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Abstract

and how do they contribute to disease?

further investigation.

Background: There are now over 2000 loci in the human genome where genome wide association studies
(GWAS) have found one or more SNPs to be associated with altered risk of a complex trait disease. At each of
these loci, there must be some molecular level mechanism relevant to the disease. What are these mechanisms

Results: Here we consider the roles of three primary mechanism classes: changes that directly alter protein function
(missense SNPs), changes that alter transcript abundance as a consequence of variants close-by in sequence, and
changes that affect splicing. Missense SNPs are divided into those predicted to have a high impact on in vivo protein
function, and those with a low impact. Splicing is divided into SNPs with a direct impact on splice sites, and those with
a predicted effect on auxiliary splicing signals. The analysis was based on associations found for seven complex trait
diseases in the classic Wellcome Trust Case Control Consortium (WTCCC1) GWA study and subsequent studies and
meta-analyses, collected from the GWAS catalog. Linkage disequilibrium information was used to identify possible
candidate SNPs for involvement in disease mechanism in each of the 356 loci associated with these seven diseases.
With the parameters used, we find that 76% of loci have at least of these mechanisms. Overall, except for the low
incidence of direct impact on splice sites, the mechanisms are found at similar frequencies, with changes in transcript
abundance the most common. But the distribution of mechanisms over diseases varies markedly, as does the fraction
of loci with assigned mechanisms. Many of the implicated proteins have previously been suggested as relevant, but the
specific mechanism assignments are new. In addition, a number of new disease relevant proteins are proposed.
Conclusions: The high fraction of GWAS loci with proposed mechanisms suggests that these classes of
mechanism play a major role. Other mechanism types, such as variants affecting expression of genes remote in the
DNA sequence, will contribute in other loci. Each of the identified putative mechanisms provides a hypothesis for

Background

There is now an explosion of new genome-scale data
relating genetic variation within human populations to
phenotype, and particularly to common disease. To date,
most information has been obtained through genome
wide association studies (GWAS) linking common single
nucleotide variants (the single nucleotide polymorphisms,
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SNPs) to disease risk. The results from all these new data
are tantalizing - on the one hand we now have extensive,
reliable information on the associations between particu-
lar genetic variants and phenotypes. On the other, few of
these associations provide any insight into the mechan-
isms linking genetic variation to phenotype. As a conse-
quence, there are few immediate impacts on health in
terms of improved therapies, reliable prognosis, or other
benefits.

An important step in exploiting the data is to search for
mechanisms that link the presence of a SNP to altered

© 2015 Pal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons

( BioMVed Central

Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


mailto:jmoult@umd.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pal et al. BMIC Genomics 2015, 16(Suppl 8):54
http://www.biomedcentral.com/1471-2164/16/58/S4

in vivo gene product function, and hence contribute to
disease risk. The presence of a single nucleotide variant
may perturb the function of a gene product through a
range of mechanisms, including transcription factor
binding; miRNA interactions; messenger RNA splicing,
structure and half-life; translation efficiency; and non-
synonymous substitution effects. There have been a num-
ber of approaches to the prioritization of SNPs and
corresponding genes from GWAS signals using genomic
locations, functional annotations, network rewiring, and
integrating evidence from multiple sources [1-7]. In this
study, we estimate the contribution of five molecular
mechanisms falling into three major classes - missense
SNPs that directly affect protein function (subdivided
into those predicted to have a high impact and those pre-
dicted to have a lower impact), SNPs that alter expression
level, and SNPs that may affect splicing (subdivided into
those directly affecting splice sites and those acting
through auxiliary splicing signals).

Genotype/phenotype relationships in complex trait
disease

The relationship between genome sequence and a com-
plex trait disease phenotype is neither straightforward nor
completely understood. Further, GWA studies, though
powerful, have a number of limitations, and provide only a
partial and biased view of the nature of complex trait
disease. In this paper, we use the following overall model:
A set of variants, differences in base sequence relative to a
reference genome, each alter some aspect of the in vivo
activity of the product of one or more genes (for conveni-
ence, we focus on protein gene products, but RNA is
included in principle). In turn, these altered gene product
functions change the performance of relevant pathways
and processes, and these changes, together with environ-
mental effects, affect disease relevant phenotype properties
(disease risk, disease symptoms, or disease related para-
meters such as blood pressure or lipid levels). We refer to
the variants for which there is an apparent mechanism for
affecting disease phenotypes as mechanism variants, in the
sense that there is some mechanism that links the pre-
sence of the variant to the change in activity of gene pro-
ducts and hence a disease phenotype. (Other authors have
used the term ‘causal SNPs’, for example [8]). We are
interested in elucidating the molecular level aspects of
these mechanisms, where possible.

Mechanism variants may be close in DNA sequence to
the affected genes, and act by such mechanisms as alter-
ing the affinity of a transcription factor for one of its
binding sites, thus altering the RNA abundance for a
gene; affecting the stability of a message by altering the
binding of a protein or microRNA to it, affecting the rate
of translation through changes in message structure pro-
pensities, affecting the distribution of splicing products
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by changing the affinity of a splicing modulation factor;
or by resulting in an amino acid substitution that in
some way affects in vivo function (folding, degradation,
aggregation, post-translational modification, ligand bind-
ing, catalysis....). The present analysis aims to encompass
all these effects. Figure 1 summarizes the mechanisms
that are included.

Mechanism variants may also be remote in the sequence,
acting as a consequence of the three dimensional organiza-
tion of chromatin. New experimental methods such as Hi
C are now providing data on chromatin three-dimensional
organization [9], and cases of variants affecting the expres-
sion other than the closest gene have been found, for
example [10]. Sequence remote effects act primarily on the
expression level of genes, and in principle, GWAS data can
be used to find associations between the presence of SNPs
and the expression level of a gene wherever these occur in
the genome. In practice, population sizes used in the stu-
dies limits how many associations may be tested for a sin-
gle gene, since multi-testing considerations reduce the
statistical significance of a particular observation. For this
reason, most studies to date provide only associations
between variants and genes close by in the sequence (up to
1Mb), and we restrict ourselves to these. In future, it
should be possible to combine information from Hi C and
similar experiments to test for associations for all SNPs
that are near in space to a gene, not just in sequence.

There are also epigenetic mechanisms that alter the
expression level of genes, such as patterns of DNA
methylation and histone modifications. For example, a
study of Type 2 Diabetes detected many locations where
levels of DNA methylation are statistically different
between case and control populations [11]. These differ-
ences may be inherited or environmentally induced, and
to the extent that the former is true, will contribute to
missing heritability from GWA studies [12]. In either
case, they are outside the scope of the present analysis.

Types of mechanism variant

Mechanism variants may be single base changes, small
insertions or deletions (indels), copy number changes, or
larger scale chromosome rearrangements. There are an
increasing number of studies using copy number detection
(for example [13]), but most GWAS results are SNP based.
These studies may nevertheless identify mechanism var-
iants other than SNPs if these are in appropriate LD with
SNPs on the microarray used. In this work, for missense
and splicing, we explicitly examine potential mechanism
SNPs, and not other types of variant. However, in some
cases, where information is derived from linked marker
SNPs, such as those for disease risk and expression
change, without direct identification of mechanism var-
iants, we may also include other types of variant, particu-
larly small indels.
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Figure 1 Mechanisms by which a SNP or other genetic variant may affect the in vivo level of activity of a protein nearby in the DNA
sequence. At the DNA level, there may be an impact on the efficiency of transcription through effects on regulatory (a) and transcription factor
(b) binding. At the RNA level, message stability and efficiency of translation may be altered by binding of protein protective factors () and
microRNAs (d); or by a change in message structure propensities (e); or a change in sequence due to altered splicing either through direct
impact on a splice junction (f) or on an auxiliary splicing signal (g). At the protein level, there may be an effect on the efficiency of folding (h) or
protein half-life through destabilization of the tertiary structure (i). These variants may also cause aggregation, with toxic consequences. There
may also be an effect on protein function (j), including ligand binding, catalysis, allosteric regulation, post-translational modification, and
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Inferring the mechanism relevance of a SNP
The involvement of a SNP in a disease related mechan-
ism may be inferred in three basic ways. First, any effect
on fitness will be reflected in the frequency and type of
substitutions accepted at that position in different
species. The availability of complete genome sequences
for many species has allowed wide application of this
approach, and it has proven effective at the amino acid
level for identifying missense single base variants causa-
tive of monogenic diseases [14] and missense driver
mutations in cancer [15]. We use these types of methods
[14,16,17] to identify mechanism SNPs in complex trait
disease. The same approach may be used at the base level
to identify positions involved in mechanisms such as
transcription control. There it has been less effective,
although conservation of bases across a region has been
used successfully to identify functional elements [18].
Secondly, direct knowledge of the functional role of
DNA bases involved in a particular mechanism may be
utilized. In this study, we use three types of such informa-
tion: that base changes within two bases of a splice site
abolish splicing at that position [19], that some base
changes close to a splice site may modulate splicing at that
position [20], and that missense base substitutions affect
specific aspects of protein function. For the latter, we use

a model that predicts effects on protein structure stability
[21]. We do not make use of knowledge of functional ele-
ments at the DNA level, such as transcription sites. The
ENCODE project [22] has accumulated an enormous
quantity of such information. But the presence of a tran-
scription regulatory factor binding site does not imply that
binding affects transcription, and in most instances that is
likely not the case [23-25].

The third class of methods for inferring a connection
between a SNP and an effect on protein activity is to uti-
lize data on an intermediate phenotype, such as mRNA
abundance. So far the primary data of this type are from
eQTL studies - GWA studies in which SNPs associated
with a change in expression of one or more genes are
identified. The phenotype of expression change may arise
from a number of mechanisms at the DNA and RNA
levels (Figure 1) such as an altered transcription factor or
enhancer binding site, altered distribution of splicing iso-
forms, splicing induced nonsense mediated decay, changes
in message half life arising from altered binding of factors
affecting stability, altered inhibition of translation by
microRNA binding, and altered rate of translation through
changes in message structure propensity. The eQTL data
are now very extensive, and provide a powerful means of
identifying such expression related mechanisms. There are
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some caveats. First, reproducibility of these data has been
low, implying a significant level of false positives in most
single studies. We have addressed that by using only
eQTL relationships found in two or more independent
studies. That procedure is expected to greatly reduce false
positives, but will also omit some true positives, resulting
in a conservative estimate for the role of this mechanism.
Second, expression related mechanisms may be tissue and
population dependent. Analysis of the datasets used as the
basis for this study indicates that population variability is
not a major concern, but that some fraction of false posi-
tives is unavoidable when extrapolating across tissues and
cell types. On very limited data, we estimate this rate at 5 -
20%; see [26] for details. Third, marker SNPs associated
with an expression change must be compared with mar-
kers from the relevant GWA disease study to determine
whether these are compatible with the same underlying
mechanism variant.

Results

GWAS loci and candidate SNPs

We collected disease associated markers for 356 loci for
the seven complex trait diseases included in the WTCCC1
study [27], and subsequent studies and meta-analyses of
these as accessed from the GWAS catalog (Table 1). The
number of identified loci varies substantially for the differ-
ent diseases, from a high of 90 for Crohn’s Disease to a
low of 17 for Hypertension. Partly, that reflects the size of
the studies that have been conducted for each disease -
bigger study populations lead to the discovery of more
loci. Partly this may reflect the different nature of these
diseases, including the degree of genetic complexity and
the role played by genetic factors not detectable by GWAS
methods. Because of linkage disequilibrium, the marker
SNPs in the loci represent a small fraction of total SNPs
that may be involved in mechanism, and so are unlikely to
be directly involved in disease mechanism, but rather are
in LD with mechanism variants. For missense and splicing
mechanisms, in each locus, we selected SNPs in appropri-
ate LD to the representative marker SNP (see Methods).
SNPs up to +/-200kb on either side of the marker were

Table 1. Number of GWAS loci and candidate SNPs used
in this study for seven common human diseases

Disease Total Loci Total candidate SNPs
Bipolar Disorder 69 37,924
Coronary Artery Disease 46 33,584
Crohn'’s Disease 90 57,665
Hypertension 17 12,169
Rheumatoid Arthritis 37 27,657
Type 1 Diabetes 54 34,945
Type 2 Diabetes 43 31,309
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considered. The locus boundaries delineated by the set of
accepted candidate SNPs may encompass several protein
coding genes, depending on the strength of LD in the
region. Details of locus boundaries are provided in sup-
plementary material to [28]. No candidates with minor
allele frequency less than 5% frequency are included,
because of inadequately reliable LD estimates below that
level. The process generates 235,253 candidate SNPs for
the 356 included loci across the seven diseases (Table 1).
These candidate SNPs form the set of variants consid-
ered for missense and splicing mechanisms. For effects
on RNA expression, we compare the location of the dis-
ease marker SNPs with markers for eQTL relationships
(see Methods) [26].

Contributions of three primary mechanism classes in
disease loci

Missense candidates

A total 1595 of the candidate SNPs are missense, and
69% of the 356 loci harbor at least one of these. Compu-
tational methods [14,21] were used to estimate which of
these missense SNPs have a significant impact on in
vivo protein function. A total of 432 were assigned as
high-impact on this basis, providing at least one high-
impact missense candidate for mechanism in 118 (33%)
of the loci. A further 124 (35%) loci have a predicted
low impact missense SNP and no predicted high-impact
one.

Expression-altering candidates

A set of 16 eQTL studies (Supplementary Table 5 in
Additional file 1) were matched against the disease mar-
ker SNP information for the seven diseases [26]. Only
eQTL relationships observed in at least two separate
studies are included. 163 (46%) of the 356 loci are found
to be consistent with an underlying expression change
mechanism.

Splicing candidates

SplicePort [20] was used to identify those SNPs likely to
affect splicing efficiency through splicing signals outside
of the nearly invariant GT and AG splice site dinucleo-
tides. Applying this method to the candidate SNPs for
the seven diseases, we found a set of 453 SNPs that puta-
tively influence splicing, with at least one such SNP in
37% of the disease loci (131 loci). Supplementary Table 1
in Additional file 1 provides the scores for all tested sites.
We also checked each splice junction for SNPs that
directly disrupt the site. We find 37 loci (10%) out of 356
loci have at least one candidate that directly alters a
splice site GT or AG dinucleotide.

Relative roles of each mechanism in these diseases

Figure 2 shows the fraction of disease related loci in
each of the seven diseases found to have a potential
mechanism including high and low impact missense,
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Figure 2 Distribution of loci covered by each mechanism across seven diseases.

expression, and splicing. Overall, 76% of these loci har-
bor at least one such mechanism. With the exception of
direct impact on a splice site, all mechanisms occur
with approximately the same frequency over the set of
diseases. (Numbers for the direct splice mechanism are
too low for comparison. The number of loci for Hyper-
tension is too small for inclusion in this and the other
analyses). The fraction of loci with putative mechanisms
for the different diseases ranges from 85% for Coronary
Artery Disease to 64% for Bipolar Disorder. In Bipolar
Disorder, for expression and regulation of splicing, the
low fraction of loci may partly reflect tissue specific nat-
ure of the signal, since only two heterogeneous brain
samples are included in the analysis. But missense
mechanisms are also lowest in this disease.

There is substantial variation in the relative roles of each
mechanism within different diseases. Most notably, the
ratio of low to high impact missense varies from about 2
for Coronary Artery Disease and Type 2 Diabetes, to 0.5
for Crohn’s Disease, with Bipolar Disorder, Type 1 Dia-
betes and Rheumatoid Arthritis having intermediate ratios
of about 1. A possible explanation for these striking differ-
ences is related to the fact that the diseases with a high
proportion of low impact SNPs (Type 2 Diabetes and Cor-
onary Artery Disease) are late onset, while those with
lower values (Crohn’s Disease, Bipolar Disorder, Type 1
Diabetes) are early onset. Mechanism variants in late onset
diseases may be subject to reduced selection pressure, with
the result that methods for assigning impact based on
sequence profiles yield a larger proportion of variants as
low impact.

Another feature of these data is that the there is a con-
siderable variation in the relative role played by auxiliary
splicing mechanisms across the diseases, from a high of
71% of Rheumatoid Arthritis loci with such mechanisms
to a low of 30% for Bipolar Disorder.

Occurrence of multiple possible mechanisms in loci
A further question we address is the extent to which there
is a single mechanism assigned each locus, or whether
there is a possibility of multiple mechanisms. Figure 3
shows the distribution of number of mechanisms found
per locus across the seven diseases. (A maximum of four
types of mechanisms may be operative in a locus as the
high-impact missense and low impact missense counts are
mutually exclusive). Overall, 24% (86) of loci have no pro-
posed mechanisms. Bipolar Disorder has the largest frac-
tion of no mechanism (36%) and Type 2 Diabetes is also
high (33%), compared to other diseases (Crohn’s Disease
19%, Coronary Artery Disease 15%). For the 270 loci with
at least one proposed mechanism, overall 35% have a
single mechanism with the higher fractions observed for
Coronary Artery Disease (38%) and Type 2 Diabetes (48%)
and the lowest fraction for Rheumatoid Arthritis (21%).
Many cases of effects on splicing, both directly on
splice sites and on auxiliary splice signals, are expected to
be observable as expression changes, particularly as a
result of nonsense mediated decay [29]. At the level of
individual proteins within loci, 275 proteins have a puta-
tive splicing mechanism (including both direct splice site
and auxiliary splicing sequences). Of these, 83 (30%) are
also assigned an expression mechanism. Overlap is lower
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for other pairs of mechanisms (for example 17% of pro-
teins with a high-impact missense mechanism also have
an expression mechanism).

Genotype/phenotype model

For present purposes, we divide the relationship
between genotype and phenotype into two parts: (1) the
effect of genetic variants on the activity of the relevant
gene products (proteins in this model), and (2) the effect
of the altered activities on the phenotype of interest. We
define the total effect of a variant on a phenotype as the
combination of the change in activity (A;) of an affected
protein ‘i, A;, and the impact of that change on the
phenotype of interest ‘q’, 6P;q. A and &P are fractional
changes of activity and a phenotype parameter, such as
disease risk, respectively. The relationship between the
set of all altered protein activities, {3A;} and the total
phenotype change 6P, can be expressed as:

8Pq = f({8Ai}, (E}) (1)

where {E} is the set of relevant environmental factors.
In a GWA study, environmental factors are considered
to be averaged out over the population samples or to be
constant, and so can be omitted. Then we can write the
total effect of all perturbed gene products on the pheno-
type ‘q’ as a Taylor expansion:
n

apq=2 ’*aA+ZZaAalaAaA+ 2)

where the first term represents the linear portion of
the relationship between an activity changes of the gene
products {8A;} and the phenotype, and the second and

higher terms represent non-linear contributions and
also epistatic effects. In GWAS data, epistatic effects are
generally undetectable, probably because of the study
sizes are too small to represent such higher dimensional
cross terms, so data for these contributions are not
available. The linear approximation to the coupling
between {8A;} and 6Pq may be expressed as:

n
8Pq = Y _ SigbA; 3)

i=1

where S;q = 0P, / dA; and is a dimensionless coeffi-
cient representing the sensitivity of phenotype ‘q’ to
change of activity of gene 1, equivalent to that used as a
local sensitivity coefficient in system robustness analysis
[30]. There are limitations to the linear model, as first
identified by [31]. Errors from non-linearity will be
smaller when 8A is small. Here the model serves largely
as qualitative approximation between the size of a pro-
tein activity perturbation and the severity of the result-
ing phenotypic impact.

Properties of 8A, the change in protein activity resulting
from the presence of an SNP

The protein in vivo activity change 3A may be positive or
negative, representing a gain or loss of function respec-
tively at the molecular level. eQTL studies of the relation-
ship between the presence of an SNP and message level
show an approximately equal fraction of increase versus
decrease of expression [26]. Most missense changes reduce
protein activity [32], and rare missense variants causing
monogenic disease also usually reduce activity, often
through destabilization of protein three-dimensional
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structure [21,33]. Similarly, in cancer, missense mutations
in tumor suppressors reduce molecular activity [15], while
mutations in oncogenes result in a gain of activity of some
form. In any given protein, many possible missense muta-
tions lead to loss of function, while only a few very specific
ones result in gain of function. For this reason, we expect
most missense SNPs contributing in complex trait disease
to result in loss of molecular activity. Direct splice site hits
and auxiliary splicing changes also lead to loss of function.

The size of activity change §A resulting from an SNP
also varies greatly. eQTL studies show quite small
expression differences associated with the presence of
SNPs, with a median change just over two fold [26].
Missense variants range in impact from neutral to
essentially abolishing function [32]. Monogenic disease
mutations, for example those causing phenylketonuria
[30], usually exhibit a very large reduction in protein
activity, in excess of five fold. Computational methods
are trained on these types of disease data, and so detect
loss of activity greater than that magnitude. We refer to
these levels of activity change as ‘high-impact’. Direct
splice site changes also usually result in a high impact
on protein activity, while auxiliary splicing variants, like
missense variants, vary in impact.

Properties of S;q, the sensitivity coefficient relating
change of protein activity and a disease phenotype
Subject to correction for incomplete linkage disequili-
brium between marker SNPs and mechanism variants,
values of 6P;q are known from GWAS. Generally, the S;q
values, reflecting the strength of coupling between pro-
tein activity and a disease phenotype, are unknown. For a
few GWAS loci, where a mechanism has been identified
and quantified, 3A; is known, and so S;; can be obtained
using equation 3. For example, a missense mechanism
SNP in MSP (Macrophage stimulating protein) has been
shown to reduce interaction with the cell surface recep-
tor RON approximately five fold [34] thus for a homozy-
gous substitution 6A = -0.8 (80% loss of activity). This
mechanism allele is in almost complete linkage disequili-
brium with a Crohn’s Disease marker SNP for the locus,
and the odds ratio of disease in the presence of the
homozygous minor genotype versus in the presence of
the homozygous major genotype is 1.84 [27], corre-
sponding to a 3P of 0.84, yielding a sensitivity coeffi-
cient S, 0P/5A, of 0.84/0.8, approximately 1.

Only a small fraction of all genes affect any particular
disease phenotype ‘q’, so that for most genes, S;q is
essentially zero. For some others, 6P, is too small to be
detectable in a usual GWAS experiment [35]. Many
genes with a large sensitivity coefficient S are also not
be discovered by GWAS, including most known drug
targets [36]. (Likely because there is strong selection
against variants that affect the activity of these proteins).
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For most genes with intermediate impact on the pheno-
type an association will be discovered, provided the
mechanism variant is in sufficiently strong linkage dise-
quilibrium with one or more tag SNPs on the microar-
ray used [37]. Two factors affect whether 6P;q exceeds
the detectability threshold - the amplitude of S;; and the
amplitude of 3A;. For genes with large coupling to the
phenotype (large |S;iq|), low impact variants, such as
those arising from expression, auxiliary splicing or low
impact missense, may produce a sufficiently large A to
provide a detectable association with the disease pheno-
type. For such genes, high-impact missense SNPs or
splice site hits may produce a high penetrance mono-
genic disease effect [38]. For genes with a small S, to a
particular disease phenotype ‘q’, low impact SNPs will
not result in a sufficiently large value of 6P;;, whereas
high-impact missense or direct splice hits may be
detected.

Functional relevance of proteins with mechanism variants
The presence of a mechanism variant affecting the activ-
ity of a particular protein does not necessarily imply that
the protein is involved in the disease. Particularly when
there is more than one apparent mechanism in a locus
affecting different proteins, one or more of these may be
irrelevant (that is, the proteins concerned have a near
zero sensitivity coefficient, S, to the disease phenotype).
Supporting evidence of relevance can be provided by the
broader biological role of an implicated protein. Here we
use criteria of whether the protein has been suggested as
appropriate by the authors of a GWA study, or whether
there is other literature support for its relevance. We
subdivide all 1014 proteins that have a putative mechan-
ism for a specific disease into four categories of disease
relevance. (Note that since some proteins have mechan-
isms for more than one disease, the total number of
unique proteins is lower, at 840). Category A contains
those proteins where the specific mechanism has been
already recognized in the literature for the corresponding
disease; category B is for those proteins that are already
proposed as candidate proteins for involvement in dis-
ease mechanism through GWA and other studies, but for
which the molecular mechanism has yet to be estab-
lished; and category C contains those proteins without a
previously proposed relationship with the corresponding
disease. All MHC region proteins are categorized sepa-
rately, as category D, as proteins in this region have a
well-established connection with the immune component
of the diseases concerned and extensive linkage disequili-
brium makes assignment of specific mechanisms difficult.

Table 2 shows the number of proteins in each category
for each mechanism, for all diseases. The higher number
(24) of category A proteins for change in expression com-
pared to other mechanisms is primarily a consequence of
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a number of studies that have looked at difference in
expression between disease case and control populations
for genes that have been implicated by GWA studies, for
example [39,40]. Proteins previously identified as disease
relevant have significantly more mechanisms assigned
than those not previously considered disease relevant (all
P values < 0.0001, see Methods), as would be expected if
most proteins involved in mechanism have been correctly
identified. High-impact missense and expression mechan-
isms occur proportionately more in classes A and B than
in class C (ratios of 1.4 and 1.5 respectively), compared
to low impact missense and auxiliary splicing (ratios of
0.79 and 0.96). This variation suggests a higher fraction
of false positives in low impact missense and auxiliary
splicing than in the other mechanisms. Note that
although there is an overall enrichment of mechanisms
in previously identified proteins, it is likely that some of
the newly implicated proteins are also involved in the
diseases.

Table 3 shows the number of loci in each category for
each mechanism for all diseases. (In assigning categories
to loci, if a locus contains proteins in more than one
category, A takes precedence of B, which takes prece-
dence over C).

13% of all expression mechanism loci have a category
A protein, substantially more than for other mechan-
isms. For all mechanisms, the relative role of class C
proteins is lower here than in the protein level analysis,
as a consequence of a portion of class C proteins occur-
ring in loci where there is also a class A or B one.

Figure 4 shows the fraction of loci with proposed
mechanism proteins (categories A and B), for each
mechanism, for each disease. There is considerable var-
iation by disease. For example, the fraction of loci with
candidate proteins is smaller in Bipolar Disorder than in
other diseases. Variability is especially high for loci con-
taining high-impact missense variants. For example, for
Type 2 Diabetes, only seven of the 42 non-MHC loci
contain at least one high-impact missense variant, and
all of these have at least one category B protein. For
Rheumatoid Arthritis, many category C proteins in
which mechanisms occur have been identified as rele-
vant (category B) for other autoimmune diseases such as
Celiac Disease and Multiple Sclerosis, reflecting
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incomplete annotation. The fraction of putative auxiliary
splicing mechanisms also varies across the diseases, and
is lowest for Bipolar Disorder.

Supplementary Table 4 in Additional file 1 lists the
mechanisms for all category A proteins.

Methods

More extensive information on the methods used to
identify putative mechanisms is given in [28](missense),
[26] (expression), and [20] (http://Spliceport.org, auxili-
ary splicing). Here we recapitulate key aspects. Data for
the missense analysis are available as supplementary
information in [28], and those for the expression analy-
sis via [26]. Splicing data are in the supplementary
material in Additional file 1 for this paper.

Collection of GWAS data

High confident GWAS markers (21 loci with P-value <
5.0x1077) were collected from the Wellcome Trust Case
Control Consortium (WTCCC1) [27] seven disease study
(Bipolar Disorder, Coronary Artery Disease, Crohn’s
Disease, Hypertension, Rheumatoid Arthritis, Type 1 Dia-
betes, and Type 2 Diabetes), together with other signifi-
cant markers (an additional 335 loci with P-value < 1E-05)
from subsequent studies and meta-analyses as compiled in
the GWAS catalog (http://www.genome.gov/gwastudies,
accessed on September, 2013).

Identification of candidate missense and splicing
mechanism SNPs

Linkage disequilibrium (LD) data from Hapmap (hapmap
release#27 - merged I+IL: rel #24 and III: release #2, NCBI
build 36, February 2009) and 1000genomes data (interim
Phase 1 release Nov, 2011; http://www.1000genomes.org/
data) were used to compile a candidate list of possible
mechanism SNPs within each GWAS locus, extending out
to a maximum of +/-200kb around the representative
locus marker SNP. An SNP is included as a candidate if
the LD relationship and frequency are such that involve-
ment in mechanism would generate the observed case/
control frequency difference for the marker [28]. To test
whether this condition is fulfilled, the case/control odds
ratio implied at a potential candidate SNP is calculated
from the marker SNP odds ratio and the LD relationship

Table 2. Number of proteins in each category of disease relevance for each mechanism.

Protein  #Proteins with a low #Proteins with a high #Proteins with a change  #Proteins with a #Proteins with a

category impact missense impact missense in expression mechanism putative splicing direct splice
mechanism mechanism mechanism mechanism

A 4 3 24 3 2

B 168 104 155 109 17

C 219 77 121 116 14

D 37 42 81 58 15
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Table 3. Number of loci in each category of disease relevance for each mechanism

Locus #Loci with at least 1 low #Loci with at least 1 high #Loci with at least 1 #Loci with at least 1 #Loci with at least 1

category impact missense impact missense change in expression putative splicing direct splice
mechanism mechanism mechanism mechanism mechanism

A 2 3 21 3 2

B 84 75 101 71 15

C 39 32 32 48 13

D 1 8 9 9 6

between the two SNPs. The method was validated by com-
parison with frequencies imputed from full genotype data
for the WTCCCI1 study [27]. The set of accepted candi-
date SNPs define the extent of the corresponding locus.
Current data provide reliable LD estimates for most candi-
dates for with minor allele frequency > 5%.

Missense candidates

Missense annotation for the candidate SNPs was taken
from dbSNP137 (http://www.ncbi.nlm.nih.gov/projects/
SNP/). Likely impact of the SNPs on in vivo protein
activity was first assessed using two computational
methods (SNPs3D structure and SNPs3D profile)
[14,21]. These methods use support vector machine
(SVM) models, trained on monogenic disease mutations
and a control set, and classify each missense SNP as
high or low impact on in vivo protein function, where
high impact corresponds to approximately a five fold or
greater loss of function [32,41]. The SNPs3D structure
method makes use of structural information to estimate
the effect of an amino acid substitution on protein stabi-
lity [21]. The SNPs3D profile method utilizes features
based on sequence conservation within the protein
family and the probability of occurrence of the particu-
lar amino acid substitution introduced by the base var-
iant [14]. Two other missense analysis methods, SIFT
[16] and Polyphen2 [17], were used to assess the extent
of consensus in the high impact assignments. These
methods also primarily use features based on observed
residue preferences at the substitution position. Full
details of the methods are provided in [28].

Expression altering candidates

eQTL relationships and disease marker SNPs were com-
pared to identify those instances where the data are com-
patible with a common underlying mechanism variant,
taking into account LD relations. The method was cali-
brated using relationships between these two types of mar-
kers for situations where fuller disease SNP information
was obtained by imputation. On that basis, disease marker
and eQTL marker SNPs are considered to represent the
same underlying expression mechanism if they are identi-
cal, or within 0.05 centiMorgans of each other. To address
the issue of noise in the eQTL data, a set of consensus

eQTLs was obtained by integrating 16 publicly available
eQTL datasets (Supplementary Table 5 in Additional
file 1). To be included in the consensus set, and eQTL
must have been discovered in at least two independent
studies, either with identical marker SNPs, or with marker
SNPs in LD to each other at r* > 0.8. Full details of the
methods are available in [26].

Splicing candidates

SplicePort [20] (http://spliceport.org) was used to identify
those SNPs likely to affect splicing efficiency. SplicePort
uses a feature generation algorithm to score every AG
and GT dinucleotide within 80 nucleotides on either side
of each known splice site. Distinct SplicePort score
change thresholds were applied for three intervals around
donor sites and four intervals around acceptor sites (Sup-
plementary Table 2 in Additional file 1). These thresh-
olds are the median score change in a set of 184 true
positives, mutations with a bona fide effect on splicing.
All pairs of variants and splice sites for which the variant
produces a SplicePort score change above the threshold
were considered as candidates. Variants were from
release 64 (ftp://ftp.ensembl.org/pub/release-64/varia-
tion/gvf/homo_sapiens/) and RefSeq splice sites were
based on hgl9. A complete list (across the genome) of
pairs above these thresholds can be viewed at http://spli-
ceport.org/trueY.html; GWAS SNPs in this set are listed
in Supplemental Table 1 in Additional file 1.

SNPs falling in the following locations were considered
to directly affect splicing: Within introns, the two bases at
the 5" end (splice donor) and the two bases at the 3’ end
(splice acceptor). Within exons, the base at the 5’ end
(acceptor site) and the three bases at the 3’ end (donor
site). Supplementary Table 3 in Additional file 1 lists all
the SNPs that are overlapping with direct splice sites.

Test for mechanism enrichment

There are 1867 genes (excluding those in the MHC
region) in the 356 disease loci that contain at least one
qualified candidate SNP (i.e. an SNP with LD to the
marker such that it could produce the observed marker
case/control frequency difference), and therefore could
have been assigned a mechanism. These were divided
into the 555 proteins that are listed in the GWAS


http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://spliceport.org
ftp://ftp.ensembl.org/pub/release-64/variation/gvf/homo_sapiens/
ftp://ftp.ensembl.org/pub/release-64/variation/gvf/homo_sapiens/
http://spliceport.org/trueY.html
http://spliceport.org/trueY.html
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catalog as disease relevant, or were assigned by us a dis-
ease relevant on the basis of literature (the ‘known’ pro-
tein set) and the remaining 1312 proteins with no
indication of disease relevance (the ‘unknown’ set). A

two-tailed Fisher’s exact test was used to determine
whether the number of proteins containing each
mechanism is enriched in the known set compared to
that expected by chance.
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Discussion

We have examined which of five possible molecular level
mechanisms may underlie a set of 356 loci where the pre-
sence of SNPs is associated with altered risk for seven
common complex trait diseases. With the assumptions
used, we find that a large fraction of these loci (76%) have
at least one of these mechanisms present, and in many
loci, there is more than one possible mechanism. The high
coverage suggests that most observed GWAS associations
can be explained by one of these mechanisms. A number
of mechanisms are not included in this analysis. Since we
only consider effects on expression caused by variants
local (within 1Mb) in sequence to affected genes, effects
mediated by spatial rather than sequence proximity
between the variant and a gene will be omitted. Since the
analysis is confined to GWAS data and variants with fre-
quency higher than 0.05, we also omit other contributions
related to missing heritability, such as rare variants [12]
and variants with weak effect sizes [42].

Of the five mechanisms considered, we find the largest
role for expression, but also substantial roles for three
others: high and low impact missense, and auxiliary spli-
cing. The fifth mechanism, direct hits on splice sites, is
relatively infrequent, with between 4 and 22 instances
per disease. The fraction of loci with a putative mechan-
ism varies across the seven diseases, ranging from 64% to
85% of loci. Reasons for that are not clear, but it may be
that particular diseases have a higher role of mechanisms
not included in this study.

A number of loci have more than one mechanism
assigned, some times of both high and low impact (large
and small 6A) at the molecular level. For instance, an
effect on expression (low impact) and a high-impact mis-
sense. That does not necessarily imply that the high-
impact one will dominate. In the model used here (equa-
tion 3) the impact on the phenotype, 3P, is the product of
impact of a mechanism at the molecular level, §A, and
the coupling of the activity of that gene to the phenotype,
S. In the same locus, a gene with a high-impact mechan-
ism (large 6A) maybe weakly coupled to the disease phe-
notype (small S), whereas a gene with a lower impact
mechanism (small 8A) is tightly coupled (very large S)
and so dominates. As noted earlier, we have observed a
significant decrease in high-impact missense SNPs in
genes most tightly coupled to disease phenotypes (drug
targets, generally having the largest S values) [36]. Pre-
sumably, this is a consequence of selection against mis-
sense variants that affect these gene products. That is,
selection likely results in an inverse correlation between
the size of molecular impact (3A) and coupling to the
disease phenotype (S).

Within the GWAS disease loci, we observe that each
mechanism is substantially enriched in proteins pre-
viously suggested as disease relevant (P < 0.00001 in all
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cases). The enrichment is much larger for high-impact
missense and eQTL mechanisms compared to the other
proteins present in the loci, suggesting these are the
most reliable assignments. Least enriched is the low
impact missense mechanism. The ‘low impact’ designa-
tion indicates that the effect size on protein activity is
below some threshold, and it may lie anywhere between
that threshold and zero. Those at the lower end of the
range are not expected to be involved in disease
mechanism, so this is an inherently very noisy category.
Although enrichment of proposed mechanisms in rele-
vant proteins is a useful indication of the validity of the
analysis, some of occurrences in other proteins will also
be correct.

The potential of all five molecular mechanisms to affect
the in vivo activity of proteins occurs with relatively high
frequency in the genome. The set of high confidence
eQTL relationships included have at least one relation-
ship between the presence of an SNP and altered gene
expression for about 4000 genes [26], implying that on
average about one in four genes with significant expres-
sion has at least one local SNP that affects its expression
level. Similarly, in dbSNP137, about 1/3 of genes contain
at least one missense SNP with frequency 5% or greater.
There is a similarly high number of SNPs predicted to
regulate alternative splicing [20]. Thus, for any gene with
a significant coupling to a disease phenotype (i.e. signifi-
cant S value), one or more mechanisms will likely be
available. In other words, what primarily determines
whether a gene is related to a complex trait phenotype is
not whether there is a potential expression, coding, or
splicing mechanism available - there usually will be - but
whether the activity of the gene is sufficiently coupled to
the phenotype (large enough S value). Consistent with
that, we find no significant enrichment of eQTLs [26] or
missense SNPs [28] in complex trait loci.

The role of the mechanisms in the different diseases
varies. Most notably, there is a tendency for early onset
diseases to exhibit a higher fraction of loci with putative
high-impact missense SNPs versus low impact ones,
compared with late onset diseases. It may be that
mechanism variants in late onset disease are under too
weak selection pressure for the sequence profile based
impact assignment methods to be fully effective. Those
methods depend on selection pressure influencing the
type of amino acid substitutions that become fixed in
each species. Theoretically, selection is not operative if
[s| < 1/2N, [43], where ‘s’ is the selection coefficient of
a genetic variant, and Ne is the effective population size.
For humans, Ne is considered to be approximately
10,000 [44], so that selection is only operative for |s| >
0.5 x 10™% A typical complex disease marker is asso-
ciated with an increased risk of disease of the order of
1072 For early onset disease, such as Bipolar Disorder,
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where the disease likely affects reproductive success, this
constitutes a significant selection pressure. But for late
onset, such as Coronary Artery Disease, even allowing
for a small fraction of early onset cases, it may be insig-
nificant in fitness terms. The wealth of new human
sequence data is beginning to allow evaluation of selec-
tion pressure at the gene level, using population genetics
models. Results so far suggest weak selection effects for
variants associated with some classes of complex trait
disease [45], but at present have insufficient resolution
to distinguish between late and early onset. Greater
amounts of sequence data should provide more defini-
tive results. Accumulation of more information on the
functional role of the amino acids at each substitution
site, requiring three-dimensional structure and other
information, will directly allow comparison of function
based assessment methods with profile ones for the
same variants, also helping to resolve this question.

In the last few years there have been a number of stu-
dies aimed at using GWAS results to determine which
type of mechanisms underlie complex traits. These meth-
ods typically divide the genome into zones, such as
DNAase-I hypersensitive (DHS), coding, UTRs, introns
and so on, and estimate the contribution of variants to
traits in each of these regions, often in terms of enrich-
ment in each region compared with expectation. Schork
et al. [46] used a relatively simple SNP function assign-
ment method based on considering the functional setting
of SNPs in LD with GWAS markers and looking for cate-
gory enrichment for 14 complex traits. The greatest
enrichment was found in 5’UTRs, followed by exons.
Intergenic regions showed the lowest signal, depleted
more than 10 fold. Pickrell [47] used a model that splits
the genome into blocks, each of which may contain one
or no causal SNPs, and used a Bayesian model to assign
probabilities of association, applying the method to 18
traits. The largest enrichments were found for non-
synonymous SNPs, ranging for 4 fold to 32 fold, depend-
ing on the trait. However, because only a small fraction
of SNPs are in coding regions that results in only an esti-
mated 2 to 20% fraction of GWAS associations driven by
non-synonymous SNPs. Maurano et al. [48] estimated
the fraction of GWAS marker SNPs that are associated
with SNPs in DHS and coding regions, finding a 40%
enrichment in DHSs, and estimating that 77% of non-
coding GWAS SNPs are in or close to DHS regions,
while only 11% are similarly close to coding regions.
Gusev et al. [49] calculated narrow sense heritability con-
tributed by SNPs in six different functional categories for
11 common diseases, using a linear mixed model [42] to
estimate the narrow sense heritability contributed by
each region. This model effectively integrates over signals
contributing to heritability over all SNPs in a region, not
just those in GWAS identified loci, and has been found
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to account for a much larger fraction of heritability, sug-
gesting many contributions have effect sizes that are too
small to be detected by GWAS. They found the greatest
enrichment for coding SNPs (14 fold), but the category
of DHS sites, though only 5 fold enriched, contributed
most heritability (79%), because of the much larger num-
ber of SNPs included, with approximately 10% contribu-
ted by coding regions. Farh et al. [50] developed a
method for estimating which SNPs are most likely to be
causal, based on dense genotyping data obtained using a
specialized immune disease chip, and then extrapolating
to other complex traits. The method uses a Bayesian
model to derive the probability of each SNP being causal,
given the structure and observed pattern of associations
with the trait for SNPs across the locus. These authors
find enrichment of non-synonymous SNPs among those
most likely causal, but find that overall only 14% of the
included loci have a likely non-synonymous casual SNP.
They find strong enrichment of putative causal SNPs in
the vicinity of enhancers, as well as cell type dependent
effects. Kichaev et al. [51] integrated functional annota-
tion with genetic association data using an empirical
Bayes prior to improve prioritization of causal variants in
fine mapping studies. For four lipid traits, they find
increased probability of causality for variants in exons
and transcription start sites, and decreased probability in
local repressed chromatin. Common themes in these and
other studies are greatest enrichment of trait related var-
iants in coding regions, but because of the relatively
small number of bases in that classification, a relatively
small role for this class in complex traits, and with the
major role for non-coding SNPs, especially in DHS or
other regions relevant to expression regulation.

An alternative strategy to region enrichment methods
is to identify those SNPs that alter molecular level activ-
ity and are also in appropriate linkage disequilibrium
with GWAS marker SNPs. Nica et al. [52] looked for
potentially causal SNPs related to both a GWAS disease
marker and a eQTL SNP, and in this way identified a
small set of candidate genes. Nicolae et al. [53] showed
that SNPs associated with complex traits are signifi-
cantly more likely to be in eQTLs than a set of random
microarray SNPs with the same frequency distribution.
We have used this type of SNP matching approach to
identify trait related SNPs expected to alter molecular
level activity by one of three explicit, local in sequence,
mechanisms (missense, expression, splicing). The results
are qualitatively similar to the region analysis methods
in assigning the largest role to SNPs in some way
involved in expression variation (34% of loci including
proteins of known relevance, up to 46% total), consistent
with local DHS and 5’'UTR enrichment. There is a
rather larger role for missense (22% of loci including
proteins of known relevance, up to 33% total) compared
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with the values found in region analyses which range
from 10 to 20% [47-50]. The reasons for the lower role
for missense in these other studies are not yet clear. As
noted above, there is general agreement on a greater
enrichment of coding regions, showing that on a per
nucleotide basis, there are more mechanisms in coding
regions than elsewhere. But integrating over the larger
number of SNPs included in regulatory related regions,
particularly DHSs, more than offsets the enrichment
effect. All the models (including ours) have a number of
approximations, and the full impact of these is not yet
known. Gusev et al. discuss a number of factors that
may affect the performance of linear mixed models [49].
Maurano et al. [48] restrict potential coding mechanism
SNPs to those in strong LD with variants within genes
whereas we consider weaker LD relationships, providing
these are in appropriate LD with a marker. It is usually
considered that weaker LD relationships will contribute
a large number of candidates [54].

We also propose a relatively high occurrence of effects
on potential auxiliary splicing signals. So far, there is lim-
ited direct data on these, but they may be under-reported
because they affect expression through nonsense-mediated
decay or have phenotypic effects attributed to their dual
identity as missense mutations [55]. We used what might
be considered a conservative threshold based of 50% sensi-
tivity in the case of known mutations in auxiliary splicing
signals that affect splicing (supplementary Table 2 in
Additional file 1). However, a high false positive rate is
possible if there is heterogeneity between genes (or exons)
in their dependence on auxiliary splicing signals (as seems
likely). More benchmarking is needed to confirm the relia-
bility of the method, and the necessary experimental data
are now becoming available. Ultimately, SplicePort can be
improved by using thresholds specific to each splicing
event and training with data on the impact of variants on
splicing rather than splice site identification. A report pub-
lished after the initial submission of this work [56] using
a similar splicing assessment tool, likewise predicts a
surprisingly large impact of single nucleotide variants on
splicing. However, many significant differences in design
and application prevent direct comparisons.

At present, in all methods, because of uncertainty as to
which SNPs are really causative, there will be some false
assignments. In any given locus, proposed mechanisms
should be regarded as hypotheses for further testing and
examination of supporting data. The field is advancing
rapidly as new datasets become available, including large
numbers of fully sequenced genomes, expression, DNA
methylation and other studies of case and control popu-
lations for each disease, detailed follow-up studies of pos-
sible mechanisms in each locus, high throughput assays
to determine the effect of genetic variants on protein
function (for example [57]), and improved computational
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methods based on detailed models of the function of
each protein. Understanding of the processes and path-
way linking molecular level properties to disease pheno-
types is also advancing. These and other factors will
result in a much clearer picture of complex trait disease
emerging in the next few years.
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