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Abstract

Background: Missing data is an inevitable phenomenon in gene expression microarray experiments due to
instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically,
most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for
processing missing data. Actually many developments have been achieved in the research on estimating missing
values. The challenging task is how to improve imputation accuracy for data with a large missing rate.

Methods: In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation
method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local
structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local
Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each

recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in
the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step.

Results: We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation
(ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI
significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially
for datasets with large missing rates and less complete genes.

Conclusions: It is noted that our proposed hybrid imputation approach incorporates both global and local

information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides,
this study highlights the need for considering the imputing sequence of missing entries for imputation methods.

Introduction

Gene expression profiling has been widely used in var-
ious studies over a wide range of biological disciplines,
such as cancer classification, specific therapy identifica-
tion, drug mechanism investigation [1]. However, data
missing is an inevitable phenomenon in gene expression
microarray experiment due to many factors, such as
instrument failure, human error. Then, this situation
will produce a negative impact on subsequent analysis.
Many existing microarrays technologies, which require a
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complete data sequence as model input, have been dis-
turbed to be put into practice for incomplete data [2],
such as multivariate supervised classification methods
(e.g. Support Vector Machines (SVMs) [3]), multivariate
statistical analysis methods (e.g. Principal Component
Analysis (PCA) [4] and Singular Value Decomposition
(SVD) [5]).

In practice, there are three types of methods to pro-
cess the genes with missing value before data analysis.
The first method is to directly delete the missing genes,
which may lead to information loss [6] as the missing
genes may be diverse and some of them may play a cru-
cial role in the subsequent analysis [7,8]. The second
method is to replace the missing values by some simple
numerical operations, such as imputed by zero, mean or
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mode of gene attributes [9]. Although this method
requires quite a few computations, it may import error
for the analysis of the studied mechanism. Actually, this
approach would produce lots of same values, which is
somewhat disagree with the situation of reality. The third
method is to impute the missing values by their esti-
mated values based on the observed information in the
microarray dataset. The latest studies have shown that
this method has strong adaptability and can obtain better
imputation accuracy. Therefore, several methodologies
have been developed in recent years [10].

Algorithms on imputing missing values can be classi-
fied into four categories [11,12]: global approach, local
approach, hybrid approach and knowledge assisted
approach. Each of them has its own characteristics. We
will give a brief introduction on these approaches.

Global approach estimates missing values based on
global correlation information extracted from the entire
data matrix [12]. The frequently used global approaches
include Singular Value Decomposition (SVD) [13] and
Bayesian Principal Component Analysis (BPCA). These
methods is characterized by the ability of capturing glo-
bal correlation information to restore the missing values.
But they ignore the local structure hidden in the data.
Details of BPCA will be presented in later sections.

Correspondingly, local approach uses the potential
local information to estimate the missing values, such as
Local Least Squares (LLS) and Weighted K-Nearest
Neighbor imputation (WKNN) [14]. LLS estimates miss-
ing values using a multiple regression model [11] based
on K-nearest neighboring genes with respect to the
target gene. Currently, several LLS variants have been
proposed to improve algorithm performance in different
aspects, such as Iterated Local Least Squares imputation
(ItrLLS) [15], sequential Local Least Squares (sLLS) [16],
weighted Local Least Squares (wLLS) [17]. Obviously,
this type of method could estimate missing values accu-
rately if the data matrix contains rich local structure. In
other words, algorithms would obtain poor imputation
performance when the missing values have strong correla-
tion with the global information rather than local struc-
ture. In the next section, a short review of LLS and ItrLLS
will be given.

Hybrid approach, apparently, is derived by combined
both global and local correlations of the data matrix.
Hence, using the hybrid method may achieve higher
imputation performance than a single type approach
only. LinCmb [18] and EMDI [19] are two typical hybrid
approaches.

Knowledge assisted approach integrates domain knowl-
edge or external information into the imputation process,
which may significantly improve the imputation accuracy
[12], such as Fuzzy C-Means clustering (FCM) [20] and
Projection Onto Convex Sets (POCS) [21]. Wherein, FCM
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used gene ontology annotation as external information to
process missing values imputation. However, the priori
knowledge is difficult to extract and its veracity is hard to
control. Thus, this problem causes poor applicability with
these methods for data imputation.

Recently, many novel imputation algorithms have been
developed, such as bicluster-based impute (BIC) [22],
bicluster-based Least Square (bi-iLS) [23] and bicluster-
based Bayesian Principal Component Analysis (bi-BPCA)
[11]. Although they properly utilize data local structure
and global correlation information inspired by bicluster
algorithm, and a novel framework for missing value esti-
mation is also designed, they still just use them separately
without considering the advantage of their combination.
Besides, most methods estimate missing values without
considering the imputation sequence among incomplete
genes. Since incomplete genes that have less missing
entries might be recovered more accurately than those
with more. The successful design of an estimation method
for missing values depends mainly on making full use of
the observed information. Thus the question is, how to
build models using the different information and, more
importantly, how the different methods can strengthen
each other. Therefore, it is important to develop a strategy
which could use the observed information fully for restor-
ing the missing expression gene values.

In this paper, induced the thought of semi-supervised
learning [24] with collaborative training, we propose a
novel hybrid imputation method, called Recursive
Mutual Imputation (RMI). In the field of machine learn-
ing and data mining, we always expect to collect a large
amount of labeled data to build a powerful model. But
obtaining large labeled data is time consuming and not
practical for some fields, especially medical field. Yet,
large unlabeled samples are often easy to obtain, making
semi-supervised learning methods attractive. Moreover,
semi-supervised learning can strengthen the model
trained by labeled data through exploiting general knowl-
edge among unlabeled samples. Co-training paradigm,
one of a popular used semi-supervised method, is pro-
posed by Blum and Mitchell [25]. It trains two classifiers
with sufficient and redundant restrictions, respectively.
But in reality, it is not easy to meet those two restrictions.
Thus, in contrast to standard co-training configuration,
CO-training REGressors (COREG) [26] has a broad
applicability as no sufficient and redundant restrictions
needed. COREG involves two classifiers, and the core
idea of its training process is to select the confident
labeled instances from dataset labeled by one learner, and
then put them into another learner training set. Inspired
by the idea of COREG, for a microarray dataset with a
large missing rate, we treat the complete and incomplete
genes as labeled and unlabeled examples correspond-
ingly. Then, mutual imputation strategy is designed to
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share both global and local information extracted by two
different types of imputation methods. To make full use
of those information, an recursive imputation for data
sequence is developed to improve all estimation results
gradually. In our framework, Bayesian Principal Compo-
nent Analysis (BPCA) and Local Least Squares (LLS) are
introduced as our global and local approaches. Therefore,
RMI is a hybrid imputation method, and has several
distinguished advantages over other methods for restor-
ing the missing expression gene values. Firstly, RMI aims
to build a recursive mutual process by assembling two
single methods, BPCA and LLS, which can exploits global
correlation information and local structure in the missing
dataset as full as possible. Secondly, it considers the genes
that have less missing entries should be estimated firstly,
which can improve the performance of estimation results
for genes with more missing entries. Furthermore, a
novel weight-based ensemble method is applied to RMI
method. Experimental results conducted on several real-
world datasets prove the effectiveness of the recursive
mutual strategy, even in the case of larger missing rates
and less complete genes.

The remainder of the paper is organized as follows.
Section 2 reviews BPCA, LLS and ItrLLS approaches.
Section 3 describes the proposed algorithm in detail.
We presents the experimental results in Section 4.
Finally, Section 5 concludes the work.

Review on BPCA, LLS and ItrLLS
Bayesian principal component analysis
BPCA [1] method is performed by three steps in the pro-
cesses of missing value estimation, as follows: 1) Principal
Component (PC) regression, 2) Bayesian estimation, and
3) an Expectation-Maximization (EM)-like repetitive algo-
rithm. In detail, the following example is taken to explain
how BPCA works. BPCA regards d-dimensional gene
expression vectors y as a linear combination of principal
axis

vectors wl (1 < [ < K, and K < d):

Xjw; + &,

M=

y:

—_

where x; are called factor scores, ¢ denotes the residual
error. The /th principal axis vector w; = \/Au;, where 4,
and y; denote the /th eigenvalue and the corresponding
eigenvector of the covariance matrix S for the data set YV
. The principal axis vectors W = (W°%, W), where
W°" denote the observed part in the data, and W™
denote the miss part. If the number K is given, the fac-
tor scores x = (x1, X5, . . . xx ) for the expression vector
y can be obtained by minimizing the residual error over

obs,

the observed data set y°”*:
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err = ”yobs _ WObSXHz.

Then, the missing value in the expression vector y can
be estimated by:

y‘rmss — WmlSSx.

The parameter W is unknown beforehand in the above
procedure. BPCA use a probabilistic model, which is called
probabilistic PCA (PPCA). Meanwhile, the model is based
on the assumption that the residual error & and the factor
scores x obey normal distributions, as follows:

p(x) = Nk (x0, Ix),

p(e) = Na(&10, (1/7)1a),

where I is a (K x K) identity matrix and 7 is a scalar
inverse variance of ¢. NK (x |u, 0 ) denotes a K-dimen-
sional normal distribution for x, whose mean and covar-
iance are u and o, respectively. BPCA assumes Y = {¥° bs,
Y™}, where Y°” and Y™ denote observed part and the
missing part. The variational Bayes algorithm [27] is used
to estimate the posterior distribution of the parameter 6 =
{W, u, 7} and Y simultaneously. The value of k is d - 1
as default.

Local least squares

Two steps are included in the local least squares imputa-
tion procedure [2]: 1) selecting k genes based on Pearson
correlation coefficients or Euclidean distance; 2) regression
and estimation. Without loss of generality, let Y € R"*¢
denote the expression matrix consisting of 7 genes and #
conditions, and the expression value of the ith gene in the
jth condition is present as gij . Here we assume the target
gene gt has missing values at the first z positions. As the
following presents, there are k coherent genes (g1, gr2, ...
gy for g; in matrix G:

&

g | ( Qixe W )

- Biexz Akx(n—z) '

&ik

where B denotes the z columns in the k coherent genes

corresponding to the z missing positions of the target gene
g, and matrix A denotes the #-z columns in the k coherent
genes corresponding to the n-z non-missing positions. wT
consists of the non-missing positions of g,. The k-dimen-
sional coefficient vector X is regarded as a least squares
problem with A” and w, that is present as follow:

X =arg rrg(in ATX — w|?,
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Then the z missing values in the target gene g, are
estimated by a linear combination of B” and X :

81y = B'X = B'(A")"w,

where (A”)Y denotes the pseudoinverse of A”. All the
missing values in the matrix can be recovered according
to the same procedure. Also LLS uses an artificial
method to estimate the proper k mentioned above. In
detail, for each target gene, the missing value is replaced
by the row average at first. Secondly, a certain number
of known entries are removed randomly to create the
artificial missing matrix and save the true expression
values. Then, LLS is performed on the artificial matrix
using every value of k ranging from 1 to the total num-
ber of genes in the matrix. The imputation quality, mea-
sured by Normalized Root Mean Square Error (NRMSE)
can be calculated once the pseudo missing values are
estimated with every k value. Note that we know the
true expression value for each of the pseudo missing
value. Finally, the parameter & is set to the value corre-
sponding to the best imputation quality.

Iterated local least squares imputation

Iterated Local Least Squares imputation (ItrLLS) [15]
method, one of LLS-derived methods, improves LLS
method from two aspects. Firstly, the way of selecting
coherent genes in ItrLLS is different from LLS. In LLS,
the k coherent genes are selected as k nearest neighbor-
ing genes. The k value is fixed for all target genes after
the k is selected at the artificial stage. While in ItrLLS,
the number of coherent genes for target genes is not a
fixed number. In practice, ItrLLS defines a distance
threshold selecting the coherent gene, and the threshold
0 is set as times the average distance to the target gene.
Where 0 denotes the distance ratio, which is chosen
from a range [0.5, 1.5] with an increment 0.1 in the
default setting. Secondly, ItrLLS uses iterative strategy.
At each iteration, the estimated results from the last
iteration is used to re-select coherent genes for every
target gene with the same distance ratio, and then
applies LLS method to re-estimate the missing values.
The number of iterations is 5 as default.

Recursive mutual imputation

To some extent, the single imputation method mentioned
above works well in estimating missing values. They utilize
local structure or global correlation information in the
matrix properly. However, using a single type of usual
imputation method may achieves less estimation accuracy
than the hybrid method. Recently, several studies have
shown that the performance of estimation algorithms is
seriously constrained by the correlation information and
structure in the data matrix [12,28].
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In this paper, we propose a novel hybrid imputation
method using recursive mutual strategy, called RMI. RMI
aims to build a recursive mutual process by assembling
two single methods, which could provide more accurate
estimation. Two frequently- used methods, BPCA and
LLS, are chosen as our baseline imputation algorithms.
Since BPCA and LLS are able to capture global correlation
information and local structure in the microarray matrix,
respectively.

Below we describe the algorithm in detail. Let C and
M denote complete genes set and incomplete genes set,
extracted from the whole matrix D respectively. At the
initial stage, the incomplete matrix M is divided into
p parts, M = (my, my, ... mp)T , where m; includes all
genes with i missing entries, p is equal to the max num-
ber of missing entries. For example, for a matrix with
100 incomplete genes and 10 experiments, all genes that
have one missing entries are selected as the gene group
m;. Apparently, all genes that have two missing entries
are selected as group mi,, and the rest group can be
formed in the same way. The p value might be less than
10 according to the attribute length of microarray data.

Generally, RMI consists of three major steps: two
complete gene subsets construction; recursive mutual
imputation and estimation results ensemble. Below we
describe them in detail.

Two complete gene subsets construction

The first step is to construct two complete genes subset,
C1 and C2. As we discussed above, using the more
observed information, the more accurate the estimation
results. BPCA and LLS can be applied on the whole
missing matrix G at the initial stage. Then, we obtain
complete matrix Gy, and Gy It is not proper to make
C1 or C2 using all genes in Gy, and Gy;, since they
contain the genes with so many estimated value, which
can induce more error. If C1 and C2 are both set to C,
there would less observed information be used, which
conflicts with our original view. Here, we set C1 by the
part of genes in Gj,, that have less than p/2 missing
entries in the original matrix G. Similarly, C2 includes C
and part of genes in Gy, corresponding to the genes
that have less than p/2 missing entries in G.

Recursive mutual strategy

In the recursive mutual process, each subset can use
information from each other for C1 and C2. We con-
sider that incomplete genes should be recovered in the
sequence of the size of i, which means RMI uses tactics
to recover genes that have less missing entries firstly. In
the process of semi-supervised co-training, a key step is
to select the confident labeled instances from dataset
labeled by one learner, and then put them into another
learner training set. They can take respective advantages
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to improve the estimation results of each other in this
bpca
1
taken out from C,,., are regarded as confident genes,
then we put them into complete genes set C2 which
would be used in the next iteration of LLS imputation,
where Cj,., and Cy; denote the imputed results by
BPCA and LLS respectively. Correspondingly, mﬁls taken
out from Cy;, should be added into complete genes set
C1 in the next iteration of BPCA imputation. Following
that, data imputation would stop until all missing entries
in M are recovered. Note that RMI uses the complete
genes’ results from the last iteration.

At the end of RMI, the final complete matrix G;,,
should be constructed by C1 and C2. We assemble the
results using different weights for C1 and C2. The ques-
tion is how to determine their weight. In the following,
we define a novel confidence measure that suits our
imputation model. Confidence in the imputation can be
defined as the acceptance of imputation model to all
estimation results. We consider that recursive mutual
imputation tends to improve their accuracy as the
amount of data over the observed entries grows. Actu-
ally, how well the estimator works directly depends on
the number of observed entries in the missing gene and
the correlation information between conditions. Based
on this idea, we propose a simple definition for the con-
fidence of each missing entry. For example, the target
gene g, contains missing entries g}ms and observing

way. In every iteration of RMI, the complete genes m

entries g% . ¢! denotes one missing entry in g/, at the
ith position. The confidence of g’ in C1 can be calcu-
lated by the following equation:

1

CON(g}) = /
(20) d; * reg — error(gt)

where d; denotes the mean distance between go* and
its k nearest genes in C1. reg,17or(g!) denotes the linear
regression error, in which the ith position is the variable
and the other positions in are variables. Note that these

calculations are all based on the complete genes C1 or
C2.

Assembling the results

The confidence matrix CON (M,,.,) and CON (M),
corresponding to C1 and C2, can be obtained, according
to the way we described above. The final step is to
assemble the estimation results C1 and C2. Here the
confidences can be used as the assembling weights, as
following:

w = ’
et CON(Mipea) ; + CON(Mis)
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/R
Wy, = 1 wbpca’

U ) "
Gim = Wypeq * CLij + Wy * €235,

where i and j denote the missing positions in G.
Algorithm 1 gives the algorithm framework.

Algorithm 1 RMI

Input:

The missing matrix Gmxn includes the complete
genes set C and the incomplete genes set M.

Here M = (my, ms, ... mp)T.

Output:

The complete matrix G,

Step 1: Constructing two complete genes subsets;

1: Two complete matrix Gy, and Gy, can be obtained
by using BPCA and LLS methods, respectively. The
complete subset C1 is construct from G,,,. For each
gene in C1, it has more than 1 and less than p/2 miss-
ing entries in the original matrix G. Similarly, The
complete subset C2 is construct from Gy.

Step 2: Recursive mutual strategy;

2:foriel, 2 .., pdo
3: For each missing entries in the target gene g; in
m;, obtain the confidences CON,,,(g,) and CONJ;

(g) by Eq:
1

CON = /
(8) d. = reg — error(g;)

4: Note that CONp,,(g,) is calculated based on C1 U
C, and CON/j;(g;) based on C2 U C.

5: end for

6: Recover the missing entries in m; based on C1 U
C using BPCA method, denoted m:’pm

7: Recover the missing entries in mi based on C2 U
C using LLS method, denoted m!*

8: Update: C1 = C1 Um!; C2 = C2 Um™™
Step 3: Assembling the results;

9: G,,,, = Assemble(C1, C2) U C

Evaluation

Datasets

We used two types of microarray datasets, time series
data and non-time series data to illustrate and evaluate
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RM, following some previous studies [1,2,15]. Time series
(TS) data includes three datasets, and two of them are
used for identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae (http://genome-www.stan-
ford.edu/cellcycle/) [29]. The tab delimited data file con-
tains three parts: the Alpha-part, cdc-part, and Elu-part.
We choose Alpha-part and Elu-part. The first dataset,
Alpha, contains 6075 genes in the original file. By remov-
ing genes with missing values, it remains 4489 genes and
18 experiments in total. The second dataset contains 5766
complete genes with 14 experiments, named Elu. The
third dataset, Ronen, includes two time series in yeast
from a study of response to environmental changes
(>http://ncbi.nlm.nih.gov/Projects/geo/query/acc.cgi?
acc=GSE4158) [30], and is also used in [11] to assess
bi-BPCA. The matrix contains 10749 genes in 26 experi-
ments originally. It contains 5342 genes with 26 experi-
ments finally, using the same preprocessing method
mentioned in study [11]. The forth dataset, Tacrc, is
non-time series dataset and is the cDNA microarray data
relevant to human colorectal cancer (CRC) studied in [31].
It contains 758 genes with 50 experiments. The details of
these four datasets are shown in Tablel.

Evaluation measures

The quality of the imputation results is measured by the
Normalized Root Mean Square Error (NRMSE), which is
described as following

N

NRMSE = | > (y; = ¥))*IN/ay,
j=1

where y is the real value and y is the value estimated
by imputation method, and o, is the standard deviation
for the real values. N is equal to the total number of the
missing entries. The smaller NRMSE is, the higher esti-
mation accuracy.
Experimental setup
Three imputation methods, BPCA (http://www.csbio.sjtu.
edu.cn/bioinf/EMDI/), ItrLLS (http://webdocs.cs.ualberta.
ca/ghlin/src/WebTools/Imputation/) and LL-S (http://
www.cs.umn.edu/hskim/tools.html) are selected as
comparative methods with RMI. In our experiments, all
the missing entries are generated based on the general
principle. In a first step, the observations with missing
values are deleted from the initial gene expression data-
sets to obtain testing datasets. We consider all complete

Table 1 Testing datasets

Original size Complete size Type
Alpha 6075*18 4489*18 Time Series
Elu 6075*14 5766*14 Time Series
Ronen 10749*26 5342*26 Time Series
Tacrc 758%50 758*50 Non-Time Series
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genes and eliminate genes that have missing entries from
the original datasets. Then artificial missing matrices
with different missing rate are generated, and all the
missing values in a dataset occur randomly. Let ¢ denotes
the complete ratio and r represents the missing rate.
That means about t% of the whole genes in G are
randomly selected as complete genes C, while 7% of
entries in the rest genes are removed randomly, denoted
M. For example, assuming one matrix contains 1,000
genes, when t is equal to 0.20, then 200 genes are
maintained as complete genes C and the rest 800 genes
make up missing matrix M with r% of entries in M are
removed. In a second step, different imputation methods
are applied on these matrices. The evaluation performance
between the estimated values and the original real values
is calculated with criterion RMSE.
Results and analysis
In this work, nine different missing rates r at 1%-40%
with five different complete ratios ¢ at 5%-25% are
simulated in each dataset. Each kind of random case is
generated 10 times by varying the set of missing entries
to ensure a correct sampling. All the results present in
the following figures are the NRMSE average value of
10 results. Figure 1, 2, 3, 4 show the results of four data-
sets: Alpha, Elu, Ronen and Tacrc. On the whole, it can
be seen that RMI achieves the best performance by
comparing these results for various missing rates r.
When comparing the three single imputation meth-
ods, there is no dominant method suitable for all data-
sets, different performances are present on the different
datasets. Specifically, LLS is powerful for low rates of
missing values on Ronen (seen from Figure 3). However,
it should be noted that the efficiency of LLS is reduced
when the missing rate increases. The same rule can be
found from ItrLLS, Figure 3, 4 show us that ItrLLS
obtains the lower NRMSE on env and Ronen, while it
outperforms BPCA or ItrLLS on the other datasets,
Alpha and Elu, especially in the low missing rates cases
(seen from Figure 1 and Figure 2). Intuitively, RMI
obtains the lower NRMSE on four datasets, which
means it can maintain a stable performance, even for
dataset with less complete genes and large missing rates.
In order to see quantitative performance of RMI, Figure
5, 6, 7, 8 show the NRMSE error between the results of
BPCA algorithm or LLS algorithm and RMI. Mathema-
tically, NRMSE error is calculated by the BPCA NRMSE
result or LLS NRMSE result minus the RMI NRMSE
result on the same dataset. The greater is the z axis
value, the better RMI performs. We can see that RMI
method obtains lower N-RMSE than BPCA and LLS on
the four datasets. Specifically, compared to BPCA, the
NRMSE error averaged on all the test examples is
improved by 2.16% on Alpha, 0.91% on Elu, 1.56% on
Ronen and 1.71% on Tacrc, with RMI performing the
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Figure 2 NRMSE on Elu. The left and the right picture correspond to complete ratio at 0.05 and 0.25 respectively.
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best among the methods. For LLS, it is improved by
5.18% on Alpha, 6.79% on Elu, 0.77% on Ronen and
1.22% on Tacrc respectively. It can be seen that the
worse results for the RMI occur occasionally. However,
these just happens in the case of lower missing rates,
besides it is hard to make a big gap between the perfor-
mance of these imputation methods when few missing

entries involved.

It should be noteworthy that RMI performs the lower
NRMSE error than BPCA with the increase of missing
rate r and decrease of complete ratio ¢ (see the left figure
of Figure 5, 6, 7, 8). On the contrary, it performs the

higher NRMSE error than LLS with the increase of r and
decrease of ¢ (see the right figure of Figure 5, 6, 7, 8). This
phenomenon is particularly prominent on Elu (see from
Figure 6) and Ronen (seen from Figure 7). Because BPCA
and LLS can make up for each other via the collaborative
strategy in RMI. It also embodies the efficiency of the col-
laborative strategy. We consider that RMI outperforms
comparative methods owing to using not only the local
structures but also the global correlation information.
Firstly, it aims to build a mutual process by assembling
two single methods, BPCA and LLS, which can exploits
global correlation information and local structure in the
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Figure 3 NRMSE on Ronen. The left and the right picture correspond to complete ratio at 0.05 and 0.25 respectively.
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Figure 4 NRMSE on Tacrc. The left and the right picture correspond to complete ratio at 0.05 and 0.25 respectively.
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missing dataset as full as possible. Secondly, it considers
the genes that have less missing entries should be esti-
mated firstly, which can improve the performance of esti-
mation for genes with more missing entries. Furthermore,
a novel weight-based ensemble method is utilized in it.

Conclusion

With the deepening research of DNA microarray, there
produces a large number of microarray expression data.
Missing values, as an important problem, has been influ-
enced the research progress on this area. Numerous
effective single methods have been proposed to estimate

the missing values. However, they just uses the global
information or local structure in the data matrix, which
cannot fully used the observed information. In this
study, inspired from collaborative training strategy, we
propose a novel imputation method, called RMI. To our
best knowledge, this work is the first attempt to focus
on using an recursive mutual strategy to estimate miss-
ing values. Two frequently used methods BPCA and
LLS are incorporated into RMI in order to fully exploit
the observed information. In the process of the RMI, we
consider the imputation sequence based on the number
of missing entries in the target gene. Furthermore, a
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Figure 5 NRMSE error on Alpha. NRMSE error between the results of BPCA algorithm (left) or LLS algorithm(right) and RMI on the missing
data problem for Alpha.
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weight-based ensemble method is utilized in the final
assembling step. We test four datasets to evaluate the
performance of RMI. Various datasets with different
missing rates are generated randomly for simulating the
reality situation for modeling the real situation of miss-
ing matrix, randomly. Experimental results indicate that
RMI is powerful and effective to impute missing values.
And it is able to perform better performance than com-
parative methods even when the missing rate is large.

Some further research directions are worth for us to
make a deeper study. It includes applying more sophisti-
cated imputation methods in the recursive mutual strat-
egy and to improve our current recursive mutual
imputation framework. Another interesting issue is how
to choose the right single methods in RMI. Meanwhile,
the hybrid strategy is easily extended to develop a multiple
hybrid version by using more than two single methods,
which is a specific recommendation task.
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