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Abstract

potential mechanism of heterogeneous drug sensitivity.

achieving personalized or precision medicine treatment.

Background: Personalized genomics instability, e.g., somatic mutations, is believed to contribute to the
heterogeneous drug responses in patient cohorts. However, it is difficult to discover personalized driver mutations
that are predictive of drug sensitivity owing to diverse and complex mutations of individual patients. To circumvent
this problem, a novel computational method is presented to discover potential drug sensitivity relevant cancer
subtypes and identify driver mutation modules of individual subtypes by coupling differentially expressed genes
(DEGs) based subtyping analysis with the driver mutation network analysis.

Results: The proposed method was applied to breast cancer and lung cancer samples available from The Cancer
Genome Atlas (TCGA). Cancer subtypes were uncovered with significantly different survival rates, and more
interestingly, distinct driver mutation modules were also discovered among different subtypes, indicating the

Conclusions: The research findings can be used to help guide the repurposing of known drugs and their
combinations in order to target these dysfunctional modules and their downstream signaling effectively for

Background

It is a long-standing problem in cancer treatment that
drugs often have heterogeneous responses and show
sensitivity in subsets of patient cohorts [1,2]. The diverse
genomics instability is believed to be responsible for the
heterogeneity of drug response [3]. Two large-scale data-
sets, i.e., the Cancer Cell Line Encyclopedia (CCLE) [4]
and Genomics of Drug Sensitivity in Cancer (GDSC) [5],
have recently been released independently to study the
causal relationship between hundreds of drugs’ sensitivity
and genomics aberrations of 1,000 cancer cell lines. On
the other hand, The Cancer Genome Atlas (TCGA) [6]
project profiles the genomics of about 10,000 patient
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samples across over 30 cancer types. The integrative analy-
sis indicated multiple subtypes of cancers with complex
genomics characteristics, e.g., breast cancer [7], squamous
cell lung cancer [8,9], and Uterine cancer [10]. Usually,
mRNA data from RNA sequencing and microarrays [8,9]
and somatic copy number alterations (SCNAs) or genetic
mutation were used to conduct the subtyping analysis by
comparing the difference among cancer samples [10].
However, subtyping analyses often have complex geno-
mics signatures, and thus failed to offer insight into drug
sensitivity and to identify the predictive driver mutations.
In this paper, we present a new integrative approach
to circumvent this problem by dividing cancer patients
into clinically relevant subtypes based on comparing dif-
ferentially expressed genes (DEGs) with the normal
(rather than comparing among cancer samples) and
uncover driver mutation modules (rather than individual
mutations) of individual subtypes based on the network
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analysis. Our hypotheses are that: 1) distinct and mutual
mutations in a network module can cause the same dys-
functional signaling pathways, and 2) the dysfunctional
signaling pathways are indicated by DEGs. The mutual
mutation module is necessary for cancer and taken advan-
tage of the low frequency of individual mutations [11].
Another advantage of using the ranking of DEGs is that
the subtypes sharing the common DEGs also have higher
possibility sharing the effective drugs. Drug repositioning
[12,13], drug combinations [14,15] and mechanism of
action (MoA) delineation [16] based on reverse differential
gene expression profiling are becoming popular and
important drug discovery studies, and are accelerated
means to find new indications of existing drugs [17,18].

Results

Methodology overview

Figure 1 shows the overview of the methodology. In spe-
cific, the mRNA expression data of individual cancer
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patients are downloaded from TCGA. To identify the dif-
ferentially expressed genes for each patient, the expres-
sions of individual genes in the normal tissue are fitted
by a Gaussian distribution with the mean and variance
estimated from the pooling of normal samples. The
p-value of each gene, which indicates how far the expres-
sion of the gene in the cancer sample is away from the
normal, is obtained by calculating the cumulative distri-
bution function (CDF) of observing the given gene
expression level, or higher for the up-regulated genes and
lower for the down-regulated genes. The top 100 up-
regulated and 100 down-regulated genes are selected as
the set of differentially expressed genes (DEGs) for the
calculating of gene set enrichment analysis (GSEA) score
[19]. The selected set of DGEs and gene ranking of any
two patients are used as inputs of GSEA to calculate the
distance between them. Subtyping (clustering) analysis is
conducted based on the sample distance matrix to obtain
the drug response relevant subtypes. Finally, the
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Figure 1 Methodology Overview. The cumulative distribution function (CDF) of individual genes in the tumor tissue is calculated in a fitted
Gaussian, and the mean and variance are estimated from the pooling of normal samples. Then the genes of individual cancer patients are
ranked based on their p-values that indicate how far their expression values are away from the normal. The 200 differentially expressed genes
(DEGs) are selected based on their ranking of p-values (smaller ones). The distance (difference) between any two patients is calculated by using
the average gene set enrichment analysis (GSEA) scores of the DEGs of the two patients. Consequently, the subtyping analysis is applied on the
sample distance matrix to discover the drug response subtypes and mutation modules.
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mutation data are extracted for each subtype and linked
into the driver mutation module through network
analysis.

Breast cancer stratification

1,012 breast cancer patients’ and 111 normal subjects’
mRNA profiles, as well as their corresponding mutation
profiles are downloaded. With the stratification strategy,
as shown in Figure 2, four subtypes of BRCA were
obtained with 457, 337, 31, and 187 patients respectively.
The p-value, 0.00812, shows the significant difference of
survival among the four subtypes, which partially indi-
cates the clinical relevance of the subtypes. Surprisingly,
all patients of subtype 3 (blue curve) survived during the
study period (about 4,000 days), whereas the subtype 2
(red curve) had a poor prognosis.

To discover the underlying driver mutations, the muta-
tion data from DNA sequencing was extracted. For each
subtype, the top ten high-frequency mutations, which
include genes mutated in more than 10% of patients of
each subtype, are shown in Figure 3-left panel. The col-
umn label of the heat map is the patient sample ID, and
the red color in the heat map represents mutation
detected in the corresponding sample, and the gray color
indicates that a gene has no mutation in the correspond-
ing sample. Subtype-3 has only a few mutations and has
the best prognosis outcomes. On the other hand, both
TP53 and PIK3CA mutations are top ranked in subtype-
2, which might explain the poor prognosis. The top
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Figure 2 Survival analysis of breast cancer stratification. Four
subtypes were obtained with the number of patients in each
cohort: 457, 337, 31 and 187, respectively. Four subtypes of BRCA
were obtained with 457, 337, 31, and 187 patients respectively. The
p-value of the significant difference of survival among the four
subtypes is 0.00812. Subtype 1: black curve; subtype 2: red curve;
subtype 3: blue curve; subtype 4: green curve
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ranked mutations are further connected into network
modules, as shown in Figure 3-right panel. Different
genes were involved in the driver mutation network for
individual subtypes, and they are linked via one or two
connection genes. These driver mutation modules offer
insight into the dysfunctional modules that regulate the
prognosis and drug responses.

Adjusted survival analysis of breast cancer

We fitted the survival of breast cancer in COX regression
model and found the important characteristics that can
affect the prognosis and survival from the clinical infor-
mation of breast cancer in TCGA. These factors are
“menopause status”, “margin status”, “ajcc nodes patholo-
gic pn”, “ajcc pathologic tumor stage” and “age”. Figure 4
shows the adjusted survival curves of breast cancer after
fitting in the COX model. We can see that the survival
curves after adjustment have only minor changes com-
pared with previous survival curves, which means the

clustering results are stable.

Lung cancer stratification

For lung adenocarcinoma (LUAD), 443 cancer patients’
and 58 normal subjects’ mRNA profiles, and their corre-
sponding mutation profiles are downloaded. With the
stratification strategy, five subtypes of LUAD were
obtained from five cohorts of 99, 59, 83, 53, and 149
patients respectively based on the best p-value, as shown
in Figure 4. The p-value, 0.00251, shows the significant
difference of survival among the five subtypes. Though
all the LUAD subtypes have relatively poor prognoses
(survival rate is about 10%) comparing to breast cancer
after 8 years (after 3,000 days), there are distinct survival
patterns before 5.5 years (around 2,000 days).

Figure 5 shows the top twenty high-frequency mutations
(the amount of genes that are mutated more than 10% in
the patients of each subtype) in the left-panel; the reason
may be that LUAD has many more mutations compared
with breast cancer. The network modules of the driver
mutations are showed in the right-panel. Subtype-2 (red)
and subtype-5 (brown) have less TP53 mutation and may
contribute to their relatively better prognosis outcomes.
On the other hand, the existence of TP53, TTN, MUCI16,
and CMSD3 mutations in the other three subtypes may be
responsible for their poor prognoses. In conclusion, the
uncovered driver mutation modules (rather than indivi-
dual mutations) are important regulators of the clinically
relevant subtypes. Therefore, drugs and drug combinations
targeting the downstream signaling of TP53 and TTN
modules might be effective for better cancer therapy.

Adjusted survival analysis of lung cancer
We fitted the survival curves of lung cancer using COX
regression model and found the important
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Figure 3 Driver mutations signatures (left panel) and network modules (right panel) of four breast cancer subtypes. (Red indicates
driver mutations, and cyan means the connection nodes. Left panel: the heat maps of the top ten high-frequency mutated genes of four
subtypes. The column label: the patient samples ID of each subtype; the row label: ten high-frequency mutated genes ID. The red color in the
heat map represents mutation detected in the corresponding sample, and the gray color indicates that a gene has no mutation in the
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characteristics that have significant impact on the prog-
nosis and survival from the clinical information of lung
cancer in TCGA. We found that, for lung cancer, “the
history of other malignancy” and “ajcc pathologic tumor
stage” are the important factors. Figure 7 shows the
adjusted survival curves of lung cancer after fitting in
the COX model. We can see that the survival curves
after adjustment also have only small changes compared
with original survival curves.

Discussion and conclusions

Cancer is a complex disease, and individual cancer
patients often have heterogeneous genomics instability
such that anti-cancer drugs often have profound sensi-
tivity in a subset of patients bearing the same genomic
mutation modules. Though large-scale genomics profil-
ing data of individual patients are now available, the
genomic mutation modules that regulate drug responses
remain mostly unknown. Effective computational
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Figure 4 Adjusted survival curves of breast cancer after fitting
Cox model. The adjusted four survival curves of four breast cancer
subtypes after fitting to the Cox model to eliminate the other
characteristics that significant impact on the prognosis and survival.

methods to mine and extract the knowledge from the

large-scale genomics datasets are needed urgently.
Motivated by the successful drug repositioning and

discovery of drug mechanism of action by using reverse
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Figure 5 Survival analysis of lung cancer stratification. Five
subtypes were obtained with 443 numbers of patients: 99, 59, 83,
53 and 149, respectively. Five subtypes of LUAD were obtained with
99, 59, 83, 53 and 149 patients respectively. The p-value of the
significant difference of survival among the five subtypes is 0.00251.
Subtype 1: black curve; subtype 2: red curve; subtype 3: blue curve;
subtype 4: green curve; Subtype 5: brown curve
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gene expression profiling, this study presented an inte-
grative computational method to stratify cancer patients
into potential clinical correlated subtypes and identify
the underlying driver mutation modules that are respon-
sible for the drug sensitivity. The evaluation results on
two major types of cancer (breast and lung) reveal sub-
types with significant survival time difference and dis-
tinct driver mutations of individual subtypes. The
proposed method opens up a new paradigm of cancer
stratification. More importantly, it uncovers the underly-
ing driver mutation modules (mechanism of drug sensi-
tivity), which might be used to find effective drugs that
directly target the mutations or block the downstream
signaling of the mutation modules. In future work, we
will refine the mutation network modules, and discover
synergistic drug combinations blocking the alternative
downstream signaling of the mutation network modules,
and test the predicted drug combinations on cell lines
bearing the same mutation network modules.

Data and methodology

Personal genomics data

The mRNA and mutation data from RNA/DNA sequen-
cing, and clinical data (e.g., the survival time informa-
tion) of breast invasive carcinoma (BRCA), Lung
adenocarcinoma (LUAD), as well as the corresponding
normal samples, were obtained from TCGA data portal.
In total, there are 1,049 mRNA tumor samples (111 nor-
mal samples), 1,012 mutation samples of BRCA; 488
mRNA tumor samples (58 normal samples), 443 muta-
tion samples of LUAD.

Ranking of differentially expressed genes

We use the RNASeqV2 data of breast cancer and lung
cancer in TCGA portal. We fitted the individual genes
of the normal samples into Gaussian distribution and
estimated the normal mean and standard variation by
Maximum Likelihood Estimation. Then we calculated
the CDF (Cumulative Distribution Function) of the indi-
vidual genes of each tumor sample in the fitted Gaus-
sian distribution which is the p-value that indicates the
significant difference between the tumor sample and the
normal samples. The larger value of CDF of one tumor
sample gene, the more up-regulated of this tumor sam-
ple gene, and vice versa. Then we ranked the genes in
each patient based on the p-values, which list the genes
from the most up-regulated to the most down-regulated.
We called it the ranked gene list for each patient which
can be used to calculate the distance between any two
patients.

Calculation of patient genomics distance
The distance between patient A and patient B is deter-
mined by the assessment of how similar the two
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Figure 6 Driver mutations signatures (left panel) and network modules (right panel) of five lung cancer subtypes. (Red indicates driver
mutations, and cyan means the connection nodes. Left panel: the heat maps of the top twenty high-frequency mutated genes of four subtypes.
The column label: the patient samples ID of each subtype; the row label: ten high-frequency mutated genes ID. The red color in the heat map
represents mutation detected in the corresponding sample, and the gray color indicates that a gene has no mutation in the corresponding
sample. Right panel: the networks of top ranked mutations of five subtypes. Red nodes: mutated genes; green nodes: connections genes.

patients’ ranked gene lists are. We selected the 100 most
up-regulated genes and 100 most down-regulated genes
in patient A as the signature, and qualified the distribu-
tion of this signature in the ranked gene list of patient
B, and vice versa. As for the problem of selecting the
best number of up/down regulated genes for the

clustering analysis, we tested a series number of up/
down genes as 2500, 2000, 1500, 1000, 500, 300, 200,
100, 50 respectively. In general, the clustering results are
stable to the number of genes, and then we select 100
up/down regulated genes empirically. We conducted the
Gene set Enrichment Analysis (GSEA) [19] using patient
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Figure 7 Adjusted survival curves of lung cancer after fitting
Cox model. The adjusted five survival curves of five lung cancer
subtypes after fitting to the Cox model to eliminate the other
characteristics that significant impact on the prognosis and survival.

A’s signature and patient B’s ranked gene list, and vice
versa as followed. For patient A, we got the enrichment
scores of 100 up-regulated genes and 100 down-regu-
lated genes with respect to the ranked gene list of
patient B, defined as ES}” and ES%“". The Total Enrich-
ment Score (TES) of patient A with respect to patient B

is defined as follows:
ES“P _ Esdawn
TESpp=1— B 5 B

The TESs g quantifies the genomics variation differ-
ence between patients A and B. Then the distance

measurement among patients is defined as:
TESAp + TES L .
Dag = AB 5 BA which is the corresponding ele-

ment in the genomics distance matrix M.

Clustering analysis

The hierarchical clustering method [20] was employed.
After we calculated the distance between every two
patients, we got the distance matrix M of N*N, where N
is the number of the patient. The distance matrix is
used to generate the dissimilarly structure. The cluster
method was set as the ‘complete linkage’ method that
tends to find similar clusters.

Survival analysis
The survival analysis was conducted by using the ‘survi-
val’ package in R [21]. It uses the cox-proportional
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hazards model to calculate the patient survival in each
subtype using clustering analysis. An associated p-value
is calculated to determine the significance of difference
among each subtype’s survival curve. The patients’ ‘vital
status,” ‘last contact day,” and ‘death days’ were extracted
from clinical data of samples downloaded from TCGA.

Driver mutation module discovery

The PPI data was obtained from BioGRID database [22].
It is a widely used PPI database. For the patients in each
subtype of one cancer, we select the top 15 genes based
on their mutated frequency and mapped them to the
PPI network. An optimal connected sub-network was
found for each subtype by solving Steiner tree problem.
Let G(V, E) be the background PPI network and V,, be
the list of top mutated genes. The shortest path for each
pair of genes in V,, was calculated using Dijkstra’s algo-
rithm [23], which is a graph search algorithm that solves
the single-source shortest path problem. We use this
algorithm to find the shortest path between each pair of
the top mutated genes, and then find the minimum
spanning tree of the integrated network include all the
top mutated genes and their paths as followed. The
pairwise distance was calculated and denoted by
D = (djj). A complete network, K,,, was generated with
nodes in V,,. Then dj; was assigned as the edge weight of
(vi, vj) € E(Ky, ). The minimum spanning tree of K,,, T,,
was calculated. We replaced each edge in Ty, with the
shortest path between the two end nodes. The genes in
the final network were considered as the marker of the
subtype.
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