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Abstract

Background: Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of
regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on)
expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of
genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-
modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our
knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator
genes in modulating global gene regulation and dissect the biological functions in breast cancer.

Results: To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The
method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs
and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-
modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten
candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate
modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of
gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the
group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1−ERBB2 co-modulation
was the largest group modulated by more than one modulators. Similarly, the group was functionally associated
with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through
modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets.

Conclusions: We have showed CoMRe is a robust method to discover critical modulators in gene regulatory
networks, and it is capable of achieving reproducible and biologically meaningful results. Our data reveal that gene
regulatory networks modulated by single modulator or co-modulated by multiple modulators play important roles
in breast cancer. Findings of this report illuminate complex and dynamic gene regulation under modulation and its
involvement in breast cancer.
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Background
With the advances in DNA microarray and the Next-
Generation Sequencing (NGS) technologies, transcrip-
tomic profiling of biological samples can be obtained fast
and cost effectively. The high-throughput genomic data
enable systematic inference of gene regulatory networks
(GRNs) [1,2]. In parallel, online databases, such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [3]
and the Pathway Interaction Database (PID) [2], curate
large volume of biologically (experimentally) validated
gene regulatory pairs. These GRNs and pathways provide
overall landscape of complex genome-wide gene regula-
tion in biological systems. However, these gene regula-
tory relationships are typically derived under a single
condition in a single cell line/tissue. From biological
intuition, cells undergoing changes in cell cycle, environ-
ment, or cellular stress, and cells of different disease
types or disease subtypes may recruit differential signal-
ing pathways in response of cellular stimulation. Thus,
strength and relationships of gene regulation are less
likely to remain constitutive (unchanged) among these
cells (reviewed in [4]). Ideker and Krogan proposed the
scenario of “differential network biology” where GRNs
and pathways can be massively rewired during adaptive
cellular responses [5]. Notably, dynamic interaction
among proteins was shown to be predictive of breast can-
cer outcome [6], implying that studying the dynamic
changes in network topology, as the differentially
expressed genes, can provide biological clues of complex
diseases.
From the viewpoint of regulation under modulation, the

dynamics of cellular conditions can be determined (modu-
lated) by status of certain modulator genes. In other words,
gene A regulates gene B under the modulation of C refers
to the scenario where regulation strength between gene
pair A and B is dependent on expression level of the mod-
ulator C. For instance, previous study identified genes that
were predictive of patient prognosis of lung adenocarcino-
mas in the RAS signature dependent manner [7]. Also,
competing endogenous RNA (ceRNA) regulation, referring
to genes sharing common targeting miRNA that can regu-
late each other by competing for the limited pool of miR-
NAs [8-10], was shown to be modulated by expression
levels of the common targeting miRNAs [11,12]. In breast
cancer, Estrogen Receptor (ER) is the most well studied
modulator in gene regulation. Topological and temporal
changes in GRN of transcription factors were observed in
MCF7 breast cancer cell line upon estradiol stimulation
[13]. Furthermore, the ER encoding gene ESR1 was shown
to be capable of modulating coexpression among a handful
of genes [14]. In order to systematically investigate gene
regulation modulated by individual modulator genes, com-
prehensive mathematical methods were developed and car-
ried out biologically testable findings [9,15].

Gene regulation under modulation provides an alterna-
tive layer of gene regulatory networks. However, since
gene regulation involves complex mechanism, especially in
cancer, analysis based on individual modulator genes may
be limited in understanding joint effects among multiple
modulators and unveiling the landscape of modulation.
Addressing this, in the present study we investigated the
joint (cooperative, uncooperative, or dominant) effects of
modulator genes in determining genome-wide gene regu-
lation strength. Here we propose the Covariability-based
Multiple Regression (CoMRe) method to model the rela-
tionships between multiple modulator genes and modu-
lated gene-gene regulation in breast cancer. CoMRe was
built mainly based on the multiple regression analysis
which takes expression levels of modulators as model
inputs and strength of gene-gene regulation, measured by
our developed parameter “covariability”, as output. On the
other hand, investigation into functions governed by gene
modulation in breast cancer remains largely unexplored.
Thus, we further analyzed and interpreted the results iden-
tified by CoMRe in the systematic functional level. Collec-
tively, the present study is aimed to statistically infer the
relationship between multiple modulators and modulated
gene regulation and to study the associated biological
functions in breast cancer.

Results and discussion
Model overview of CoMRe
In the present study we aim to statistically infer the rela-
tionship between multiple modulators and modulated
gene regulation (illustration in Figure 1A) and dissect
biological functions governed by it in breast cancer. Here
the modulated gene regulation refers to the scenario
where regulation strength between two genes is specifi-
cally intensified when the modulator gene is highly up-
regulated or down-regulated. We proposed the CoMRe
algorithm to carry out the analysis. Figure 1B illustrates
the analysis flowchart of CoMRe. The CoMRe algorithm
is mainly composed of a multiple regression model that
takes expression levels of the modulator genes as regres-
sors (inputs) and the regulation strength of a modulated
gene pair as regressand (output). Here we designed the
“covariability” measure to model regulation strength
between two genes in each sample. The covariability is
simply the per-sample contribution into the Pearson cor-
relation coefficient of genes i and j. From biological
aspect, the covariability measures the magnitude of
changes in two genes in the same direction in one sam-
ple; i.e., positive (or negative) covariability with greater
magnitude is indicative of larger changes in two genes in
the same (or opposite) direction. Mathematical details of
CoMRe are provided in the Methods section.
In this study we analyzed the gene expression dataset

from 286 lymph-node negative breast cancer patients
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(180 relapse free patients and 106 patients developing
distant metastasis) (accession number GSE2034). After
removing non-informative and background probe sets
(detailed in the Methods section), we selected 5,308
probes representing 5,308 unique genes for consequent
analysis. Current knowledge of modulator genes in
breast cancer is very limited. Thus, besides the well-stu-
died modulator gene estrogen receptor 1 (ESR1, the
ERa encoding gene; as a positive result in this study), in
the list of candidate modulator genes we exploratorily
included 9 more candidate genes that were recorded as
association with “breast tumor progression” in the
knowledge-based database Ingenuity Pathway Analysis
(Qiagen Inc.). Ten modulator genes analyzed in this
study are listed in Table 1. These genes play crucial

roles and execute complex functions in breast cancer;
thus we reason their functions can be performed par-
tially through modulation of gene regulation. We
applied CoMRe to investigate effects of the 10 candidate
modulator genes in modulating pairwise gene regulation
in the microarray dataset. For each pair of genes,
CoMRe outputs a co-modulation pattern, which is com-
posed of ten-length vectors of regression b values and
p-values. By studying all combinations of the 5,308
genes (14,084,778 gene pairs), we then elucidated the
effects of individual modulator genes and the coopera-
tive (or uncooperative) interaction among them in mod-
ulation. Furthermore, we explored enriched functions in
the modulated gene pairs carrying distinct co-modula-
tion patterns. To test the reproducibility of results

Figure 1 Illustration of multi-modulator gene regulation and the CoMRe method. (A) Illustration of multi-modulator gene regulation. From
the point of view of regulation under modulation, regulation strength (left right arrow) between a pair of genes can be modulated by (i.e.,
dependent on) expression levels of some modulator genes. In the multi-modulator model, the modulator genes can have cooperative (or
uncooperative) effects with differential capability (b values) in determining strength of gene-gene regulation. (B) Analysis flowchart of CoMRe.
CoMRe is designed to infer the relationship between multiple modulator genes and modulated gene regulation from high-throughput datasets.
Mathematically, CoMRe is composed of a multiple regression model that takes expression levels of the modulator genes as inputs and
regulation strength between genes (measured by covariability) as output. Circled z in the figure stands for z-transform. Mathematical details are
described in the Methods section.

Table 1. List of the 10 candidate modulator genes

Gene symbol Entrez gene name Locationa Typea

ADAM12 ADAM metallopeptidase domain 12 Plasma Membrane peptidase

CCL5 chemokine (C-C motif) ligand 5 Extracellular Space cytokine

ERBB2 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 Plasma Membrane kinase

ESR1 estrogen receptor 1 Nucleus ligand-dependent nuclear receptor

IGF1 insulin-like growth factor 1 (somatomedin C) Extracellular Space growth factor

MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) Extracellular Space cytokine

MKI67 marker of proliferation Ki-67 Nucleus other

MYC v-myc avian myelocytomatosis viral oncogene homolog Nucleus transcription regulator

RECK reversion-inducing-cysteine-rich protein with kazal motifs Plasma Membrane other

TP53 tumor protein p53 Nucleus transcription regulator
a Gene information was obtained from Ingenuity Pathway Analysis (Qiagen Inc.).
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identified by CoMRe, we also included two independent
cohorts (accession numbers GSE4922 and GSE25066) as
validation datasets.

Dissecting individual effects of modulator genes in
modulating gene regulation
For each of the 14,084,778 gene pairs, CoMRe analyzes
how the 10 candidate modulator genes interact to deter-
mine regulation strength between the pair of genes, and
outputs a co-modulation pattern. The covariability of all
gene pairs was approximately normally distributed, with
the mean, maximum and minimum values of 0.03, 99.88,
-77.83, respectively (Figure 2A). Among the 14,084,778
co-modulation patterns, regression p-values (significance
of individual modulator genes in the multiple regression
model) were roughly uniformly distributed (Figure 2B).
The distribution of regression b values approximately
followed the normal distribution (Figure 2C). Taken
together, these observations indicate that the CoMRe
method provides an unbiased statistical model. We set the
criteria of multiple regression p-value < 0.05 to identify
significant modulator genes for each gene pair. Regulation
strength of 5,198,160 (36.91%) gene pairs was modulated
by neither of the 10 candidate modulator genes. The other
8,886,618 (63.09%) gene pairs showed significant depen-
dence on the total count of 14,871,721 candidate modula-
tor genes; on average, each gene pair is modulated by
~1.67 modulators. A great majority (13,994,385 out of
14,084,778, 99.36%) of all gene pairs were modulated by
less than 5 modulator genes. Figure 2D is the histogram of
number of significant modulator genes in each gene pair.
Interestingly, only one pair of genes, keratin 18 (KRT18)
and N-acetylneuraminic acid synthase (NANS), was signifi-
cantly modulated by all of the candidate modulators. Also,
there were 9 pairs of genes modulated by nine of the ten
modulators, including the pair of forkhead box A1
(FOXA1) and fructose-1,6-bisphosphatase 1 (FBP1).
FOXA1, encoding a forkhead DNA-binding protein, is
well-known to associate the luminal subtype and favorable
prognosis in breast cancer [16-18]. FBP1 was reported to
regulate epithelial-mesenchymal transition (EMT) in the
basal-like subtype [19] and included in the widely used
70-gene expression predictor for breast cancer prognosis
[20]. Altogether, we elucidate that FOXA1 may have highly
modulated, thus “dynamic” across samples, regulatory
relationship with FBP1, contributing to these two genes’
roles in prognosis in different molecular subtypes of breast
cancer.
Among the 10 candidate modulator genes, notably,

the well-studied modulator gene ESR1 was found signifi-
cantly modulating the most number of gene pairs
(2,449,249 gene pairs, 17.39% of all pairs), followed by
v-erb-b2 avian erythroblastic leukemia viral oncogene
homolog 2 (ERBB2; 1,772,703 pairs, 12.59%) and ADAM

metallopeptidase domain 12 (ADAM12; 1,764,441 pairs,
12.53%) (Figure 2E). Together with progesterone recep-
tor (PR), ER and Her2 (ERBB2 encoded protein) are
genes currently used for molecular subtyping of breast
cancers. The results indicate that the two genes define
distinct molecular characteristics in breast cancer par-
tially through modulation of gene regulation. Among
the modulator genes, reversion-inducing-cysteine-rich
protein with kazal motifs (RECK), tumor protein p53
(TP53), and insulin-like growth factor 1 (IGF1), were
found to modulate the least numbers of gene pairs
(711,658 (5.05%), 998,142 (7.09%), and 1,113,258 (7.90%)
gene pairs, respectively; Figure 2E). Although these
genes are related to essential functions of breast tumor
progression, they may possess relatively minor, or over-
taken by other candidate modulators, effects in modula-
tion of gene regulation. To generate a random baseline
of our results, we replaced the inputs of modulator
expression levels with ten randomly simulated variables
and reran the analyses. Each of the ten random variables
showed significance only in 3.33% to 5.81%, approximat-
ing the p-value cutoff of 0.05, of the 14,084,778 gene
pairs. Taken together, our data suggest the capability of
CoMRe in identifying both biologically well-known
results and novel insights into other candidate modula-
tor genes.

Investigating joint effects of multiple modulator genes in
modulating gene regulation and related biological
functions
To understand the joint effects of the 10 candidate mod-
ulators, we analyzed pairwise co-occurrence as significant
modulators among the genome-wide gene pairs; i.e., we
statistically inferred whether gene pairs modulated by
one modulator gene are highly overlapped with those
modulated by another modulator. Interestingly, 36 (out
of 45, 80.00%) pairs of modulators showed significant
positive co-occurrence (Fisher’s exact two-tailed p-value
< 0.05); i.e., gene pairs modulated by one modulator
tended to be also modulated by another modulator. Only
6 (13.33%) modulator pairs exhibited significant negative
association (Figure 3), including ADAM12−MK167,
ADAM12−TP53, CCL5−TP53, ESR1−MIF, MIF−MK167,
and MIF−TP53. CCL5−RECK and ERBB2−MK167
showed negative pairwise association with borderline sig-
nificance (both Fisher’s exact p-values ~0.065).
We further grouped all the gene pairs based on their

co-modulation patterns (significance of candidate modu-
lators for each gene pair) so that gene pairs significantly
modulated by the same set of modulators were grouped.
Groups accounting for more than 5% of all gene pairs
are tabulated in Table 2. In order to further realize
underlying functions among genes in each group, we
analyzed the parameter of node degree for genes as
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defined in graph theory. Node degree of a gene is defined
as the number of first-order (direct) neighbor genes con-
nected to it. Genes with high degrees are considered as
“central” players (i.e., hub genes in Systems Biology) in a
gene regulatory network. The top three genes with highest

node degrees in each group are tabulated in Table 2. As
we described above, the largest group (36.91% of gene
pairs) was composed of gene pairs that were not modu-
lated by any of the 10 modulators. Interestingly, groups of
gene pairs that were modulated by single modulators

Figure 2 Individual and cooperative effects of multiple modulator genes in modulating global gene regulation. (A) Histogram of
covariability. The covariability of 14,084,778 gene pairs in 286 samples (grey bars) were approximately normally distributed (red line), with the
maximum, minimum, and mean values of 99.88, -77.83, and 0.03, respectively. (B) Histogram of multiple regression p-values from CoMRe. The p-
values were significance levels of individual modulator genes in the multiple regression model and roughly followed the uniform distribution. (C)
Histogram of multiple regression b values from CoMRe. The b values were approximately normally distributed. (D) Histogram of numbers of
significant modulator genes among all gene pairs. 99.36% of all gene pairs were found modulated by less than 5 modulator genes. (E)
Percentages of all gene pairs at which each modulator gene appears as a significant modulator. The percentage was calculated against
14,084,778, the total number of gene pairs. The well-studied modulator ESR1 was reported as the most significant modulator (in 17.39% of gene
pairs), followed by ERBB2 and ADAM12.
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(ranked from 2nd to 11th) were found with higher frequen-
cies than those modulated by multiple modulators. Gene
pairs that were modulated merely by ESR1 were found as
the second largest group (5.69%). Top 3 hub genes in the
ESR1 modulated network were nuclear factor I/X (NFIX),
sphingomyelin phosphodiesterase, acid-like 3A
(SMPDL3A), and vascular endothelial growth factor A
(VEGFA), with direct connection to 1,092, 1,072 and 1,045
nodes, respectively. In breast cancer, while function of
NFIX was previously uncharacterized, SMPDL3A was
reported to be dysregulated by progesterone treatment in
hormone-independent breast cancer cells [21] and meta-
static mouse mammary carcinoma cell lines [22]. Further-
more, VEGFA has been widely known for its roles in
angiogenesis and endothelial cell growth. In breast cancer,

studies demonstrated that VEGFA can prolong tumor cell
survival [23] and its gene variation is associated with
patient overall survival [24]. Our data further demon-
strated that, potentially, the three hub genes’ functions
may be altered, fully or partially, under ESR1 modulation.
To gain insights into biological functions governed by
ESR1 modulation, we used the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.7 web
tool to identify significantly enriched Gene Ontology (GO)
terms of molecular functions and biological processes. For
extracting biologically core information from the group,
here only 10,235 “core” ESR1 modulated gene pairs (with
Bonferroni adjusted p-value < 0.05 from CoMRe) com-
posed of 964 genes were analyzed (Table 2). The top three
clusters of enriched GO terms were i) DNA metabolic

Figure 3 Pairwise association between modulator genes. Significance levels of pairwise co-occurrence of the modulators genes as significant
modulators in all gene pairs are visualized using heatmap, with red and green denoting positive and negative association between two
modulators, respectively. P-values were obtained from Fisher’s exact two-sided test and presented in the log-10 scale.
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process and response to DNA damage, ii) identical protein
binding, and iii) response to estrogen and steroid hormone
stimulus (detailed in Table 3). During early tumorigenesis,
effective DNA damage responses (the first cluster) can
trigger cellular apoptosis and thus serve as candidate anti-
cancer barrier [25,26]. Also, since response to estrogen sti-
mulus (cluster 3) typically recruits downstream signaling
genes of estrogen receptor, our results suggest ESR1 per-
forms its functions, at least partly, by modulating these

downstream genes. Overall, these data illuminated the
importance of ESR1 modulation in breast cancer.

Complex and tight interplay of ESR1 and ERBB2
modulation
In the list of groups of co-modulation patterns, ESR1−
ERBB2 co-modulation was identified as the most fre-
quent group with multiple modulators (Table 2). The
group accounted for 199,263 gene pairs (1.41%) and had

Table 2. Top co-modulation groups among the 10 candidate modulator genes

Co-modulation
group

Number of modulated
gene pairs

Percentagea Top hub genesb Number of core
modulated gene pairsc

Number of core
modulated genesc

None of the 10
modulators

5,198,160 36.91% RALYL (4253); CALML3 (4095);
KLK12 (3920)

14,067,700 5,308

ESR1 801,229 5.69% NFIX (1092); SMPDL3A (1072);
VEGFA (1045)

10,235 964

ADAM12 579,710 4.12% LUM (1005); MYST4 (993);
CHST1 (988)

81 80

CCL5 556,253 3.95% CTSW (1622); CCL4 (1209);
CCR5 (1206)

3,168 405

MK167 537,860 3.82% CPS1 (1160); GDPD3 (929);
KLHDC4 (914)

251 241

ERBB2 519,905 3.69% MED1 (1012); PGAP3 (1005);
STARD3 (1000)

1,879 612

MIF 500,576 3.55% RPS2 (1313); FTL (1200);
PRKCSH (1137)

2 4

MYC 476,208 3.38% BOLA1 (884); FOSB (844);
SLC38A2 (817)

12 19

TP53 373,338 2.65% TP53 (1636); RAGE (1005);
RABGAP1 (909)

367 371

IGF1 266,990 1.90% PLA2G2A (672); TNXB (662);
CIDEA (659)

215 86

RECK 230,900 1.64% RECK (1693); DNAH3 (1640);
OPHN1 (1622)

459 137

ESR1−ERBB2 199,263 1.41% MIA (780); KRT6B (631);
FYCO1 (628)

407 141

ESR1−MK167 135,164 0.96% AZI1 (753); AQP5 (688);
C3ORF37 (515)

2 2

ESR1−CCL5 122,901 0.87% HOXA10 (539); PXDN (465);
APOC2 (462)

0 0

ADAM12−CCL5 109,845 0.78% CD38 (661); PRF1 (660); IL2RG
(544)

0 0

ESR1−MYC 104,650 0.74% KMO (534); ETFA (394); NAAA
(362)

0 0

ADAM12−ESR1 95,542 0.68% WNK1 (290); IGFBP4 (288);
MFAP2 (279)

0 0

IGF1−MK167 79,342 0.56% TTC23 (436); KIT (306); PRPF18
(280)

0 0

ADAM12−ERBB2 76,759 0.54% MAP7 (347); VCAM1 (270);
TRAPPC10 (269)

0 0

ADAM12−MYC 72,520 0.51% FBN1 (259); MARCH5 (241);
GADD45B (234)

0 0

ESR1−TP53 71,837 0.51% CRLF1 (565); PGC (435); ITPKB
(317)

0 0

Only groups with frequency higher than 0.5% are listed.
a Percentage of all 14,084,778 genome-wide gene pairs.
b Top three hub genes (and the numbers of their first-order connected genes) in each modulated gene regulatory network.
c Core modulated gene pairs/genes with Bonferroni adjusted p-value < 0.05.
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the top hub genes of melanoma inhibitory activity (MIA;
780 first-order neighbors), keratin 6B (KRT6B; 631 first-
order neighbors); FYVE and coiled-coil domain contain-
ing 1 (FYCO1; 628 first-order neighbors). While the role
of MIA remains unexplored in breast cancer, it is
predictive of malignant melanoma progression and
metastasis [27,28]. KRT6B is a basal specific marker in
breast cancer [29]. Presence of and interaction between
ER and Her2 define molecular subtypes of breast can-
cer and are associated with resistance to tamoxifen, a
selective ER modifier (SERM) (reviewed in [30]). Here

we showed that their encoding genes, ESR1 and
ERBB2, also interact with each other and co-modulate
regulation among a wide range of genes. Again, we
used DAVID to analyze the 407 core gene pairs com-
prised of 141 genes in the ESR1−ERBB2 co-modulation
group and identified similar results as in ESR1 modula-
tion. The top three enriched groups of GO terms were
i) response to hormone stimulus, ii) oxidation reduc-
tion and cofactor binding, and iii) identical protein
binding (detailed in Table 4). Notably, the core modu-
lated genes in the ERBB2-alone group were enriched in

Table 3. Top 3 clusters of enriched GO molecular functions and biological processes in ESR1 modulated genes

GO ID GO term Number of genes P-valuea

Cluster 1 (Enrichment Score: 4.23)

GO:0006259 DNA metabolic process 54 7.85 × 10-6

GO:0033554 Cellular response to stress 55 8.80 × 10-5

GO:0006974 Response to DNA damage stimulus 40 1.32 × 10-4

GO:0006281 DNA repair 33 1.33 × 10-4

Cluster 2 (Enrichment Score: 3.95)

GO:0042802 Identical protein binding 61 4.33 × 10-5

GO:0046983 Protein dimerization activity 52 1.48 × 10-4

GO:0042803 Protein homodimerization activity 36 2.21 × 10-4

Cluster 3 (Enrichment Score: 3.66)

GO:0043627 Response to estrogen stimulus 19 1.98 × 10-5

GO:0010033 Response to organic substance 68 2.90 × 10-5

GO:0048545 Response to steroid hormone stimulus 26 7.27 × 10-5

GO:0009725 Response to hormone stimulus 38 3.94 × 10-4

GO:0009719 Response to endogenous stimulus 40 6.91 × 10-4

GO:0032355 Response to estradiol stimulus 9 0.010

Total number of ESR1 modulated genes (with Bonferroni adjusted p-value < 0.05): 964.
a Modified Fisher’s exact p-values from DAVID.

Table 4. Top 3 clusters of enriched GO molecular functions and biological processes in ESR1−ERBB2 co-modulated
genes

GO ID GO term Number of genes P-valuea

Cluster 1 (Enrichment Score: 2.22)

GO:0009725 Response to hormone stimulus 11 6.49 × -04

GO:0009719 Response to endogenous stimulus 11 0.001

GO:0048545 Response to steroid hormone stimulus 7 0.004

GO:0010033 Response to organic substance 14 0.004

GO:0043434 Response to peptide hormone stimulus 6 0.008

GO:0032868 Response to insulin stimulus 4 0.045

GO:0043627 Response to estrogen stimulus 4 0.051

Cluster 2 (Enrichment Score: 1.92)

GO:0055114 Oxidation reduction 14 0.002

GO:0048037 Cofactor binding 7 0.012

GO:0050662 Coenzyme binding 6 0.012

GO:0009055 Electron carrier activity 5 0.089

Cluster 3 (Enrichment Score: 1.83)

GO:0046983 Protein dimerization activity 11 0.008

GO:0042802 Identical protein binding 12 0.009

GO:0042803 Protein homodimerization activity 7 0.042

Total number of ESR1−ERBB2 co-modulated genes (with Bonferroni adjusted p-value < 0.05): 141.
a Modified Fisher’s exact p-values from DAVID.
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highly similar GO terms (data not shown). The core
modulated genes of the ESR1 alone, ERBB2 alone, and
ESR1−ERBB2 co-modulation groups were significantly
overlapped (all pairwise Fisher’s exact test p-values <
3.01 × 10-41, Figure 4). Interestingly, all of the ESR1−
ERBB2 co-modulated core genes were included in the
ESR1 or ERBB2 groups (Figure 4). Taken together, our
data indicate that a highly common pool of genes is
modulated by the two modulators while massive rewir-
ing among these genes exists across different condi-
tions (i.e., ESR1 or ERBB2 alone, and co-modulation).
We elucidate that ESR1 and ERBB2 have complex and
tight interplay in the aspect of gene modulation,
through which identical biological functions are
performed.

External validation of co-modulation patterns
In order to test the reproducibility and reliability of
CoMRe among different cohorts, we analyzed two inde-
pendent breast cancer datasets, GSE4922 and GSE25066,
for validation. Based on the co-modulation patterns (b
values of the modulator genes) obtained from GSE2034,
we computed the “estimated” covariability profile for each
patient in the two validation datasets using corresponding
expression data of the modulator genes. The real

covariability profiles were calculated using global gene
expression data in each of the validation datasets. Notably,
the estimated and real covariability profiles were signifi-
cantly positively correlated (Pearson correlation p-value <
0.05) in 99.31% (287 out of 289, one-sample z-test p-value
< computing precision of double-precision floating point,
hereafter referred to as p-value ~0) and 99.80% (507 out of
508, p-value ~0) of patients in GSE4922 and GSE25066,
respectively. Similarly, for ESR1−ERBB2 co-modulated
gene pairs, the results were validated in 100% (all of 289
patients, p-value ~0) and 99.80% (507 out of 508, p-value
~0) of patients. The data suggest the stability of modula-
tion effects among different cohorts and the reproducibil-
ity of results identified by CoMRe.

Limitations and future work
By far validation of modulator genes through biological
experiments is very limited. In breast cancer, ER is the
most well-studied modulator gene. In the present study,
in addition to the ER encoding gene ESR1, we explorato-
rily included 9 more genes related to essential functions
in breast tumor progression, with previously undiscov-
ered function of modulation. Our data first validated the
role of ESR1 as a modulator gene and suggested that it
may jointly work with other modulators. Also, the results
implied the existence of other modulators genes in breast
cancer, such as ERBB2 and ADAM12. However, ~37% of
gene pairs were not modulated by any of the 10 candi-
date modulators, suggestive of the need for inclusion of
other modulators. We have demonstrated the perfor-
mance of CoMRe and the benefits to study modulation
in the joint manner. With advances in biological explora-
tion of modulator genes, CoMRe can be employed to
reveal more biologically meaningful findings.
Investigation of casual relationships between genes is one

of the crucial topics in regulatory biology. Indeed, correla-
tion coefficients, as well as mutual information, are not cap-
able of measuring causal relationships between factors.
However, analyses of modulated gene regulation typically
focus on how expression levels of modulators affect regulat-
ing strength, instead of the causal relationships, between
modulated genes. Previous studies have used non-causal
statistical methods to reach comprehensive results in single
modulator analyses [9,15]. In this study, our objective is to
extend the analysis to inferring multiple modulators co-
modulated gene regulation, using a correlation-based
regression approach. Therefore, CoMRe was designed to
evaluate how co-variability of genome-wide gene pairs was
dependent on modulator genes based on a multiple regres-
sion model; the analysis was focused on modulation, rather
than direct or causal regulation, or co-regulation (i.e., regu-
lated changes in gene expression levels).
CoMRe is built on the basis of a multiple linear

regression model. In statistics, multiple regression

Figure 4 Comparison of core ESR1, ERBB2, and ESR1−ERBB2
modulated genes. The comparison is visualized by the Venn
diagram of the core genes in the ESR1 alone, ERBB2 alone, and
ESR1−ERBB2 co-modulation groups. All the genes in the co-
modulation group were contained in at least one of the ESR1- and
ERBB2-alone groups. Fisher’s exact test showed these three groups
shared highly similar gene contents.
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analysis typically assumes the independence among
input variables (i.e., expression profiles of modulator
genes of CoMRe). However, biological intuition is that
two genes can hardly be independent to each other in
cells. In previous studies, multiple regression model has
been widely utilized to study genes [31,32], different
data types (from gene expression, transcription factor
binding, and drug response data) [31,33,34], and survival
significance of multiple genomic features (clinical sub-
types and prognostic factors) [35,36]. Findings of these
reports suggest that multiple regression can achieve bio-
logically meaningful results, in spite of the moderate
dependency of genomic features. Thus, we followed
these literatures and designed CoMRe to study multi-
modulator modulation. Future efforts may be spent on
developing algorithms that can take dependent genomic
features and enable statistically more meaningful
inference.

Conclusions
In the present study, we presented the CoMRe algorithm
for systematically investigating how multiple modulator
genes jointly determine pairwise regulation strength of
modulated genes. The algorithm was designed based on a
multiple regression model for gene-gene covariability that
measures how two genes regulate each other in each
patient. Among the ten candidate modulator genes, the
positive control ESR1 and two genes with essential func-
tions in breast cancer were found modulating the most
numbers of gene pairs. Through functional annotation
analysis, we showed that genes modulated by merely single
modulator or co-modulated by multiple modulators play
important roles in breast cancer. We elucidate that ESR1
and ERBB2 share complex interplay between each other in
the aspect of gene modulation. We also demonstrated that
the co-modulation patterns are stably retained and the
results identified by CoMRe are highly reproducible
among different cohorts. From the viewpoint of multi-
modulator modulation, this study paves the way for better
understanding complex gene regulation in breast cancer.

Methods
Microarray data
We analyzed gene expression profiles of 286 lymph-
node negative breast cancers, of which 180 were
relapse-free patients and 106 developed distant metas-
tasis, from GSE2034 [37]. The samples were profiled
with Affymetrix Human Genome U133A Arrays. We
reprocessed the raw intensity values of CEL files using
the Robust Microarray Analysis (RMA) algorithm into
log-2 scaled probe set level expression levels. For mul-
tiple probe sets representing one unique gene, the one
with the largest coefficient of variation (CV) was
selected as the representative probe set. To eliminate

computationally non-informative and background
probe sets, probe sets with CV values < 5% or average
expression levels < 6 (in the log-2 scale) across sam-
ples were filtered out from subsequent analysis.
We included two independent gene expression data-

sets for validation, composed of primary invasive breast
tumors (NCBI/GEO Accession Number GSE4922 [38])
from Uppsala, Stockholm, and Singapore cohorts and
pre-treatment invasive breast cancer patients in M. D.
Anderson Cancer Center (GSE25066 [39,40]). 289 and
508 samples in the two datasets with complete mole-
cular and clinical information were analyzed. The data-
sets were profiled with Affymetrix Human Genome
U133A Arrays and we reprocessed the microarray data
following identical procedures as described above. For
each of the genes selected for analysis in GSE2034, one
probe with the largest CV value in each validation
dataset was extracted from the validation dataset for
analysis.

Covariability-based multiple regression
We generated a regression model that estimates the
relationship between multiple modulator genes
(assumed to be independent) and strengthen of regula-
tion (i.e. correlation) between two modulated genes
from the microarray dataset. To model the regulation
strength of two genes (say, i and j) for patient k (totally
K patients), we designed the “covariability” as

Ck
i,j =

eki − μei

σei
·
ekj − μej

σej

where eki denotes the expression level of gene i in
patient k, and μei and σei represent the average and stan-
dard deviation of gene i across patients. Denotation of
gene j is identical. The covariability was designed to
measure the magnitude of changes in two genes in the
same direction in one sample. Mathematically, it is sim-
ply the per-sample product-moment component in the
calculation of Pearson correlation coefficient r; i.e.,
ρi,j =

∑
k
Ck
i,j.

Based on the covariability, we proposed a multiple
regression model to study the relationship between mul-
tiple modulator genes and covariability of gene pair.
Given M modulator genes of interest, expression profiles
of them are extracted from the microarray dataset and
z-transformed (subtraction of sample mean followed by
division of sample standard deviation) across samples so
that each modulator approximately follows standard
normal distribution. The z-transformation is employed
to eliminate inter-gene systematic biases and allow
the multiple regression model to give standardized coef-
ficients for the modulators. Mathematically, the covaria-
bility-based multiple regression is modeled as

Chiu et al. BMC Genomics 2015, 16(Suppl 7):S19
http://www.biomedcentral.com/1471-2164/16/S7/S19

Page 10 of 12



Ci,j =
∑

m∈M βmem + ε

where the regressand Ci,j =
[
C1
i,j C

2
i,j . . .C

K
i,j

]′
is the

covariability vector of gene i and j, regressor

em =
[
e1m e2m . . . eKm

]′ denotes the expression profile of

modulator gene m, βm represents regression coeffi-
cients for modulator gene m, and ε is the error vector.
Statistical significance of the obtained regression coef-
ficients was assessed using t-test. The regression model
was iteratively applied to each combination of gene i
and j in the microarray dataset. Thus, for each gene
pair i and j, each modulator gene m takes a regression
b value and p-value. A significant p-value indicates
that the modulator is significantly predictive of the
covariability (i.e., regulation strength) of corresponding
gene pair. We defined the co-modulation patterns for
each gene pair as the M-length vectors of b values and
p-values for M modulator genes. To further dissecting
the gene pairs based on their co-modulation patterns,
we grouped gene pairs that were significantly modu-
lated by the same set of modulators.

Statistical analyses and functional annotation analysis
Fisher’s exact test was employed to infer the significance of
co-occurrence of significant modulator genes in the co-
modulation patterns. Also, given a sample proportion p̂, we
estimated the 95% confidence interval of the population

proportion by

⎡
⎣p̂ − 1.96

√
p̂
(
1 − p̂

)
N

, p̂ + 1.96

√
p̂
(
1 − p̂

)
N

⎤
⎦,

where N denotes the sample size. To gain biological
insights, we utilized the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) v6.7 web tool
[41,42] to identify the Gene Ontology (GO) [43,44] biologi-
cal process and molecular function terms that exhibit sig-
nificant enrichment in our gene list. In order to interpret
the results in a more systematic and comprehensive level,
we grouped highly overlapped GO terms into clusters
using the DAVID Functional Annotation Clustering tool.
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