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Abstract

The recent improvement of the high-throughput sequencing technologies is having a strong impact on the
detection of genetic variations associated with cancer. Several institutions worldwide have been sequencing the
whole exomes and or genomes of cancer patients in the thousands, thereby providing an invaluable collection of
new somatic mutations in different cancer types. These initiatives promoted the development of methods and
tools for the analysis of cancer genomes that are aimed at studying the relationship between genotype and
phenotype in cancer.
In this article we review the online resources and computational tools for the analysis of cancer genome. First, we
describe the available repositories of cancer genome data. Next, we provide an overview of the methods for the
detection of genetic variation and computational tools for the prioritization of cancer related genes and causative
somatic variations. Finally, we discuss the future perspectives in cancer genomics focusing on the impact of
computational methods and quantitative approaches for defining personalized strategies to improve the diagnosis
and treatment of cancer.

Background
The advances in high-throughput sequencing techniques
are allowing us to identify a large number of genetic var-
iants in human [1,2] and understand the relationship
between genotype and phenotype in many genetic disor-
ders [3]. In contrast to Mendelian disorders, in which a
disease is the result of inherited variations present in a
single gene or a small set of genes, cancer is mainly dri-
ven by accumulated somatic variations in multiple genes.
These mutations enable a particular subpopulation of
cells to proliferate and survive more efficiently than their
neighbors [4-6]. The different types of somatic genetic
variations detected in cancer samples vary from single
nucleotide variants, short insertion and deletion (indels),
large copy number alterations, to structural rearrange-
ments [7]. Thus, the identification of causative genomic
variations is key point for understanding the mechanism

of cancer. The solution of this challenging task is limited
by the accuracy of sequencing technology and the large
number of genetic alterations observed in cancer
genome. Although current whole-exome sequencing is
performed with a coverage between 100x to 150x, still
many false positive arise from sequencing error, inaccu-
rate alignments and admixture of noncancer and differ-
ent subclonal cells [8].
Even with a perfect sequencing approach the detection

of causative variants remains a complex task. Indeed,
among somatic variants, a large fraction, defined as
“passengers”, have no impact on the neoplastic process.
But a smaller set of genetic variants, referred to as “dri-
vers”, provide a selective growth advantage, estimated to
be minute (~0.4%), to the cell [9]. The accumulation of
those variants and their effect, over the years, can gener-
ate a tumor. According to a recent review [9], somatic
variations observed in common solid tumors affect on
average between 33 and 66 genes. The predominant type
of variations is the single nucleotide substitution, which
accounts for more than 90% of somatic changes [1]. The
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role of these genes in tumorigenesis is determined by the
functional impact of somatic variants they harbor. In
general, mutations that enhance the function of onco-
genes and impair the activity of tumor suppressor genes
result in a selective growth advantage for the cancer cell.
The frequency of observed somatic variants draw a

mutational landscape made up of few “mountains” and
a large number of “hills” that respectively correspond
to frequently and rarely mutated genes across tumor
samples [9]. Among the frequently mutated genes, the
distribution of somatic variants can reflect the differ-
ences between oncogenes and tumor suppressor genes.
Oncogenes tend to be recurrently mutated at the same
amino acid positions, whereas tumor suppressor genes
are generally mutated in various positions throughout
their length. An example is provided in Figure 1, which
shows the frequencies of somatic mutation in APC (a
tumor suppressor gene) and KRAS (an oncogene) from
220 samples of colon adenocarcinoma from The Cancer
Genome Atlas (TCGA) consortium. In this example,
~60% of the variants in APC are stop-gain which cause
loss of function. In contrast, ~50% of the mutations in
KRAS are missense variants in position 12 which are
expected to increase the protein function.
Given that the cancer is a result of interplay of various

types of genetic changes, understanding of the role of
somatic mutations in tumorigenesis is a complex problem
in which different combinations of somatic variants affect
different network of genes and associated pathways.
Nevertheless, significant breakthroughs have been made in
the development of computational methodologies which
allow us to identify new driver mutations and genes by
analyzing large sets of patients with different tumors [10].
Currently, the main bioinformatics challenges in the analy-
sis of cancer genome consist of the following:

1. Robust pipelines for the detection of genetic
variations;

2. Creation of a benchmark dataset of cancer driver
mutations and genes;
3. Accurate methods for prioritizing cancer driver
mutations and genes;
4. New algorithm for predicting the impact of
somatic variants at pathway/ network level;
5. Translational approaches that make the results of
computational analysis clinically applicable [11,12].

In this review we focus on the description of computa-
tional methods for cancer genome interpretation. First,
we describe the basic steps for the detection of genetic
variants. We summarize the currently available data
sources for implementing and benchmarking new com-
putational tools for cancer genome analysis. Second, we
review the available methods for the prioritization of dri-
ver mutations and genes. We also include a section
describing tools for predicting the impact of genetic var-
iants at network level and methods for estimating the
consistence of subclonal populations. Finally, we discuss
the future perspective in the field, highlighting the contri-
bution of computational approaches to cancer genomics.
In contrast to the recently published cancer genomic
reviews [11,13,14], we present an analysis of the somatic
mutations in cancer and the data available online and
provide a brief description and availability of selected
computational tools for the analysis of cancer genomes.
This review is targeted towards readers with background
in computational biology and bioinformatics, who want
to have quick introduction to the available resources and
tools for the analysis of cancer genome.

Variant calling, filtering and annotation
Accurate variant calling is the prerequisite of any cancer
genome analysis, but it is hindered by several limita-
tions. The first limitation stems from the inherent noise
and errors in the sequencing technology. Errors are also
introduced in the procedures of short reads alignment,

Figure 1 Number of missense and stop gain somatic mutations in APC and KRAS detected in 220 samples of colon adenocarcinoma
from TCGA studies. In blue and orange are reported the nonsynonymous and stop gain somatic variants respectively. For APC we detected a
total number of 265 somatic variants 28 of which are nonsynonymous and 150 stop gain. Among the 28 stop-gain variants only 6 are recurrent.
For KRAS we detected a total number of 101 somatic variants 97 of which are nonsynonymous. Among the observed nonsynonymous variants
53 are observed in position 12 and only 6 are not recurring.

Tian et al. BMC Genomics 2015, 16(Suppl 8):S7
http://www.biomedcentral.com/1471-2164/16/S8/S7

Page 2 of 19



especially in the low complexity regions of the genome.
In addition, a recently published work showed that no
single variant calling approach is able to comprehen-
sively capture all genetic variations [15]. Thus, there is
still room for improvement in variant calling algorithms.
In general, the variant calling procedure consist of

3 main steps:

1. Short read alignment and mapping to the refer-
ence genome.
2. Removing PCR duplicates, realignment and
recalibration.
3. Variant calling, filtering and annotation.

This procedure includes the calibration of pre- and
post-experimental factors to identify reliable variants
from the raw data. Such factors include sequencing cov-
erage, single end or paired end sequencing, short read
alignment, PCR duplicates, matched sample sequencing,
variant calling algorithm, etc. [11,15,16]. A representation
a typical variant calling pipeline is provided in Figure 2.
A plethora of tools have been developed for variant

calling purposes. In cancer studies, a standard workflow
for variant calling starts with the alignment against the
reference genome using BWA [17] or Bowtie [18]. The
resulting alignment (SAM file) is generally converted in
binary format (BAM) and indexed using SAMtools [19].
The removal of PCR duplicates can be performed using
Picard (http://sourceforge.net/projects/picard/). This step
is followed by realignment and recalibration with GATK
[20]. Finally, variant calling is performed using a standard
variant caller like GATK or specialized tools such as
VarScan 2 [21] and MuTect [22]. This step can be
improved by the score recalibration that reduces the
number of false positive calls. The final output of this
pipeline is a VCF (variant calling format) file.
Although, theoretically the variant calling pipelines are

straightforward, the results from different variant callers
agree only on a small subset of variants. In a systematic

test of several variant callers, namely GRISP [23], GATK,
SAMtools, SNVer [24], VarScan 2, only ~50% of the
SNPs are shared by all these tools, while the overlap of
identified indels is even lower [15]. Recently, a similar
study [16] has been performed by comparing the perfor-
mances of another set of six variant callers, including
EBCall [25], JointSNVMix [26], MuTect, SomaticSniper
[27], Streika [28] and VarScan 2 [16]. Using experimen-
tally validated SNVs as benchmark, it was reported that
VarScan 2 and MuTect are among the best variant callers
for analyzing matched normal and tumor samples.
After the variant calling file (VCF) has been obtained, a

filtering procedure is often necessary for the downstream
analysis. This filtering procedure aims to reduce the num-
ber of false positives corresponding either to low quality
and common variants. In particular the common variants,
which are assumed to have no implications in tumor
development and progression, are filtered out by compari-
son with the germline polymorphisms collected in publicly
available databases, such as dbSNP [29] or EVS (Exome
Variant Server, http://evs.gs.washington.edu/EVS/). The
most recent versions of dbSNP (build 142) contains more
than 110 million human SNPs, while the current EVS data
release (ESP6500SI-V2) include all the exome variant data
from 6503 human samples. Some of the common tools
used for filtering variants are SnpSift [30], GATK [20],
VCFtools (http://vcftools.sourceforge.net).
Finally, variants are annotated by mapping each variant

to their corresponding gene. This procedure is essential for
understanding their functional consequences. Among the
most popular tools for variant annotation are ANNOVAR
[31], snpEff [32] and VEP [33].

Cancer variation data and databases
Large-scale cancer genomic experiments, funded by
several national and international consortiums, are
generating an amount of data in the magnitude of
PetaBytes (PB). The space needed to host the data only
from The Cancer Genome Atlas (TCGA) is ~1.1PB

Figure 2 A typical variant calling workflow.
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(see https://cghub.ucsc.edu/summary_stats.html). The
analysis of this data enabled the development of sev-
eral meta databases and resources for the annotation
of cancer genomes. In this section, we describe some
of the repositories and databases available that collect
somatic variants and driver genes putatively involved
in the cancer.
Cancer mutation data
The Cancer Genome Atlas (TCGA) consortium, which
began in United States in 2006, is a comprehensive and
coordinated effort to understand the molecular basis of
cancer using several genomic analysis techniques. The
data generated by the experiments are made available
through the TCGA Data Portal and the Cancer Genomics
Hub (CGHub) [34]. After signing the certification data
agreement it is possible to access data about 36 cancer
types. The files containing the binary version of the short
DNA sequence read alignments (referred as BAM files)
can be downloaded using the GeneTorrent application
available at the CGHub website (https://cghub.ucsc.edu/).
Since the downloading of all the BAM files remains

costly in term of time and storage, it is advisable to get
all the pre-processed variant files (VCFs) generated by
different institutions within the TCGA consortium.
Unfortunately, so far the organization of the data in the
TCGA repository is not optimized and available data
have to be manually selected. In particular, variant data
from different platforms, ranging from SNP arrays to
SOLID and Illumina sequencers, are reported in different
file formats. Out of these files, the most informative ones
are the VCF files, which contains the genetic variants for
both normal and tumor samples. Currently, VCF file are
provided only for a subset of the tumor types (~67%).
The International Cancer Genome Consortium (ICGC)

was launched in 2007 to coordinate the efforts of charac-
terizing more than 50 different cancer types from 25,000
patient genomes [35-37]. The results have been published
and made publicly available [38-44]. To provide an over-
view of the variation data, we re-analyzed the somatic
mutations publicly available at the ICGC portal, whereas
the access to the germline variants requires the approval
of a data agreement. The statistics of the release 17
(September 2014) of the ICGC data portal (https://dcc.
icgc.org) show that in total 12,232 cancer genomes have
been sequenced. In the samples from these donors,
collected from 18 cancer primary sites, more than 9.8 mil-
lion simple somatic mutations have been identified. A
summary of the mutations detected for each cancer type
is provided in Table 1. In this work, we consider samples
from 42 sequencing projects corresponding to 33 cancer
types. From the available data we excluded the samples
from Acute Lymphoblast Leukemia for which only 3
mutations were detected. A brief description of the data-
sets analyzed in this manuscript as well as the final list of

codes of each cancer project are provided in Section 1 of
the Additional file 1 and Supplementary Table 1. In the
data collected by the ICGC, breast cancer is the most stu-
died cancer type in which more than 1,100 individuals
have been screened.
To study the occurrence of somatic mutations across

different donors, we performed a recurrence analysis
calculating the Fraction of Somatic Mutations and the
Fraction of Donors corresponding to different subsets of
somatic mutations (Section 2 in Additional file 1).
The analysis of whole set of somatic mutations (Pan-

Cancer) revealed that a large fraction of them are occur-
ring in a single patient and only ~1.7% are recurring
more than once (see Table 1). This percentage decreases
to 1.2% if the cancer types are considered separately.
The plot in Figure 3A shows the Fraction of Somatic
Mutations at different levels of Mutation Recurrence.
In addition, we calculated the Fraction of Donors cov-

ered by subsets of recurrent mutations (Figure 3B). Con-
sidering only the recurrent mutations, (observed at least
in two donors), they are held by 96% of the individuals in
all cancer types (Table 1). This percentage decreases to
82% when the cancer types are considered separately. In
Figure 3C we plot the Fraction of Somatic Mutations and
the Fraction of Donors of affected at different Mutation
Recurrence thresholds. This curve allows us to estimate
the fraction of donors affected by a subset of recurrent
mutations that are more likely to have a functional
impact. Although it is well accepted that each cancer
sample is different and only a small fraction of variants
are recurrent, we show that with mutations recurring
more than 30 times (53 variants) explains a compara-
tively large fraction of patients (~40%). However, this
data could be biased toward cancer types with higher
number of samples and with higher of mutations
detected.
We performed the recurrence analysis on each cancer

type fitting the points calculated at different Mutation
Recurrence threshold. The results in Figure 4 show differ-
ent trend in 27 tumor types for which the regression
curves can be calculated. Although in some cases the fit-
ting is less accurate (THCA and PBCA), we can compare
different tumor types estimating the fraction of somatic
mutations covering 95% of the donors (Supplementary
Table 2, Additional file 1). The smallest value corresponds
to the Esophageal Adenocarcinoma (ESAD) for which we
estimated somatic mutation rate of ~0.006%. The highest
value is reported for the Pediatric Brain Cancer (PBCA)
for which 75% the mutations are needed to cover 95% of
the samples.
In general, it is expected that heterogeneous cancer

types show a large variety of recurrent somatic muta-
tions, which is inversely proportional to the rate of
decay of the complementary cumulative distribution
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(CCD). Thus, the analysis of recurrent mutations based
on the calculation of the CCD can provide an estimation
of the mutational heterogeneity of each cancer type (see
Figure 4). Furthermore, the CCDs in Figures 3C and 4
provide an estimation of the maximum fraction of
patients that can be recovered using a decreasing pool
of recurrent variants.
Focusing on the exonic regions for each cancer type,

we observed different number of somatic mutations per
individual (Figure 5). The statistic shows a difference of
~2.5 orders in magnitude between the number of somatic
mutations in Chronic Myeloid Disorders (CMDI) and
Skin Cutaneous Melanoma (SKCM) for which their

median values per individual in the exonic regions is 1
and ~400 respectively (Table 1). This result is consistent
with the difference in the rate of decay of the CCDs
observed for the two cancer types in Figure 4.
In addition, we can use the number recurrent muta-

tions in the exonic regions to estimate the tumor type
similarities. Using the subset of mutations repeated more
than once in the whole dataset (PanCancer) we built a
vector, in which each element represents the number of
donors affected by a mutated gene. Only genes harboring
the aforementioned recurrent mutations are considered.
The gene-based vectors of each cancer type are then
used to calculate the cosine similarity (Section 3 in

Table 1

Cancer Type Donors Total Unique Mutations Total Recurrent Mutations Donors with Recurrent Mutations

BLCA 233 53,638 737 (1.4%) 219 (94.0%)

BOCA 66 1,422 7 (0.5%) 39 (59.1%)

BRCA 1,071 275,612 1,252 (0.5%) 929 (86.7%)

CLLE 109 5,292 4 (0.1%) 10 (9.2%)

CMDI 129 86 13 (15.1%) 113 (87.6%)

COAD 216 105,786 3,896 (3.7%) 215 (99.5%)

EOPC 11 25,575 2 (0.0%) 4 (36.4%)

ESAD 95 1,780,883 25,425 (1.4%) 95 (100.0%)

ESCA 88 7,256 17 (0.2%) 37 (42.0%)

GACA 9 1,014 0 (0.0%) 0 (0.0%)

GBM 268 19,852 324 (1.6%) 260 (97.0%)

KIRC 404 26,371 688 (2.6%) 372 (92.1%)

KIRP 156 12,932 218 (1.7%) 144 (92.3%)

LAML 75 60,203 7,623 (12.7%) 71 (94.7%)

LGG 279 13,083 432 (3.3%) 278 (99.6%)

LIAD 30 917 11 (1.2%) 19 (63.3%)

LICA 29 747,334 27,107 (3.6%) 6 (20.7%)

LINC 244 437,403 6003 (1.4%) 244 (100.0%)

LIRI 208 2,124,689 4161 (0.2%) 208 (100.0%)

LUSC 289 125,351 1400 (1.1%) 268 (92.7%)

MALY 44 311,297 686 (0.2%) 44 (100.0%)

NBL 41 137 2 (1.5%) 4 (9.8%)

ORCA 50 5,604 35 (0.6%) 38 (76.0%)

OV 181 919,769 869 (0.1%) 119 (65.7%)

PACA 504 1,630,944 6,098 (0.4%) 500 (96.5%)

PAEN 35 112,823 804 (0.7%) 32 (91.4%)

PBCA 248 130,608 1,231 (0.9%) 89 (35.9%)

PRAD 264 90,599 776 (0.9%) 256 (96.7%)

READ 80 23,499 556 (2.4%) 80 (100.0%)

RECA 105 475,986 6,067 (1.3%) 95 (90.5%)

SKCM 323 226,850 11,908 (5.2%) 323 (100.0%)

STAD 289 142,496 3,441 (2.4%) 276 (95.5%)

THCA 411 51,759 4,619 (8.9%) 311 (75.7%)

PanCancer 6,584 9,871,474 171,314 (1.7%) 6,296 (95.6%)

Somatic mutations in 33 tumor types from 42 projects from the ICGC release 17 (September 2014). Donors: total number of individual for each tumor type. Total
Unique Mutations: number of somatic mutations in the whole genome for each cancer type removing repetitions. Total Recurrent Mutations: fraction of Total
Unique Mutations observed at least in two donors for the same tumor type. Donors with Recurrent Mutations: fraction of donors with at least one recurrent
somatic mutation.
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Additional file 1). In Figure 6 we report the tumor den-
drogram obtained from 33 cancer types. Broadly, based
just on the similarity between the vectors of recurrent
mutated genes we can cluster the tumors in two major
subgroups of cancer. The figure shows on the first sub-
group on the top-left side Colon Adenocarcinoma
(COAD), and Rectum Adenocarcinoma (READ), in
which high fractions of donors are mutated in APC,
TP53 and KRAS, in the same cluster. In the second sub-
group we observe 4 different liver cancers (LINC, LIRI,
LICA and LIAD), with recurrent mutation in CTNBB1,
in the same cluster.
These results confirm the hypothesis that recurrent

somatic mutations, which represent only 1.7% of the
whole PanCancer mutations, still retain meaningful
information about the mutation profile of each cancer
type that allows us to cluster them according to their
similarity. Finally, it is noteworthy that filtering out non-
recurrent somatic variants we significantly reduce the
number putative driver mutations to a relatively small
set of variants (~170,000), which are held by ~96% of
the patients (see Table 1).
Although the analysis of somatic mutation data from

multiple projects provides interesting insights about the
genetic cause of tumor, we need to remember that data
can have biases due to the use of different sequencing
protocols and variant-calling procedures. These pro-
blems can be amplified with bias in sampling, signifi-
cantly different size of the cohorts.
Curated databases and cancer gene lists
One problem that has been creating a constant roadblock
in developing better tools and methods for cancer gen-
ome analysis is the lack of reference benchmark datasets
of known cancer variants. The datasets discussed in this
section are curated known collections of cancer variants

that are used frequently as a substitute of a reference
dataset.
The most popular collection of the somatic mutations in

cancer is the Catalogue Of Somatic Mutation In Cancer
(COSMIC). The last release of COSMIC (version 71,
Sep 2014) contains ~2.1 million unique somatic variants
detected in ~1 million tumor samples. An important
manually curated resource made available through
the COSMIC web page is the Cancer Gene Census list.
Currently it contains 547 genes for which mutations have
been causally implicated in cancer. Out of 547 cancer
genes, 85% of them harbor only somatic mutations,
7% harbor only germline variants and the remaining 8%
harbor both types.
Beside the Cancer Gene Census there are other lists of

putative cancer genes identified using computational or
expert-based approaches. One is a list of 125 cancer
genes, reported in a publication by Vogelstein and colla-
borators [9]. The list comprises 54 oncogenes (43%) and
71 tumor suppressor genes (57%). A larger list of 2,125
genes collected by Bushman Lab [45] has been obtained
as a union of 8 different datasets. More recently, an ana-
lysis of 21 cancer types was published. The authors
prioritized the cancer causing genes according to their
observed mutation frequency across multiple samples
[46]. The final list thus obtained, combining all the
cohorts, contains 146 genes, 64 of which are highly sig-
nificantly mutated (44%), 49 significantly mutated (34%)
and 32 near significant (22%). A better description of
the available lists of putative cancer genes obtained from
the analysis large cancer studies is provided in recent
publications [47-49].
Other useful databases for the annotation of cancer

genome are NCG [50] and Cancer3D [51]. The NCG
4.0 database contains 2,000 cancer genes, 537 of which

Figure 3 Analysis of recurrent somatic mutations by cancer types (red) and all cancers together (blue). Plots A and B represent the
complementary cumulative distributions (CCD) of the fraction of somatic mutations and affected donors respectively. They are calculated using
an increasing level of mutation recurrence, which is defined as the number of times a somatic mutation is observed in different donors. In Panel
C, is plotted the CCD of the fraction of affected donors as a function of the fraction of somatic variants. The curve is obtained considering an
increasing threshold of mutation recurrence (Section 2 in Additional file 1).
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Figure 4 Cancer-specific complementary cumulative distributions. The plots shows the decreasing trend of the Fraction of Donors (Y axis) as
a function of the Fraction of Somatic Mutations (X axis) in 27 cancer types for which there are a minimum of 4 points for fitting from at least 50
donors. The PanCancer plot is calculated merging all the cancer types together. The results of the fitting procedure are reported in
Supplementary Table 2, Additional file 1.
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have been experimentally validated and 1,463 statisti-
cally inferred from the analysis of candidate cancer
genes in 3460 human exomes and genomes from 23 dif-
ferent cancer types. For each cancer gene, NCG provides
information about duplicability, evolutionary origin,
expression, functional annotation, interaction network
with human proteins and microRNAs. Finally, protein
structure is also a valuable piece of information for pre-
dicting the impact genetic variants [52] and effectiveness
of drugs [53,54]. Cancer3D database collects ~275,000
somatic mutations mapped to ~15,000 proteins that cor-
respond to more than 24,300 structure from the Protein
Data Bank [55]. The idea is to study the impact of mis-
sense somatic mutations on protein three-dimensional
structure. The Cancer3D database includes predictions
from e-Drug and e-Driver, two recently developed tools
for predicting sensitivity to 24 anticancer compounds
and cancer driver proteins [56].
Resources for the visualization and analysis of cancer
genome data
In the last few years, several web portals have been devel-
oped for the visualization and analysis of all kinds of data
in cancer genome studies. Among the most used is the
cBioPortal maintained by the Memorial Sloan Kettering
Cancer Center [57,58]. The cBioPortal can be queried
either using the web interface or through programmable
application programming interface (API). The cancer data
displayed by the cBioPortal are extracted from 18,469
samples from 80 cancer genome studies. To facilitate the

submission of queries, cBioPortal implements the Onco
Query Language (OQL) for selecting and defining genetic
alterations for any subset of data. The user interface allows
searching for somatic mutations or copy number altera-
tion across different samples and cancer studies selecting
variations occurring in user-defined gene list or in 22 pre-
defined groups cancer-specific genes. When available,
expression level from RNA-Seq experiments, methylation
and protein phosphorylation data can also be retrieved.
A possible alternative to cBioPortal is the Cancer Gen-

ome Browser [59]. The Cancer Genome Browser allows
extraction and visualization of information from 574
datasets. Among these two resources, cBioPortal provides
better integration with pathways data and the Cancer
Genome Browser allows better visualization of clinical
data.
Other three interesting resources for the analysis of

cancer genome data are the Cancer Gene annotation sys-
tem for Cancer Genomics (CaGe) [60], the DriverDB [61]
and the Integrative Oncogenomics Cancer Browser
(IntOGen) [62]. CaGe is a cancer genome annotation sys-
tem for the classification of candidate genes from cancer
genome studies, using either previously reported or novel
categories of cancer genes, providing insights about the
underlying carcinogenic mechanisms through pathway
analysis. DriverDB incorporates data from 6,079 exome-
sequencing experiments from 33 cancer studies. It inte-
grates annotation databases and eight bioinformatics
algorithms for detecting driver genes and mutations.
Finally, Integrative OncoGenomics (IntOGen) is a web
available resource integrating data from 6,792 genomes/
exome sequencing experiments from 28 cancer types
(release 2014.12) [63]. It collects and analyses somatic
mutations in a large set of tumor samples to identify
putative cancer driver genes. The prediction of putative
cancer driver genes is performed by OncodriveFM [64],
which has been developed by member of the same group
(see next section). The web interface allows browsing
data by gene name, cancer type, sites and projects,
reporting the frequencies of mutation at gene and geno-
mic location InOGen also allows the study of genomic
alterations in cancer in the contest of pathways [65].
The URLs of the cancer genome data repositories, the

cancer gene lists and resources for cancer genome ana-
lysis are summarized in Table 2.

Computational methods for cancer genome interpretation
The analysis of the cancer genome is a challenging task
from both the experimental and computational point of
views. A recent review, in addition to providing an
exhaustive overview of the available tools for the detec-
tion of somatic mutation from sequencing data, also
highlighted these challenges [11]. The lack of a perfect
pipeline for the detection of genetic variants and the

Table 2. Cancer genome databases and resources

Resource URL Ref

Data repositories

CGHub https://cghub.ucsc.edu [34]

COSMIC http://cancer.sanger.ac.uk [132]

ICGC https://dcc.icgc.org/ [133]

TCGA https://tcga-data.nci.nih.gov/ [38]

Cancer gene lists

Bushman Lab http://www.bushmanlab.org/links/
genelists

[45]

Cancer Gene Census http://cancer.sanger.ac.uk/census [134]

TumorPortal http://cancergenome.broadinstitute.
org/

[46]

Vogelstein List http://goo.gl/4EmFG6 (Table S2A) [9]

Cancer genome
resources

CaGe http://mgrc.kribb.re.kr/cage/ [60]

Cancer3D http://www.cancer3d.org/ [51]

Cancer Genomics
Browser

https://genome-cancer.ucsc.edu/ [59]

cBioPortal http://www.cbioportal.org/ [57]

DriverDB http://driverdb.ym.edu.tw/DriverDB [61]

IntOGen http://www.intogen.org/ [62]

NCG http://ncg.kcl.ac.uk/ [50]
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computational analysis of the data remains one of the
major bottlenecks in the field. The current computational
methods for the interpretation of variants in cancer gen-
ome have been developed to address the following issues:
i) Detection of recurrent somatic mutations and cancer
driver genes; ii) Prediction of driver variants and their
functional impact; iii) Estimate the impact of multiple
variants at network and pathway level; iv) Differentiate
subclonal populations and their variation patterns. In this
section we describe a selection of available computational
tools for addressing the four issues listed above.
Detection of cancer driver genes
In general, the insurgence of cancer is accompanied
with an accumulation of somatic mutations. However,
this does not imply that all mutations are of equal
importance in the oncogenesis and cancer progression.
Rather, driver somatic mutations exert a selective advan-
tage to cancer cells. In contrast, passenger mutations are

abundant but do not confer any selective advantage.
Driver variants are present in a small fraction that may
vary in different cancer types [66,67]. Thus, an obvious
approach for the selection of cancer driver genes
involves the analysis of recurrent somatic mutations.
Following this idea, several methods - such as MuSiC
[68], MutSigCV [69] DrGaP [70] and Simon’s tool [71] -
have been developed to prioritize cancer driver genes
using different statistical models for the estimation of a
background mutation rate.
The Mutational Significance in Cancer (MuSiC) uses

sequence-based input to establish correlations among
mutation sites, affected genes and pathways, and to dis-
criminate abundant passenger mutations from significant
mutation events. This method aims to identify signifi-
cantly mutated genes with respect to a background muta-
tion rate. MuSiC has been tested on a set of 316 ovarian
cancer samples and it was able to detect 12 significantly

Figure 5 Distribution of the number of somatic mutations in exonic regions for each donor in 33 cancer types. The red line represents
the median of the distribution for each cancer type. The plot is inspired from a recent paper [5]. The median values are reported in
Supplementary Table 3, Additional file 1. Data from the same tumor type sequenced by different national consortiums are merged together.
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mutated genes [68]. MutSigCV is the newest version of
the “Mutation Significance” algorithm that uses gene spe-
cific background mutation rates including mutation
events in gene covariates. The information from known
co-varying genes is important for estimating the back-
ground mutation rates in the genomic regions where few
mutation events are observed. MutSigCV takes an input
list of mutation from different samples and builds a
model gene-dependent background mutation rate esti-
mated using clusters of genes. MutSigCV has been used
to analyze 3,083 tumor-normal pairs, and it was able to
discover strong differences in mutation frequency and
spectrum across 27 cancer types, providing interesting
insights about the etiology of the disease [69]. DrGap
[70] is a statistical framework for identifying driver genes
and signaling pathways in cancer genome-sequencing
studies. This approach integrates biological knowledge of
the mutational process in tumors and uses a heuristic
strategy to optimize the mixture proportion of chi-square
distribution of likelihood ratio test (LRT) statistics. This

approach improves the accuracy and sensitivity of the
prediction of driver genes avoiding zero estimation of the
driver mutation rates due to the small probability of
observing any mutation in the available samples. Simon’s
tool [71] calculates the background mutation rate by
accounting for the functional impact of mutations on
proteins, variation in background mutation rate among
tumors, and the redundancy of the genetic code. Using
this algorithm, the authors reanalyzed 623 candidate
genes in 188 non-small cell lung tumors and identified
28 driver genes, 6 of which were novel [72].
Alternative approaches have been implemented in

ActiveDriver [73], OncodriveFM [64], OncodriveCLUST
[74] and ContrastRank [75]. ActiveDriver is able to detect
significantly mutated functional sites in cancer genome
providing an analysis of the somatic mutations associate
to phosphorylation signaling. Indeed, the predictive
model has been calculated considering the frequency of
somatic variants from ~800 cancer genomes in proximity
of ~74,000 phosphorylation sites and 469 kinase domains

Figure 6 Tumor cluster dendrogram derived from 33 cancer types using the hierarchical clustering approach. The similarity between
two tumors has been calculated using cosine similarity between gene-based vectors. Each element of the gene-based vector represents the
number of donors in which a gene has at least one Recurrent Somatic Mutation (Section 3 in Additional file 1).
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[73]. The method was able to identify candidate genes,
protein complexes and kinases involved in cancer. Onco-
driveFM [64] is a method for the detection of putative
cancer driver genes or gene modules. It computes the
functional impact of variants using three established
computational approaches (SIFT [76], PolyPhen2 [77]
and MutationAssessor [78]). OncodriveFM prioritizes
putative cancer driver genes calculating the distribution
of the predicted functional impact scores for several var-
iants across tumor samples and its deviation from the
null model. The bias towards the accumulation of var-
iants with high functional impact is used detect candidate
driver genes. Similar approach has been used to prioritize
cancer-associated pathways. OncodriveCLUST has been
developed to identify significant bias towards somatic
mutations clustered within the same protein. The back-
ground model for prioritizing genes is calculated using
the rate on silent mutations, which are not assumed to
be under positive selection. OncodriveCLUST cluster
scores have been calculated using ~240,000 mutations in
~9,500 genes from COSMIC database and has been
tested of on four TCGA datasets. This approach provides
variable background mutation rate for each gene and it
detect recessive cancer genes not identified using Onco-
driveFM [74].
Finally, we also highlight ContrastRank [75], which is a

new method for the prioritization of putative impaired
genes in cancer. With respect to previously developed
methods, ContrastRank evaluates the background muta-
tion rate using the maximum value between the mutation
rates of each gene in 1000 Genomes [79] and normal
TCGA samples. For the calculation of the score the
methods only considers mutation with allele frequency in
1000 Genomes lower than 0.5% and uses the comple-
ment of the cumulative binomial distribution to rank
cancer associated-genes. The method has been tested on
TCGA from three types of adenocarcinomas. In addition,
the Cancer Census, Vogelstein and Bushman cancer gene
lists (see Table 2) have been used to assess the quality of
the prioritization method. ContrastRank was also used
for calculating an exome-based score to discriminate
between TCGA normal and tumor TCGA samples
resulting in high level of accuracy.
Predicting the impact of non-synonymous variants in
cancer
During the last decades several methods have been devel-
oped to predict the impact of non-synonymous single
nucleotide variants (nsSNVs) at structural [80] and func-
tional levels [2]. In particular, the algorithms for predict-
ing the functional effect of missense variants estimate the
probability that a mutation is disease-associated or func-
tionally deleterious. Although the relationships between
molecular state and disease are complex and are far from
being completely understood, the pathologic effect

resulting from amino acid substitution is commonly
estimated by predicting its functional impact. Most of the
available algorithms are based on the evidence that func-
tionally important protein sites are under purifying selec-
tion [81]. Therefore, the majority of disease-causing
variants should occur in conserved regions that can be
detected by evolutionary analysis [82]. Using this
approach many classifiers have been implemented to pre-
dict whether a nsSNV has any functional impact. The
most famous methods for estimating the impact of
genetic variants are SIFT [76] and PolyPhen [77] whose
predictions are already embedded in many variant anno-
tation pipelines. Recently, more sophisticated methods,
which exploit additional structural and functional infor-
mation, have been developed [19,83-85]. Recent advances
in the field are represented by the implementation of
consensus-based algorithms [86,87] and a general
approach that is able to predict the impact of variants in
non-coding regions [81,88].
Although most variant effect predictor reached an ade-

quate level of accuracy, their predictions do not provide
information about the possible phenotypic effect. This
problem has been partially addressed with the develop-
ment of a new class of disease-specific predictors trained
on a subset of mutations with defined phenotypic effect.
In particular, several methods have been developed for
discriminating between passenger and cancer driver
mutations [78,89-93]. Among them, CanPredict [91] has
been the first algorithm for predicting cancer-causing
mutations. The method uses a conservation measures
from PFAM [94] Hidden Markov Models and functional
information encoded through Gene Ontology terms.
Similar strategy has been implemented in support vector-
based approach (Dr. Cancer) that uses sequence profile
and cancer-specific functional terms [89]. Dr. Cancer has
been tested on 3,163 cancer-drive mutations from 74
proteins. The results show that cancer-related proteins
are enriched for particular Gene Ontology terms that can
be used to discriminate between cancer and other pheno-
types. The same dataset was previously used to train
CHASM a random forest-based algorithm [90]. CHASM
was tested on ~600 missense mutations in glioblastoma
multiforme achieving better performance than PolyPhen
and previously developed cancer specific approaches.
More recently, new methods such as MutationAssessor
[78], TransFIC [93] and FATHMM [92] have been opti-
mized to detect cancer driver variants. MutatationAsses-
sor uses evolutionary information patterns calculating an
entropy-based functional impact score from homolog
and paralog proteins. The method trained on ~19,000
disease associated variants has been tested on 10,000
mutations in COSMIC database prioritized according to
their recurrence and multiplicity. The authors estimated
that ~5% of the cancer-relevant mutation involves a
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change in the protein function rather than standard loss
and gain of function mechanism events. In TransFIC
approach the prediction of cancer drivers mutation has
been tuned considering subset of variants associated to
the same Gene Ontology term and selecting a variable
threshold for discriminating driver from passenger muta-
tions. The performance of the optimized functional
impact score has been tested on subset of the COSMIC
mutations classified according to their recurrence. The
results show that groups of protein with different func-
tion, posses distinct baseline tolerance to deleterious
mutations. Finally, FATHMM is a Hidden Markov
Model based algorithm using protein domain informa-
tion that has been optimized for predicting cancer caus-
ing mutations. The method, tested on previously
collected datasets result in improved performances with
respect to previously developed methods. Although the
algorithms based on functional information (Gene Ontol-
ogy terms/ protein domains) achieve better results than
standard conservation-based approaches, a fair testing
procedure is more difficult because the predictions can
be biased toward more abundant functional classes.
Analysis of cancer gene pathways and networks
The accumulation of somatic mutations during the life-
span is the main cause of cancer. Several identified
somatic mutations occur in genes involved in many sig-
naling, regulatory and metabolic pathways. Indeed
mutated genes such as TP53 and PI3KCA are hubs in
pathways and interaction networks which control cell
proliferation, growth and apoptosis [95,96]. In addition,
recent sequencing studies [4,38] revealed that cancer dri-
ver genes tend to cluster within a limited number of
essential pathways, and rarely mutations on genes in the
same pathway co-occur in the same patient. This
mutually exclusive genomic events have been observed,
for example, in the case of BRAF and KRAS (involved in
RAS/RAF pathway) in colorectal cancer [97], APC and
CTNNB1 (involved in beta catenin pathway) [98], EGFR
and KRAS in lung adenocarcinomas [99], TP53 and
MDM2 in many different cancer types [100].
From these observations, it is evident that the analysis of

genomic variations across gene pathways and networks is
important to understand the combinatorial effect of the
mutations and explain the disease mechanism. Pathway
and network analysis can be performed using previously
annotated gene pathways or testing alternative routes
from gene interaction networks. Reference databases col-
lecting information about gene pathways are the Kyoto
Encyclopedia of Genes and Genomes Kyoto Encyclopedia
of Genes and Genomes (KEGG) [65] and the Molecular
Signatures Database (MSigDB) [101]. Biological interac-
tion networks mainly consist of protein-protein interaction
data, which are collected in databases such as IntAct [102]
and iRefIndex [103]. Another important database is the

Reactome, which aggregates data on protein-protein inter-
action networks and gene pathways [104].
Recently, several methods for the analysis of cancer gene

pathway have been developed [105-115]. Few examples
are PathScan [114], which is an annotation-based
approach, and HotNet2 [115], MDPFinder [107], MEMo
[105], and Dendrix [113] which are able to identify driver
pathways. PathScan [114] is a probabilistic model that
takes into account the length of the genes and differences
in their mutation rates under the null hypothesis. The
method combines single-sample p-values using an integral
approximation that estimates a pathway-specific overall p-
value. PathScan represents an alternative to previous
approaches, which reduce a gene set into a unique gene
simply combining the total mutations and mutable posi-
tions of each gene. PathScan was applied to the analysis of
data from lung adenocarcinoma sequencing project to find
significantly mutated 129 KEGG pathways. The results
show that PathScan was able to identify significant path-
ways detected in previous studies. In addition PathScan
found the focal adhesion pathway to be significant in
agreement with previous expression studies on prostate
and ovarian cancers [114]. HotNet2 [115], has been
recently developed for identifying significantly mutated
groups of interacting genes from large cancer sequencing
studies. It uses a heat diffusion model that encodes both
the topology of the network and the significance of the
observed frequencies of each mutated gene. HotNet2 has
been tested on 3,281 samples from 12 cancer types in
TCGA studies. In this analysis it was able to identify 16
significantly mutated subnetworks that comprise well-
known cancer signaling pathways. Among them, the well-
known TP53, phosphoinositide 3-kinase (PI3K), NOTCH
and receptor tyrosine kinases (RTK) signaling pathways.
Although annotation-based methods are able to priori-

tize important cancer pathways, they present some limita-
tions. The main limitations are the incompleteness of
pathway databases and the presence of multiple overlap-
ping gene sets across pathways. Thus, more general meth-
ods for detecting significantly mutated gene sets use
information from biological interaction networks. The
Mutual Exclusivity Modules in Cancer (MEMo) algorithm
[105] integrates copy number alteration and mutation data
and maps them into biological networks. The method uses
correlation analysis and statistical tests to identify network
modules of genes recurrently altered across a set of tumor
samples, participate in the same biological process, and
alteration events are mutually exclusive. MEMo has been
tested on a set of ~400 samples from glioblastoma and
ovarian cancer. In the first cancer study the method was
able to identify important signaling modules such as p53
and PI(3)K. In ovarian cancer, it detected mutually exclu-
sive variation events between BRCA and genes in the Rb
module.
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The De novo Driver Exclusivity (Dendrix) algorithm
[113] is a tool for discovery of mutated driver pathways in
cancer using only mutation information from the cancer
samples. The method introduces the concepts of coverage
and exclusivity to distinguish group of genes with driver
mutations from set of genes with passenger mutations.
The Dendrix algorithm, which has been applied to the
analysis of different cancer types in TCGA study, was able
to identify 8 mutation groups mutated in 94% of patients
from 17 cancer types and groups of mutually exclusive
genes in lung adenocarcinoma and glioblastoma multi-
forme. Similarly, MDPFinder [107] identifies de novo
mutated driver pathways from mutation data solving the
maximum weight submatrix problem. The authors imple-
mented an exact method based on binary linear program-
ming and genetic algorithm to combine mutation and
expression data. MDPFinder has been tested on a set of
~500 samples from head and neck squamous cell carcino-
mas glioblastoma and ovarian carcinoma. The results
show that the integrative model based on mutation and
expression data was able to identify biologically relevant
gene sets detected in previous studies [107].
Finally, PARADIGM[116] estimates patient-specific

genetic activities incorporating curated gene interactions
from the NCI pathway interaction database (PID) [117].
The method, that can use many types of omics data,
represents a gene by a factor graph with associated
known activity and expression. PARADIGM, tested on
breast cancer and glioblastoma samples, was able to
identify altered activities in cancer-related pathways with
less false-positives than a previous developed method.
An interesting approach, which applies network analysis

to the study of the cancer genome, is the Network-Based
Stratification (NBS) method [118]. NBS is an algorithm for
the classification of cancer subtypes that clusters patients
with somatic mutations in similar gene network regions.
More in details, the NBS represents each patient with a
profile of somatic mutated genes mapped on the human
gene interaction network. After a smoothing procedure,
the patients are clustered using a non-negative matrix fac-
torization-based approach. The method performs a second
clustering procedure to find subgroups of patients fre-
quently co-stratified after random sampling. NBS has been
tested on a set of ~1,000 samples from ovarian, uterine
endometrial and lung tumors and used to determine rela-
tionship between cancer subtypes and patient survival.
Classification of cancer subclonal variants
Tumor progression is an evolutionary process which starts
from a single cell and results in the selection of more
aggressive subclones [119]. The presence of different cell
populations affects the accurate detection of somatic
mutations in cancer sample. Although all subclones in a
sample have the same origin, they are present in different
proportions and have heterogeneous patterns of somatic

mutations. Thus, somatic mutations in cancer cells present
in small proportion are more difficult to detect because
correspond to variations supported by a low number of
reads, further reduced by impurity in the tumor sample. In
a recent work [13], Ding and colleagues estimated that
approximately 340X coverage is needed for detecting (with
99% of chance) at least 3 reads when a heterozygous
variant is present in a 5% subclonal population.
A possible solution to this issue lies in single-cell

sequencing for revealing diversities in the pattern of
somatic mutations within a tumor [120,121]. Although
this technique provides a better characterization of
the mutations occurring in each subclonal population, the
approach is affected by errors introduced during the
amplification process. Furthermore, single-cell experi-
ments need to be performed on multiple tumor cells to
have a general overview of the mutation pattern. The pre-
sence of subclones in the cell population can be detected
analyzing the distribution of reads or variant allele fraction
for the somatic mutations. If the distribution is multimo-
dal, the presence of subclonal populations is expected.
Figure 7 shows the distribution of variant allele fraction
(VAF) in a lung adenocarcinoma cancer sample from
TCGA. Although the distribution of variant allele fraction
provides an indication about the clonal architecture, the
analysis of this data is affected by sample impurity and
copy number alterations. In the last few years many com-
putational tools have been developed to estimate the pre-
sence of subclonal populations [122-127], some of them
are discussed below.
ABSOLUTE [122] uses data from copy number varia-

tions for optimizing models of recurrent cancer karyotypes
and expected allelic fraction values for somatic SNVs.
These models are then used to re-extract information
about the absolute cellular copy number of local DNA seg-
ments and the number of mutated alleles for somatic
SNVs. The ABSOLUTE algorithm has been applied to the
analysis of copy-number profiles from 3,155 cancer sam-
ples, identifying recurrent genome doubling events that
influence tumor progression. ABSOLUTE was also used
for the analysis of exome sequencing data from 214 ovar-
ian carcinoma tumor-normal pairs. The method was able
to identify large subclone populations with predominant
somatic mutations and small subset of subclones with het-
erozygotes mutations in tumor suppressor genes TP53
and NF1 and in a candidate tumor suppressor gene
CDK12.
Alternative methods [124,125] use phylogenetic

approaches to study the evolution of tumor cells. For
example, PyClone [125] assumes that clonal population
follows a perfect and persistent phylogeny. Under this
assumption, for which each somatic mutation only happen
once in the evolutionary history and not reverse mutation
are allowed, subclonal cells can be identified and their
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prevalence estimated. PyClone uses a Bayesian clustering
algorithm to group sets of somatic mutations belonging to
the same cluster of subclonal cell accounting for allelic
imbalances introduced by copy-number alterations and
normal-cell impurity. The method has been tested on a
simulated dataset produced from mixtures of DNA
extracted from four 1000 Genomes Project sample and
four spatially separated samples from a primary, untreated
high-grade ovarian tumor. The results show that PyClone
outperforms two genotype-naïve methods using binomial
and infinite beta-binomial mixture models. Similarly, Phy-
loSub [124] infers the phylogeny and genotype of the
major lineages in the clonal population calculating the
Bayesian prior over the trees clustering the SNVs. A sam-
pling procedure is use to find the optimized the join pos-
terior distribution with higher probability to generate the
observed frequencies of somatic mutations. PhyloSub has
been tested using deep exome sequencing data from acute
myeloid leukemia and chronic lymphocytic leukemia. The
results show that PhyloSub is able to identify both linear
and branching subclonal lineages.
A recent publication [123] presents a novel combinator-

ial approach based on binary partition tree (BPT) to
model the mechanism of clonal expansion in tumor and
estimate the subpopulations of tumor using the variant
allele frequencies of somatic mutations. The authors
demonstrated that finding a BPT is a NP-complete pro-
blem, and derived an approximation algorithm for an opti-
mized version of the problem. Finally they implemented a
recursive approach that finds the solution of the optimized
BPT problem in a polynomial time. The developed algo-
rithm can detect errors in the estimation of the variant
allele frequencies of somatic mutations, which cannot be

correctly estimated because of the admixture of normal
cells in the tumor sample. The performance of BPT algo-
rithm has been tested on simulated and real cancer data
showing it generates more consistent results, and it is
faster than previously developed methods.
The methods for the detection of genetic heterogene-

ity in cancer can be also used to detect subclonal muta-
tion conferring drug resistance. This idea has been
investigated using cloneHD [126], a new subclonal
reconstruction algorithm optimized using both informa-
tion about somatic mutations and correlated changes
generated by copy-number changes. The method has
been applied to the analysis of sequencing data from
time-resolved samples from breast cancer and of chronic
lymphocytic leukemia. The results demonstrate that clo-
neHD can be a valuable tool for tracking cancer devel-
opment and monitoring the response of a patient to
therapy regimens.
The URLs of the tools describe above for the analysis

of the cancer genome are summarized in Table 3.

Concluding remarks and future perspectives
In this review we provide an overview of the challenging
topics in the analysis of cancer genome. We mainly
focused on the characterization of single nucleotide var-
iant, which is by far the most common type of genetic
variation. In particular, we provided a summary of the
most important cancer genome data available online
and described a selection of the available computational
tools for cancer genome interpretation.
Although several algorithms have been developed, the

problem of cancer genome interpretation is far from
being solved. The progress in the field is limited by
many factors mainly associated with (a) the intrinsic
complexity of the problem (b) technical limitations, and
(c) ethical issues.
The complexity of the problem mainly comes from

the huge number of somatic variations present in the in
each tumor sample and our inability to select driver and
clinically actionable variants. The technical limitations
are also affecting the detection of genetic variations pre-
sent in a smaller fraction of subclones. The third impor-
tant issue is the restricted access to the data for
protecting the privacy of the individual.
It is expected that in the near future most of the limita-

tions will be overcome by the development of more accu-
rate computational tools and experimental approaches
which will play an important role in the understanding
the relationship between genotype and phenotype in can-
cer. In particular, brute force sequencing initiatives will
result in a better mapping of the functionally important
regions in the genome and experimental approaches,
such as CRISPR/Cas [128] will provide the opportunity
to extensively test the functional impact of genetic

Figure 7 Distribution of the Variant Allele Fraction (VAF) of
somatic mutations in one sample of lung adenocarcinoma
from the TCGA study.
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variants. In addition, an improvement of the single cell
sequencing technology will allow better characterization
of the progression of tumor and definition of the pattern
of mutations in more aggressive subclonal cells.
The integration of more accurate data will have an

impact on the development of more accurate computa-
tional tools. Indeed, the limited ability to score the
performances of currently available algorithms can be
addressed by collecting standardized benchmark sets
from high-quality experiments. An important compo-
nent for speeding up this learning process involves the
implementation of more effective policies for data
sharing. Although major efforts have been made by the
TCGA, ICGC and other cancer consortium, the proce-
dures for releasing sequencing data need to be opti-
mized. Standard protocols for extracting and reporting
the data are also required for efficient data analysis.
Information about the germline variants present in
sequenced patients should be made available for vali-
dating hypothesis about the tumor predisposition.
Furthermore, it will be extremely important to develop

appropriate de-identification procedures [129] and the
promotion of informed consent policies for improving
the effective usage of genotype/phenotype databases
[130,131].
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Table 3. Computational methods for cancer genome interpretation

Method URL Ref

Cancer gene prioritization

ActiveDriver http://individual.utoronto.ca/reimand/ActiveDriver/ [73]

ContrastRank http://snps.biofold.org/contrastrank/ [75]

DrGaP https://code.google.com/p/drgap/ [70]

MuSiC http://gmt.genome.wustl.edu/packages/genome-music/ [68]

MuSigCV http://www.broadinstitute.org/cancer/cga/mutsig [69]

OncodriveCLUST http://bg.upf.edu/oncodriveclust [74]

OncodriveFM http://bg.upf.edu/oncodrivefm [64]

Simon’s tool http://linus.nci.nih.gov/Data/YounA/software.zip [71]

Cancer variant annotation tools

CanPredict http://goo.gl/UK9lbv [91]

CHASM http://wiki.chasmsoftware.org/ [90]

DrCancer http://snps.biofold.org/drcancer/ [89]

FATHMM http://fathmm.biocompute.org.uk/cancer.html [92]

MutationAssessor http://mutationassessor.org [78]

TransFIC http://bg.upf.edu/transfic/ [93]

Pathway and network analysis

Dendrix http://compbio.cs.brown.edu/projects/dendrix/ [113]

HotNet2 http://compbio.cs.brown.edu/projects/hotnet2/ [115]

MDPFinder http://zhangroup.aporc.org/ShiHuaZhang [107]

MEMo http://cbio.mskcc.org/memo [105]

PathScan http://genome.wustl.edu/software/pathscan [114]

PARADIGM http://sbenz.github.com/Paradigm [116]

Classification of tumor subclonal variants

ABSOLUTE http://www.broadinstitute.org/cancer/cga/absolute [122]

BTP http://compbio.cs.brown.edu/projects/btp/ [123]

CloneHD https://github.com/andrej-fischer/cloneHD/ [126]

PhyloSub https://github.com/morrislab/phylosub/ [124]

PyClones http://compbio.bccrc.ca/software/pyclone/ [125]
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