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Abstract

Cancer is a disease characterized largely by the accumulation of out-of-control somatic mutations during the
lifetime of a patient. Distinguishing driver mutations from passenger mutations has posed a challenge in modern
cancer research. With the advanced development of microarray experiments and clinical studies, a large numbers
of candidate cancer genes have been extracted and distinguishing informative genes out of them is essential. As a
matter of fact, we proposed to find the informative genes for cancer by using mutation data from ovarian cancers
in our framework. In our model we utilized the patient gene mutation profile, gene expression data and gene
gene interactions network to construct a graphical representation of genes and patients. Markov processes for
mutation and patients are triggered separately. After this process, cancer genes are prioritized automatically by
examining their scores at their stationary distributions in the eigenvector. Extensive experiments demonstrate that
the integration of heterogeneous sources of information is essential in finding important cancer genes.

Introduction

Understanding cancer biology and the mechanism
behind cancer progression has always been an important
branch of cancer research. Thanks to the advancement
of computational technology, a huge amount of biologi-
cal data such as microarray gene expression is readily
available. Researchers make use of gene expression pro-
files to predict clinical outcome of breast cancer and
identify several cancer subtypes. This can help in eluci-
dating the association between several molecular levels
which enable us to identify the biological relationships
and understand the molecular processes driving the can-
cer. This could potentially lead to improvement in can-
cer diagnosis and patient survival analysis prediction.
Consequently, other types of high throughput biological
data are produced which are of great interest and as a
matter of fact, we aim to integrate different sources of
data in a unified framework with an objective to locate
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important biomarkers responsible for cancer progression
through a ranking method.

Our framework is encoded with various heterogeneous
sources of data including 1) Protein protein interaction
(PPI) Network: Cancer is not a disease of individual
mutation but a group of genes interacting together in a
molecular network. Hence incorporating PPI network
and pathway interaction information in cancer studies is
critical in discovering interactions among genes and
deciphering the molecular pathway of cancer. 2) Gene
Expression profiles: DNA microarray-based technology
has provided researchers ample opportunity to perform
comprehensive molecular and genetic profiling of cancer
by simultaneously studying how thousands of genes
were being expressed in hundreds of patients. We used
the gene expression data and performed the Pearson
correlation coefficients calculation to determine the cor-
relation of the gene expressions of various genes in a
bid to identify co-expressed genes which are responsible
for cancer development. 3) Patient Somatic Mutation
Profiles: A table which records the mutation profile of
each patient is also included in our framework as back-
ground information.
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Separate Markov Chains on the genes and patients are
defined and random walks are performed in order to
obtain the results. Random walk based ranking work on
cancer modules can be found in [2,4,5]. In [1], the
authors utilize both the random walk and random walk
with restart to rank genes with respect to their likeli-
hood of being a member of each cancer module through
the functional interaction network globally and interac-
tions between genes in each cancer module locally. In
[3], Erten, Bebek and Koyuturk investigate the topologi-
cal similarity in PPI networks and suggest a random
walk based algorithm to find genes with similar disease.
They came up with a measure to calculate the topologi-
cal profiles between the candidate genes and the driver
genes. In [8], the authors utilize random walk and net-
work community analysis for the identification of can-
cer-associated modules in gene expression data. In [9],
Sharan, Ulitsky and Shamir survey a number of random
walk related approaches, including direct methods and
module-assisted methods. The algorithms propagate
functional information and functional modules within
the network, which are inferred for annotation purpose.
Other techniques related to random walk are Markov
field based propagation and Guassian Random Field
propagation. The authors in [6,7] utilized those network
propagation techniques in protein function prediction.

In [10], Zhang and Wei extend the general network
propagation algorithm to consider graphs with nodes
and edges to be positive and negative numbers for the
sake of detecting differential gene expressions and DNA
copy number variations (CNV). Gene up/down regula-
tion or amplification/deletion CNV events are modelled
to be positive and negative respectively. By exploiting
the weighted connections between genes, gene labels are
propagated sucessfully within the network. This method
is capable of identifying hidden clusters to eliminate
false positives and recover false negatives. However, it
may also explore very weak similarities between genes
as well. In our proposed random walk based framework,
inspired by the algorithm of Google PageRank, random-
ness is introduced by permitting each gene to choose
one patient to hop and each individual patient to choose
one gene to hop randomly for minuscule amount of prob-
ability. In this method, both the gene nodes which are
strongly connected and gene nodes with poor connectivity
can also be exploited so as to discover biomakers globally
through some noise introduced by random teleportation.

Our overall framework comprises five models which
essentially differ from each other by the sequence and
order the random walk is performed on our overall patient
gene network. A multigraph is introduced in which the
gene gene interaction network and the gene correlation
network are merged thus multiple edges between a pair of
gene nodes are allowed. Moreover, different sequences of
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traversal of this multigraph results in different transition
matrices for the genes and patients respectively which cul-
minates in our five different models. Our works sucessfully
incorporates multiple heterogeneous data sources in a
graph to find the cancer genes by computing the major
eigenvector of each individual stationary matrix in each
model and each gene is ranked in accordance with the
corresponding value in the eigenvector rank. Comprehen-
sive experiments demonstrate that the integration of het-
erogeneous sources of information is useful in discovering
cancer genes and all six of the proposed models are able
to rank those confirmed cancer genes as reported from
other literature within top positions in the rank. The
remainder of the paper is organized as follow: We will pre-
sent the Methodology next. Afterwards, extensive experi-
ments are performed and results are reported and
tabulated. Lastly, we present conclusion and future work.

Methods
In this section, we illustrate how to represent the three
sources of information.

Hetergeneous Sources of Data

1) Gene Gene Interaction: The gene gene interaction net-
works are encoded as an undirected graph G(V, E) where
V stands for the genes and edges (i, j) € E are weighted by
a weight matrix W, whose element w;; is the weight of the
edge (i, j) € E which represents the strength of interaction
between gene i and gene j using two sources of gene gene
interaction networks described below. Two sources of pro-
tein protein interaction networks are utilized: Pathway-
Commons and HumanNet v.1. PathwayCommons is a
database of biological pathway information compiled from
multiple sources related to PPI interactions and functional
relationships between genes in signalling pathways. Only
human genes and interactions in Pathway-Commons are
utilized in our framework. HumanNet is a probabilistic
functional gene network constructed using naive Bayesian
method to weigh different types of data evidence collected
in humans, yeast and worms in accordance with their
functionality in Homo-sapiens. A single interaction score
is calculated as a result. HumanNet v.1 consists of 18,714
validated protein encoding genes in total.

2) Gene Expression Profiles: Gene expression is mea-
sured through high throughput microarray experiments
which show the expression level of a gene on each person.
The gene expression data show the expression levels of
genes in both the tumor and normal samples which are
used for evaluating the similarity between genes, where
genes with similar gene expression are often perceived to
also carry similar functionality. We capitalize on the gene
expression data and construct a gene correlation graph/
network. To summarize, a gene correlation graph/network
is a graph H(V, E), where V represents genes and an edge
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(4 j) € E is weighted by calculating the Pearson correlation
coefficient between their gene expression values.

3) Patient Mutation Profile: Patient-Mutation Profile is a
two dimensional binary matrix with columns representing
the genes and rows representing patients. Each entry is
either 0 or 1, a 1 indicates that a mutation has occured
in the tumor relative to the germline on that patient, a
0 otherwise.

Mutual Informative Model

In Mutual Reinforcement Model, (shown in Figure 1) each
mutation (gene) is assigned a driver score y; and each
patient is assigned a patient score ;. Each patient is
allowed to cast a vote on each mutation (gene) and vice
versa. As a result, the driver score of a mutation (gene) is
in proportion to the total votes the mutation (gene)
received and the total votes received by the patient deter-
mine the patient score. Therefore, a high driver score
means that the mutation is possessed by patients with
high patient scores and a high patient score means that
the patient possesses mutations with high driver scores.
With the introduction of patient mutation profile, some
notations can be laid out. Adjacency matrix B of a bipar-
tite graph is defined as B;; = 1 if and only if patient i has
gene j mutated and 0 otherwise we use m to represent the
total numbers of patients and # the total genes numbers.
As the driver score of a mutation (gene) y; is directly pro-
rportional to the number of patients possessing that muta-
tion and the patient score 7; is directly proportional to the

GENES

PATIENTS

— Patientmutation

« Teleportation

Figure 1 Patient mutation network.
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total number of mutations possesed by the patient, the
mutation score and patient score are mutually defined rela-
tive to each other and the equations below are justified.

00 E i
Hi i€l:Byj-y !

;00 jEkZBik:I 'u]
To start with, the probability in which a mutation
(gene) j traverses to patient i is defined by the following
matrix:

. Bjj
Bcllr]l = m !
ZBkj
k=1

Likewise, the probability in which a patient i traverses
to mutation (gene) j is governed by the following matrix:

B li,j| = n v

> Bi
st

Notice that B, is a row stochastic matrix whereas B, is
a column stochastic matrix. Randomness is introduced
by allowing each patient to select arbitrarily a mutation
(gene) to teleport for a small amount of time besides
following the incident edges and hop to one of his
neighbors in the gene partite set with the probability
governed by matrix B, for most of the time. The factor
1 - a defines the probability in which the patient relin-
quishes the matrix B, for traversal and use teleportation
for traversal. Since each mutation (gene) has equal prob-
ability to be chosen by each patient. The following tran-
sition matrix for patients is justified:

Crlisjl = o % By + (1 = @) } Lnun

where [,,,-,, is an m by n matrix with all entries equal
1. Likewise for mutations (genes), each mutation (gene)
is allowed to select arbitraily a different patient to tele-
port for a small percentage of time and the following
transition matrix for the mutations (genes) is defined.

Cilijl=a =B+ (1 — a)rlnlm*n

Next, we incorporate the gene gene interaction net-
work and gene correlation network in our model for the
mutation of genes. As described above, a gene gene
interaction network can be encoded as an undirected
graph G(V, E) where V represents the genes and edges
(i, j) € E are weighted by a weight matrix W, whose ele-
ment w;; represents the interaction strength between
gene i and gene j. Afterwards, normalization of matrix
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W is performed in order to define the transition prob-
ability matrix within the genes and hence the transition
probability matrix Q = D™*% is a result. Note that D ia
a diagonal matrix with diagonal elements d;; = X; w;;
and the elements g;; of Q defines the probability of a
random hop from gene i to gene j. The matrix Q satis-
fies the probabilistic constraint X; g;; = 1. As a result,
the transition matrix of the genes following the PPI
interaction network is defined:

Celi,jl=Q—-D"'w

Afterwards, gene expression data as shown in Figure 2
can come into play in the framework by constructing a
gene correlation network. Each edge in the gene correlation
network is encoded by matrix H whose elements H(j, j)
represents the Pearson’s correlation coefficient between the
gene expression of gene i and gene j. To derive, we let 3,
to be the gene expression vector of gene u on the patients
and so

H(u, U) = COTT(ﬁu, ﬂv)

] Ste V(Bu(t) = D)(B(t) = 1)
Ve Va0 - )z evign - 1)

where corr(X, Y) represents the Pearson correlation of
random variable x and random variable Y. The intuition
behind it is that the gene expression of two genes may be
correlated to each other if they are both partcipating in
the same cancer pathway. Next, normalization of matrix H
to define the transition probability is performed as above
which results in the following transition matrix of the
genes for the gene correlation network:

Cn=T=D"'H

| | :

Genes
e

Pearson
Correlation

Patients
Figure 2 Gene expression.

\

Page 4 of 9

Markov Chains

In this section, a series of models using the transition
probability matrices are defined. Figure 3 shows the
overall models used in our framework.

1. Random Walk Multiplicative Model Gene Correla-
tion Start(RW-MMGCS):

The model starts with a random walk on gene correla-
tion network and followed by PPI network and then to
patient and back to gene correlation network and iterate.
The stationary distribution of the random walk is defined
as follow:

p = ClCCyCru
T ~T AT @
T = CCCgChCrn'.
2. Random Walk Multiplicative Model Gene Interac-
tion Start(RW-MMGIS):
The model starts with random walk on gene gene
interaction network and followed by gene correlation
network and then forward to patient and back to PPI

network and reiterate. The stationary distribution of the
random walk is defined as follow:

= ClCCrCiu
T ~T ~T &)
T = CCCthCrn.

3. Random Walk Additive Model (RW-AM):

This random walk framework is slightly different from
the above random walk settings in the sense that the
transition matrix for the mutations is defined as a linear
combination of the transition matrix of gene gene inter-
action network, patient mutation profile and the gene
correlation network with each transition matrix respon-
sible for a part of the overall transition matrix. It is

N\

D patiem-mutation
......... tehpmauon )
—— - gene gane nteraction network
~ gene gene comrelation network

Figure 3 Overall patient mutation network.
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defined as follow:

p=(axClCo+BxCqy+y=Chu
l=a+B8+y (3)
w = C.CyCyClm.

4. Random Walk Multiplicative Model Penalised:
(RW-MMP)

In this model, the gene gene interaction network and
gene correlation network is combined into one network.
As described above, the gene gene interaction network is
encoded by a weight matrix W, whose element w;; repre-
sents the interaction strength between gene i and gene j
and the gene correlation network is weighted by matrix H
whose elements H; is the Pearson’s correlation coefficients
between the gene expression of gene i and gene j. Each
edge in the PPI network encoded by matrix W is penalized
by the expontential value of its corresponding gene correla-
tion value weighted by matrix H divided by the average.
Then the random walk starts with overall gene network
and then to gene patient and then back to overall gene
network and repeats. The following equations are justified.

mean of all entries of matrix H

o=
Wi; = Wi exp(H;j/o)
Celi,jl =Q=D7'W 4)
u=ClCCqpu
m =CCiClx.

5. Random Walk Multiplicative Model Average:
(RW-MMA)

In this model, we take the average output from the
random walk on gene gene interaction network, gene
correlation network and patient mutation profile in each
iteration. The algorithm is tabulated in Algorithm 1.

6. Random Walk Multiplicative Patient Profile Start
(RW-MMPES):

The model starts with random walk on gene-patient net-
work, followed by PPI network and then to gene correla-
tion network and then back to gene correlation network
and iterate. The stationary distribution of the random
walk is defined as follow:

u = CLCClCpy
T ~T AT (5)
T = CCCgChCTn.
Algorithm 1 Random Walk Multiplicative Model
Average algorithm (RW-MMA)
procedure Random Walk Multiplicative Model
Average (, m, r, Cg Cr, Cc, Cp)
Ry 9t all entries are 1/n
for t = 1 to max(},m,r) do
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if t <=1 then Ry = C/C. * Ry

end if
if £ <= m then Ry = Cg * R
end if
if t <= r then Ryigy = C] * R
end if

_ (or<=1 % Rleft + Oteem * Ripig + 0p <oy * Rright)

R,
Ot<=] + Ot<=m + O'L<=r)

oy <=x=1if t <= x and 0 otherwise
end for
return **
end procedure

In the aftermath of defining various models, it remains
to demonstrate that all the Markov chains in all the five
proposed models are valid and all the corresponding
transition matrices converge to unique stationary
matrices which result in a unique eigenvector as our
ranking vector in each model.

Lemma: All the above transition matrices define valid
Markov Chains that converge to a unique stationary
eigenvectors.

For the sake of simplicity, the proof of the model Ran-
dom Walk Multiplicative Model Gene Interaction Start
(RWMMGIS) is outlined as below, the rest of the mod-
els can be proved similarly. Convergence: To prove con-
vergence, we must prove the Markov chain defined by

the transition matrix CZCCCZC(Z is irreducible and aper-

iodic. Notice that each mutation is permitted to teleport
to any patient and each patient is permitted to teleport
to any mutation with a small probability. Coupled with
the definitions of B, and B,, all entries in matrix C, and
C. are strictly positive. Since C;, and C, are also positive
stochastic with nonnegative entries, the transition matrix
defined by C,TCCCZCg are all strictly greater than 0 in

all entries. This proves that every state in the state space
S can be reached from every other state in the state
space in a finite number of moves with positive prob-
ability which proves irreducibility. For aperiodicty,
notice the fact that each P;; >0 which implies that the
minimum number of steps from each state i returning
to itself is 1 which proves aperiodicity. Uniqueness: To
prove uniqueness, notice that C, is a row stochastic
matrix and hence CTT is column stochastic, in addition,
cr, crl, G, Cg are all positive column stochastic and
hence the product of positive column stochastic
matrices is also positive column stochastic. By Perron-

Frobenius Theorem, 1 is an eigenvalue of multiplicity

one of the matrix C;C:C;C; which is the largest and

all the other eigenvalues are in modulus smaller than 1.
Furthermore the eigenvector corresponding to eigenvalue
1 has all entries positive. In particular, for the eigenvalue
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1 there exists a unique eigenvector with the sum of its
entries equal to 1. This gives us a unique eigenvector as
our rank for the genes. Similar arguments can be applied
for the proof of the existence of our patient rank.

Result

The data sets used for the experiment were taken from
the study of Integrated Genomic Analyses of Ovarian
Carcinoma led by the Cancer Genome Atlas. The asso-
ciated results and discussions were published in Nature
2011 [29]. The analysis of 489 clinically annotated stage
III-V HGS-OvCa samples and its corresponding normal
DNA were reported in the article and posted on its
associated website. The data incorporates the age at
diagnosis, stage, tumour grade and surgical outcome of
patients diagnosed with HGS-OvCa. We downloaded
the TCGA-OV-mutations data and the unified expres-
sion profiles from the TCGA Data Portal website for
our purpose. In the aftermath of data cleaning, we retain
mutations containing insertion, deletion and alternation
of base only. Finally a patient mutation profile table
which comprises 316 patients and 8404 genes is
obtained. Similar procedures were carried out on obtain-
ing the gene expressions data from the website. Pear-
sons correlation coefficients are calculated on the gene
expression data in pairwise fashion to obtain the gene
correlation value between each pair of genes and the
gene corelation graph is constructed. We utilized two
different protein protein interaction networks for our
experments. HumanNet is a probabilistic functional
gene network which consists of 18,714 protein encoding
genes and 476399 interactions between the genes of
Homo sapiens. Pathway Commons is a collection of
publicly available metabolic pathway database in con-
junction with interactions from multiple organisms. It
was filtered to retain human genes and interactions for
the sake of our experiments. We obtained the required
data through its web portal for download and query.

Ground Truth Data

We compiled a set of genes published in various literature
on several cancer studies which are certified to be ovarian
cancer genes to be our ground truth cancer genes in the
evaluation of our proposed models. Afterwards, the
experiments on our five proposed models are run. A gene
scoring vector (gene rank y) for each of the six models is
obtained. We then evaluate our proposed models by the
rankings of the ground truth genes in each of the six pro-
posed models’ gene scoring vector ¢ and demonstrate the
effects of integrating more background information in
ranking. Precision/Recall graph and the top 25 genes
appeared in each of the gene scoring vector (gene rank y)
of the five proposed models are presented in subsequent
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Table 1 Ground Truth Genes.

GENE Literatures
BRCA1 [12,13,29]
BRCA2 (14]
BMPRTA [17,20]
BRIP1 [25]
MLH1 [15]
FHIT [14,35]
TFRC [16]
FGFR2 [18,19]
GATA3 [21]
MYST4 [34]
PTEN [22]
FAS [23,24]
RB1 [25]
SEPT9 (26]
YWHAE [33]
TP53 [29]
PIK3CA [27]
BRAF [27]
KRAS [27]
AIB1 [28]
MSH2 [15]
BMP4 [31,32]
TRIP1 [30]
MYC [30]
EP300 [30]

sections. Table 1 below tabulates the collection of ovarian
cancer genes (ground truth genes) and the associated
references.

Experimental Results

We run the experiments on our six proposed models
using the data set we obtained. In our experiments, we
set o = 0.75. For the additive model (RW-AM), we set
o = 0.3, f = 0.3 andy = 0.4. Three benchmark models
are utilized to evaluate our proposed models. The first
one is frequency based in which each gene is awarded a
rank in accordance with the occurence of mutation
which means the higher the frequency of occurence of
mutations on that gene, the higher rank will be awarded.
The other two benchmark models are random walk
based in which we perform random walk on gene corre-
lation network (RW-GC) and patient mutation
(RW-PM) network respectively and a gene scoring rank
vector y for each network is attained. We present the
total number of appearances of ground truth genes in
the top 1 percent of the gene rank y of each model as
follows in Table 2:



Ma et al. BMC Genomics 2015, 16(Suppl 9):S3
http://www.biomedcentral.com/1471-2164/16/59/S3

Table 2 Top 1 percent of the gene ranks.

Models Numbers Of Appearance Average Rank
RW-MMGIS 14 40
RW-MMGCS 17 38
RW-MMPFS 14 44
RW-AM 15 39
RW-MMP 16 40
RW-MMA 16 42
RW-GC 9 62
RW-PG 4 17
FREQUENCY BASE 4 18

The six proposed models outperform all the bench-
mark models. This can be demonstrated from the above
table that the number of occurences of ground truth
genes in the above six models outnumbers the three
benchmark models. We found that incorporating het-
erogeneous sources of biological information enhances
the performance of identifying ovarian cancer genes. In
the nine models, RW-MMGCS yields the best perfor-
mance, followed by RW-MMA and then RW-MMP and
then RW-AM and then RW-MMGIS and then RW-
MMPES and then followed by three benchmark models
at last: RW-GC, RW-PG and FREQUENCY BASE.
Please note that a larger gap occurs between the results
of two benchmark models with RW-GC outperforming
RW-PG. This underscores that the gene expression data
is more informative than patient mutation profile in
locating ovarian cancer genes. All in all, integrating
various heterogeneous sources of information helps in
locating ovarian cancer genes.

Evaluation

In this subsection, Precision/Recall graph by adjusting
the threshold on the rank of the ground truth genes is
presented. Precision is defined as the fraction of the
ground truth genes among all genes ranked above each
threshold. Recall is defined as the fraction of ground
truth genes which are ranked above each threshold
among all known ground truth genes. 25 ground truth
genes in each experiment are used and the results are
tabulated in Figure 4.

All six proposed models outperform the three bench-
mark models. RWMMGCS yields the best performance,
followed by RW-MMA and then RW-MMP and then
RW-MMGIS and then RW-AM. RW-MMGCS, RW-
MMA and RW-MMP show a very high precision rate at
recall rates running from 0.1 to 0.2. This demonstrates
that they are able to locate several true positive genes
(ground truth genes) in topmost positions within the
ranked list. Since we use only 25 ground truth genes in
our experiments, we expect to achieve a better result if
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~— FREQUENCY
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RW-MMP
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—8—RW-MMGCS

Precision

Recall

Figure 4 Recall/precision.

more candidate cancer genes are included. Almost all
the models decrease their performances monotonically
towards the higher recall rate except FREQUENCY
BASE and RW-PG in which their precision increases a
little towards a little higher recall rate and then plum-
mets sharply. This can be explained by the fact that
these two models discover a multitude of false positive
at low recall rate while they obtain a little better preci-
sion towards higher recall rate when they are able to
rank a few ground truth genes below the top ranked
genes. Above all, we demonstrate that the integration of
more hetergeneous background information in the rank-
ing helps achieve a better recall/precision rate.

There is one parameter « in our proposed models
(RWMMGCS, RW-MMA, RW-MMP, RW-MMGIS)
which is the probability of teleportation of genes and
patients. We performed an experiment on adjusting the
value of o from 0 to 1 to inspect its relation to the aver-
age rank of the ground truth genes. The result is tabu-
lated in Figure 5.

From above, the best o obtained is around 0.8 which
achieves the lowest average ground truth genes ranking.
Subsequently, in our additive model(RW-AM), we have
three parameters o, f3, v that have to be determined. To
evaluate these three parameters, we fix one of the

115
110
105
100
95
90

Average Rank Of Ground True Genes

85
0.1 0.2 04 0.6 0.8 0.9
Alpha
Figure 5 Average rank of ground truth genes by adjusting
teleportation parameter alpha.
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Figure 6 Average rank of ground truth genes achieved by
fixing each parameter in RW-AM.

parameters each time and adjust the other two para-
meters and record the best average ground truth genes
ranking and the result is tabulated in Figure 6.

Conclusion

In this paper, a Markov Chain Model for discovering
important cancer genes through integration of heteroge-
neous sources of information are proposed: patient
mutation profile, gene gene interaction network and
gene correlation network in an unsupervised manner.
Experimental results demonstrate that our proposed
models outperform all benchmark models. Our future
work will focus on developing graph Laplacian in learn-
ing cancer genes priority.
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