicardial region of the left ventricle.
With HCM, a portion of the myocardium is hypertro-
phied, forcing the heart to work harder to pump blood
because of the thickened heart muscle. DCM is a condi-
tion in which the heart weakens and becomes dilated,
resulting in inefficient blood pumping to other organs. All
three aforementioned cardiomyopathy pathways involve
integrin-mediated signaling pathway, cell-matrix adhesion,
and cell-substrate adhesion. However, HCM and DCM are
specifically related to leukocyte adhesion. It has been con-
firmed that human leukocyte antigens are associated with
HCM and DCM [20-23].
We showed a visualization of a sub-graph consisting of

7 pathways and 34 GOBP terms that intersected with the
MI response (Figure 4). Two pathways having the largest
number of associated GOBP terms were hsa04610: Com-
plement And Coagulation Cascades (characterized by 17
GOBP terms) and h_fibrinolysisPathway (characterized
by 22 GOBP terms). The center of this sub-network is
the MI pathway from Biocarta, h_amiPathway. Alto-
gether, 3 pathways were represented by 32 out of 34
GOBP terms in this sub-network, and there were 8 com-
mon GOBP terms, including coagulation, regulation of
coagulation, negative regulation of coagulation, blood
coagulation, regulation of blood coagulation, negative

regulation of blood coagulation, homeostasis and regula-
tion of body fluid levels (Table 2). As a result, we noticed
that blood coagulation, coagulation, homeostasis and reg-
ulation of body fluid levels were the underlying processes
in these pathways. Table 2 and Figure 4 also pointed out
the differences among these pathways: hsa04610 was
associated with activation of proteins involved in acute
inflammatory response and wound healing, whereas the
fibrinolysis pathway was specifically involved with fibri-
nolysis, platelet activation, protein phosphorylation, col-
lagen process and tissue regeneration.

Associations between the MI response and biological
processes have been experimentally and clinically verified
In order to confirm the affiliated biological processes
with the MI response mentioned in the previous section,
we searched PubMed for experimental and clinical evi-
dence. In the BipartiteGraphPathwayGOBP, the MI
pathway, annotated with 11 proteins, was connected with
16 GOBP terms that were linked to 64 proteins, and they
shared 10 common proteins. We further verified that
among the 54 proteins exclusively annotated by GOBP
terms, 11 proteins had been chosen as the seed proteins
to construct the MI-specific protein network. We have
previously shown that these seed proteins were asso-
ciated with MI and confirmed by at least 2 citations [11].

Figure 2 Representations of TGF-beta signalling pathway from Biocarta, KEGG and RACTOME in terms of Gene Ontology biological
processes in the condition of MI. Box 1: GOBP exclusive to REACTOME REACT_6844: Signaling by TGF beta. Box 2: Common GOBP between
REACTOME and KEGG. Box 3: GOBP exclusive to KEGG has04350: TGF-beta Signaling Pathway. Box 4: GOBP exclusive to BioCarta
h_tgfbPathway. Box 5: Common GOBP between BioCarta and REACTOME. Box 6: Common GOBP between BioCarta, KEGG and REACTOME.
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To verify that the remaining 43 proteins of the
expanded set of proteins for the MI pathway were related
to MI, we searched for their official names and aliases on
PubMed along with the keyword “myocardial infarction”
for publications that confirmed the association between

these proteins and MI (Table 3). There were 34 proteins
firmly associated with MI by at least 2 publications.
There were 3 proteins, namely CD44, SERPIND1 and
HNF4A, directly associated with MI by one publication.
There were 6 proteins, namely ANXA7, FBLN5, FGF7,

Figure 3 Sub-network of Cardiomyopathy. Pathways were represented in red while GOBPs were represented in blue. Pathways of
Hypertrophic, Dilated and Arrhythmogenic Right Ventricular Cardiomyopathy were shown to be connected to biological processes including
leukocyte adhesion, cell-substrated adhesion, and cell-matrix adhesion. Integrin-ECM interactions are required for cell adhesion.

Figure 4 Sub-network of MI. Pathways were represented in while GOBPs were represented in blue. The major underlying processes for MI
included coagulation, homeostasis, collagen metabolic/biosynthetic process, calcium ion transport, tissue regeneration, and wound healing.
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KLF6, FR2RL2 and GGCX indirectly linked to MI.
Among 16 MI-associated GOBP terms, 11 biological pro-
cesses were fully associated with the MI pathway as all of
their member proteins were associated with MI and con-
firmed by at least 2 publications. The remaining 5 GOBP
terms had 90% of the member proteins associated with
the MI pathway, confirmed by at least 1 publication, and
80% or more of the member proteins were confirmed to
be associated with MI by at least 2 publications. Therefore,
we showed that the associations between MI pathway and
biological processes in the BipartiteGraphPathwayGOBP
have been experimentally and clinically verified. We also
expanded the coverage of the original MI pathway by add-
ing 54 new proteins. Further research will be needed to
address the intermediate steps within the MI pathway and

develop more extensive description of the MI pathway
that covers a longer time scale.

Phosphorylation of STAT protein, coagulation and
regulation of collagen process are required to activate
the MI pathway
We further explored the possibility of representing path-
ways as Boolean functions of biological processes. This
idea originates from the fact that proteins within biological
system typically act in concert. Biological processes are
processed through protein-protein or molecular interac-
tions, which usually have similar functions. The establish-
ment of the bipartite graph of pathways and GOBP
yielded Boolean functions to determine the state of path-
ways based on biological processes. We illustrated the MI

Table 2. Pathways and GOBP in the MI functional pathway-process network

GOBP names Pathways F C A E P I H

activation of plasma proteins involved in acute inflammatory response √

acute inflammatory response √

blood coagulation √ √ √ √ √ √

blood coagulation, extrinsic pathway √ √

coagulation √ √ √ √ √ √

complement activation √

developmental growth √ √

fibrinolysis √ √

growth √ √

hemostasis √ √ √ √ √ √

negative regulation of blood coagulation √ √ √ √ √

negative regulation of coagulation √ √ √ √ √

negative regulation of multicellular organismal process √

platelet activation √ √ √

positive regulation of blood coagulation √ √ √ √

positive regulation of calcium ion transport √ √

positive regulation of coagulation √ √ √ √

positive regulation of collagen biosynthetic process √ √ √

positive regulation of collagen metabolic process √ √ √

protein maturation √

protein maturation by peptide bond cleavage √

protein processing √

regeneration √

regulation of blood coagulation √ √ √ √ √

regulation of body fluid levels √ √ √ √ √ √

regulation of coagulation √ √ √ √ √

regulation of collagen metabolic process √ √

regulation of fibrinolysis √

regulation of multicellular organismal metabolic process √ √

regulation of response to external stimulus √

response to wounding √

tissue regeneration √ √

tyrosine phosphorylation of STAT protein √ √ √

wound healing √ √ √ √

Number of connected GOBPs 22 17 16 14 12 9 5
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pathway h_amiPathway as logic circuits with multiple
input single output logic gates (Figure 5). The MI pathway
requires tyrosine phosphorylation of STAT protein, either
positive regulation of collagen biosynthetic process or
metabolic process, and one or more of the GOBP terms in
the large group for activation. We later extracted the MI

network, and identified the five major GOBP terms that
contributed to the activation of h_amiPathway (Figure 6;
see Additional file 1 for names of all pathways and GOBPs
in the MI network). Tyrosine phosphorylation of STAT
protein, negative and positive regulation of blood coagula-
tion, coagulation and positive regulation of collagen

Table 3. Proteins of MI pathway-associated GOBP terms with cited publications

Proteins Gene names Official Names Supporting Articles

A1AT_HUMAN SERPINA1 Alpha-1-antitrypsin [27,28]

ACVL1_HUMAN ACVRL1 Serine/threonine-protein kinase receptor R3 [29,30]

ADA17_HUMAN ADAM17 Disintegrin and metalloproteinase domain-containing protein 17 [31,32]

ANPRA_HUMAN NPR1 Atrial natriuretic peptide receptor 1 [33,34]

APOA_HUMAN LPA Apolipoprotein(a) [35,36]

CAV1_HUMAN CAV1 Caveolin-1 [37,38]

CBPB2_HUMAN CPB2 Carboxypeptidase B2 [39,40]

CD36_HUMAN CD36 Platelet glycoprotein 4 [41,42]

EGLN_HUMAN ENG Endoglin [29,30]

F13A_HUMAN F13A1 Coagulation factor XIII A chain [43,44]

FA11_HUMAN F11 Coagulation factor XI [45,46]

FA5_HUMAN F5 Coagulation factor V [47,48]

FA8_HUMAN F8 Coagulation factor VIII [43,45]

FA9_HUMAN F9 Coagulation factor IX [45,46]

FIBG_HUMAN FGG Fibrinogen gamma chain [49,50]

FINC_HUMAN FN1 Fibronectin [51,52]

GPV_HUMAN GP5 Platelet glycoprotein V [53,54]

HIF1A_HUMAN HIF1A Hypoxia-inducible factor 1-alpha [55,56]

IC1_HUMAN SERPING1 Plasma protease C1 inhibitor [57,58]

IFNG_HUMAN IFNG Interferon gamma [59,60]

ITA5_HUMAN ITGA5 Integrin alpha-5 [61,62]

KNG1_HUMAN KNG1 Kininogen-1 [63,64]

LYOX_HUMAN LOX Protein-lysine 6-oxidase [65,66]

PAR2_HUMAN F2RL1 Proteinase-activated receptor 2 [67,68]

PAR4_HUMAN F2RL3 Proteinase-activated receptor 4 [67,69]

PGFRA_HUMAN PDGFRA Platelet-derived growth factor receptor alpha [70,71]

PLF4_HUMAN PF4 Platelet factor 4 [72,73]

PROZ_HUMAN PROZ Vitamin K-dependent protein Z [74,75]

SMAD3_HUMAN SMAD3 Mothers against decapentaplegic homolog 3 [30,76]

TGFB2_HUMAN TGFB2 Transforming growth factor beta-2 [77,78]

TGFR2_HUMAN TGFBR2 TGF-beta receptor type-2 [79,80]

TRBM_HUMAN THBD Thrombomodulin [81,82]

TSP1_HUMAN THBS1 Thrombospondin-1 [83,84]

UROK_HUMAN PLAU Urokinase-type plasminogen activator [85,86]

CD44_HUMAN CD44 CD44 antigen [87]

HEP2_HUMAN SERPIND1 Heparin cofactor 2 [88]

HNF4A_HUMAN HNF4A Hepatocyte nuclear factor 4-alpha [89]

ANXA7_HUMAN ANXA7 Annexin A7 [90]

FBLN5_HUMAN FBLN5 Fibulin 5 [91]

FGF7_HUMAN FGF7 Fibroblast growth factor 7 [92]

KLF6_HUMAN KLF6 Krueppel-like factor 6 [93]

PAR3_HUMAN F2RL2 Proteinase-activated receptor 3 [94]

VKGC_HUMAN GGCX Vitamin K-dependent gamma-carboxylase [95]

Proteins with indirect association with MI were contained in shaded box.
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metabolic process are required to activate the MI pathway.
By displaying pathways as logic circuits, we could observe
the involvement of multiple functional groups, thus pro-
viding an intuitive way to understand associated pathways.

Critical routes of the extracted MI network
The complete network of pathways and GOBP contains a
huge amount of information although it could be over-
whelming. We extracted the MI network and only
retained the backbone to explore additional features that
might not have been covered. Figure 6 showed the routes
from MI-related pathways, represented as light red cir-
cles, to the h_amiPathway, whose color was in red,
through biological processes in as blue circles. The graph
was undirected, meaning some routes could be bidirec-
tional. A small branch of the network inside the blue
rectangle was zoomed out for illustration purpose. The
complete list of pathways and GOBP can be viewed in
Supplemental Table 1. We observed that all 7 pathways
in those 6 branches needed to pass through coagulation
to be connected to h_amiPathway. We found the cell
cycle pathway, hsa04110:CellCycle, particularly interest-
ing since the pathway was linked to h_fibrinolysisPath-
way, through cell growth. Heissig et. al (2007) showed
that by deleting plasminogen, a classical fibrinolytic

factor that controls hematopoietic stress response, in
mice, hematopoietic stem cells were prevented from
entering the cell cycle and undergoing multilineage dif-
ferentiation after myelosuppression, leading to the death
of the mice [24]. In other words, the plasminogen fibri-
nolytic pathway is crucial for hematopoietic regeneration.
In another study, Heidt et al. (2014) showed that hemato-
poetic stem cells in the bone marrow could be activated
by chronic stress, and further differentiated into increas-
ing number of leukocytes. These leukocytes travel into
the blood circulation and participate in the development
of cardiovascular diseases [25]. Incidentally, fibrinolytic
therapies have been used to enhance restoration of myo-
cardial flow in the epcicardial infarct-related coronary
artery [26]. Thus, it will be interesting to investigate the
role of fibrinolysis and the increasing number of leuko-
cytes in the cardiac remodelling post-MI and heart
failures.

Discussion
In this study, we established a network by integrating GO
biological processes and pathways from BioCarta, KEGG,
and REACTOME enriched for MI-specific proteins using
statistical measures and hierarchical structures. We exam-
ined the similarities between pathways and biological

Figure 5 Logical circuit of h_amiPathway. Logical circuits described the relationships between GO biological processes and the MI pathway.
We used multiple input single output logical gates AND and OR, where the GOBP were the inputs and h_amiPathway were the outputs. The
extracted network of MI identified five major GOBP terms, including tyrosine phosphorylation of STAT protein (ΔB79), coagulation (ΔB10),
negative and positive regulation of blood coagulation (ΔB23 & ΔB30), and positive regulation of collagen metabolic process (ΔB32), required to
activate the MI pathway. The labels next to the name of the GOBP terms corresponded to the legend in Figure 6.
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processes, and derived Boolean models of pathways in
terms of standardized vocabulary with GOBP terms. This
network can be used to explore critical routes that connect
pathways and biological processes to the development of
diseases or conditions. To demonstrate a functional inter-
action network, we started from the proteins in an
MI-specific protein-protein interaction network we had
previously constructed, acquired the enriched GO biologi-
cal processes and pathways, constructed the GOBP graph
and the functional pathway-process network, and deter-
mined the logical circuitry representing the involvement
of GOBPs in pathways. The approach could be used with
any set of genes or proteins, specific to any conditions or
diseases, to develop additional features and visualizations.
This study presented three important results. First, we

established a MI-specific functional biological pathway-
process network, with demonstrated sub-networks shown
in Figures 2 and 3. We standardized pathway descriptions

by their connected GOBP terms, making it easier to
compare differences and similarities between pathways,
especially those with similar descriptions from different
databases. We provided an example in section 3.2 with
TGF-beta signaling pathways and pointed out the com-
mon and exclusive biological properties from BioCarta,
KEGG and REACTOME. Second, we derived the relation-
ships between GOBP terms based on the hierarchical
structure defined in the GO Consortium and organized
these terms into functional groups that could contribute
differently to the pathways. For each pathway, GOBP
terms that belonged to different functional groups should
act simultaneously to activate the pathway, whereas only
one process in a functional group was needed initiate the
function. We used multiple input single output logical
gates AND and OR, where the GOBP were the inputs and
pathways were the outputs. We built two logic circuits
corresponding to the MI and fibrinolysis pathways. It was

Figure 6 The extracted MI network. The acute MI pathway was colored in red while other pathways were colored in light red. Biological
processes were represented in blue circles. GOBPs having direct impact on h_amiPathways were represented as blue triangles. A small branch
of the network inside the blue rectangle involving coagulation was zoomed out for demonstration. Below are legends for selected pathways
and processes (for the complete list of pathways and processes, see Supplemental Table 1). P3: h_amiPathway. P40: h_tgfbPathway. P58:
hsa04350:TGF-betaSignalingPathway. P92: REACT_6844:Signaling by TGF beta. B10: coagulation. B30: positive regulation of blood coagulation.
B32: positive regulation of collagen metabolic process. B44: positive regulation of protein kinase B signaling cascade. B58: regulation of kinase
activity. B49: protein kinase cascade. B79: tyrosine phosphorylation of STAT protein.
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shown that tyrosine phosphorylation of STAT protein,
coagulation and regulation of collagen process were
required to activate the MI pathway. We also provided
experimental and clinical evidence for the association
between the MI pathway and biological processes. Third,
we illustrated a centralized version of the complete net-
work of pathways and GOBP, providing insights of critical
routes from and to the main pathway, h_amiPathway.
Because MI was the major theme of this study, this
extracted network allowed us to quickly visualize the con-
nection between pathways before and after MI and their
involvement in the changes in the post-MI myocardium.
Our results illustrated that using the functional biolo-

gical pathway-process network is a promising method to
identify biological properties of pathways under specific
conditions. Pathways having similar descriptions encom-
passed both similar and diverse biological processes,
indicating variation in their ability to share similar func-
tional characteristics. The coverages of biological path-
ways can be increased with the incorporation of more
biological processes and protein members, promoting
more comprehensive pathways. As we discover and
understand more about genes and proteins, the network
helps to expand the participating genes or proteins in
the pathways through the introduction of related genes
in the GOBP. Pathways will be more comprehensive,
leading to better knowledge of diseases. However, func-
tional groups of GOBP terms based on hierarchical
structures might need to be further evaluated for coher-
ence. Moreover, GOBP functional groups might not
have the same amount of contribution to the corre-
sponding pathways; probabilistic Boolean models would
allow more robustness in the face of uncertainty. In
conclusion, we report here the establishment of the net-
work of pathways and biological processes that can be
used as a foundation to identify biological properties of
pathways, providing interaction and visualization of bio-
logical systems at pathway level.

Additional material

Additional File 1: Pathways and GOBPs of MI network. This file
contains names of pathways and GOBPs in the extracted network of MI
with labels as displayed in Figure 6. Pathways were ordered
alphabetically with prefix “P”. GOBPs were ordered alphabetically with
prefix “B”.
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