
BioMed CentralBMC Genomics
BMC Genomics 2002, 3 xMethodology article
Defining signal thresholds in DNA microarrays: exemplary 
application for invasive cancer
M Bilban*1,2, LK Buehler1, S Head1, G Desoye2 and V Quaranta1

Address: 1The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA, USA and 2Clinic of Obstetrics 
and Gynecology, University of Graz, Auenbruggerplatz 14, A-8036, Austria

E-mail: M Bilban* - mbilban@scripps.edu; LK Buehler - l.buehler@ucsd.edu; S Head - shead@scripps.edu; 
G Desoye - gernot.desoye@kfunigraz.ac.at; V Quaranta - quaranta@scripps.edu

*Corresponding author

Abstract
Background: Genome-wide or application-targeted microarrays containing a subset of genes of
interest have become widely used as a research tool with the prospect of diagnostic application.
Intrinsic variability of microarray measurements poses a major problem in defining signal thresholds
for absent/present or differentially expressed genes. Most strategies have used fold-change
threshold values, but variability at low signal intensities may invalidate this approach and it does not
provide information about false-positives and false negatives.

Results: We introduce a method to filter false-positives and false-negatives from DNA microarray
experiments. This is achieved by evaluating a set of positive and negative controls by receiver
operating characteristic (ROC) analysis. As an advantage of this approach, users may define
thresholds on the basis of sensitivity and specificity considerations. The area under the ROC curve
allows quality control of microarray hybridizations. This method has been applied to custom made
microarrays developed for the analysis of invasive melanoma derived tumor cells. It demonstrated
that ROC analysis yields a threshold with reduced missclassified genes in microarray experiments.

Conclusions: Provided that a set of appropriate positive and negative controls is included on the
microarray, ROC analysis obviates the inherent problem of arbitrarily selecting threshold levels in
microarray experiments. The proposed method is applicable to both custom made and
commercially available DNA microarrays and will help to improve the reliability of predictions from
DNA microarray experiments.

Background
Microarrays are a powerful tool to investigate differential
gene expression of thousands of genes of a cell type, tis-
sue, or organism [1,2]. While traditional microarray ex-
periments strive to establish the 'global view' of the
activity of all genes (i.e., the genome) in response to envi-
ronmental conditions, they may also be used to character-

ize and quantitatively describe gene expression behavior
of a selected set of genes as a true genotypic correlate of a
particular phenotype. Application-targeted arrays and ar-
ray reagents are already commercially available (Operon,
Clontech, Incyte Pharmaceuticals, Affymetrix) for re-
search in diverse areas such as cancer, stress and aging,
toxicology, hematology, cell cycle, neurology and apopto-
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sis. Contrary to 'genome-wide' chips, custom-fabricated
microarrays are less expensive and more readily adapted
to the economically sensitive environment of the molecu-
lar diagnostics laboratory, where relatively few interroga-
tions are relevant for clinical investigation of a patient
specimen.

Because typical microarray results are usually burdened
with substantial amounts of noise [3], rigorous statistical
methods must be applied to interpretation of data. Meth-
ods for systematically addressing noise in the analysis of
the microarray data are only beginning to be described
[4–10]. Such noise in microarray experiments may arise
from non-specific hybridization of the labeled samples to
elements printed on the microarray, print-tip effects, slide
inhomogeneities, and variability in RNA isolation, purity,
labeling and detection [6,9–12]. Among these, hybridiza-
tion variance contributes most significantly to the overall
variation [12].

Non-specific hybridization can be measured through the
use of specificity controls on the microarray and ad-
dressed as a statistical problem [8,13]. The most common
strategy in microarray experiments is to focus on fluores-
cent signal ratios in two-color competitive hybridization
experiments. The problem with using ratio data alone is
that it does not take into account the absolute signal in-
tensity measurements used to calculate the ratios. While
this approach may work adequately for ratios of moderate
to highly expressed genes that yield bright fluorescent sig-
nals, weak signals arising from low transcript levels may
be masked or biased by noise (non-specific hybridiza-
tion). Non-specific hybridization is a characteristic of
cDNA microarray hybridization and may be attributed to
the uniform hybridization condition applied for all se-
quences on the chip [4,6,7]. The frequently used fold
change threshold values of 2–3 to define a significant
change are often arbitrarily chosen and do not take into
account the statistical significance of absolute signal in-
tensity. For example, microarray data showing a 4-fold
change derived from low signal intensities may have no
statistical significance whereas a 1.4 fold change derived
from strong signal intensities may be highly significant in
terms of reflecting actual changes in mRNA concentration
within a biological sample. Thus, focusing on fold-chang-
es alone is insufficient and confidence statements about
differential expression must take into account absolute
signal intensities [8]. In this study we have adapted a sta-
tistical method that utilizes absolute signal intensities
from a reference set of positive controls and negative non-
homologous control sequences to determine the absolute
intensity range in each channel that may be used with a
certain confidence level on a particular microarray to cal-
culate expression ratios. The method of analysis proposed
in this paper was originally developed along with radar

and detailed results go back to the area of signal process-
ing. ROC curves have been used for many years in numer-
ous other areas, including psychology [14,15], and other
areas of medical diagnostics [16]. For this purpose, diag-
nostic accuracy ROC curves have been used to depict the
pattern of sensitivities and specificities observed when the
performance of a diagnostic test is evaluated at several dif-
ferent thresholds. Here, receiver operating characteristic
curves describe the ability of a particular parameter (e.g.
fluorescence intensity) to discriminate between two con-
ditions (e.g specific and non-specific hybridization). We
illustrate our approach using gene expression data from a
study comparing expression profiles of highly invasive
and poorly invasive human melanoma cell lines [17]. The
goal of these experiments is to identify candidate genes
that may regulate the invasive behavior of melanoma
cells. The area under the ROC curve may be used to assess
the quality of individual microarray hybridizations which
is particularly important because the quality of microarray
hybridization can vary significantly [9,12]. The statistical
evaluation of a reference set of genes to measure the sen-
sitivity and specificity of each microarray hybridization re-
action dramatically improves the ability to quality control
the resulting data, a key requirement for the use of micro-
arrays in diagnostic applications. Here, we propose the de-
sign of a prototype diagnostic microarray with respect to
control sequences and we show how a ROC analysis using
percentile ranks of specific and non-specific hybridization
signals can be used to establish signal detection thresh-
olds and hybridization quality assessments for each indi-
vidual microarray experiment.

Results
The reliability of ratios measured to describe changes in
gene expression depends on the absolute signal intensi-
ties. While ratios from highly abundant transcripts may be
accurate, rare transcripts give absolute intensities that may
be obscured by non-specific hybridization. Thus both ra-
tio and absolute signal intensity are important to evaluate
differential gene expression properly. Calibrating the ap-
propriate signal and noise intensity thresholds for a given
microarray hybridization requires the analysis of a set of
positive and negative reference genes. At low signal inten-
sities, both reference groups yield overlapping signal dis-
tributions (Figure 1a and 1b). Test signals from array 1
and 2 falling within the overlap region cannot easily be
categorized as either present or absent and calculating ra-
tios may lead to the identification of false positives (or
false negatives) (Figure 1c and 1d).

Traditionally, cut-offs for microarrays have been calculat-
ed from negative controls. Here, we compare three widely
used thresholds (TX = mean ; T0.5X = median; TX2SD =
mean + 2 standard deviations) to the ROC- analyses de-
rived threshold (TM = the threshold with maximum spe-
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Figure 1
Signal distributions for specific and non-specific hybridizations overlap at low absolute intensities. The median
intensity of 4 B.subtilis genes (n = 24 replicates per gene × 4 = 96) was used as a linear scaling factor to balance the Cy3 and Cy5
channels. Following this normalization step, normalized intensities were Log2 transformed for efficient graphical illustration.
Positive control spots (open bars) and negative control spots (filled bars) from (A) array 1 and (B) array 2 microarray hybridi-
zations. The positive control group includes seven housekeeping genes (n = 42) and four B.subtilis genes (24 repeats per
sequence; n = 96) representing sequence-specific hybridization. The negative control sequences (six repeats per sequence)
include three plant genes (n = 18), three E. coli genes (n = 18), and seven human cytomegalovirus (hCMV) genes (n = 42) repre-
senting non-specific hybridization events. Data for Cy3 and Cy5 signals were pooled. Signal distributions for test genes (n =
154) from (C) array 1 and (D) array 2.
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Figure 2
Specificity and sensitivity of select cut-offs for individual microarrays. Specific (spiked B. subtilis and housekeepers)
and non-specific hybridization control groups (plant, bacterial and viral genes) represent sensitivity (squares) and specificity
(circles), respectively. The intersection point of the two graphs indicates the threshold TM at which Sp equals Se. TM values
were 0.18 (array1) and 0.09 (array 2). Indicated thresholds a-d are described in table 1. The Tj values presented in Table 1
were used to construct these curves. Note the different signal range (abcissa values) for array 1 (A) and array 2 (B).
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Figure 3
ROC analysis of selected signal cut-off values as a predictor for specific hybridization. ROC curves demonstrate
the capacity to discriminate between the absence or presence of sequence-specific hybridization in individual microarray
experiments. The closer an ROC curve is to the upper left hand corner of the graph, the more accurate it is because the true
positive rate is 100% and the false positive rate is 0%. ROC plots based on percentile rank calculations for 25 cut-off signal
thresholds (taken from table 1). The meaning of the position of thresholds a-d (table 1) are explained in the text. The area
under the ROC curve was (A) 0.994 (array 1) and (B) 0.999 (array 2). Rising diagonal indicates no discrimination between pos-
itiv and negative control signals.
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cificity and senitivity (TM) obtained as the point of
intersection in figure 2) in terms of specificity (Sp) and
sensitivity (Se) (Table 1). For TX and T0.5X the Se is ≅
100%, however, the Sp would only be ≅ 50% indicating
that approximately every second signal would be a false
positive arising from non-specific hybridization. As a ben-
efit, however, >99% of test genes would be included in
data analyses (Table 1). If TX2SD or TM is the desired
threshold, the Sp can be increased to >95% with only mi-
nor reductions in Se, however, the trade-off is an increase
in the number of genes excluded from analyses (Table 1).
If Sp and Se are plotted as a function of the thresholds, the
intersection point of the two curves indicates maximum
Sp and Se which can be directly read from the graph (Fig-
ure 2). As the criterion for a positive test becomes more
stringent, the point on the curve corresponding to Sp and
Se (point c, Figure 3a; point d, Figure 3b) moves down
and to the left (lower Se, higher Sp); if less evidence is re-
quired for a positive test, the point on the curve corre-
sponding to Sp and Se (point a, Figure 3a and 3b) moves

up and to the right (lower Sp, higher Se). The area under
the ROC curve (Figure 3, Table 2) is a measure of how well
positive and negative signal can be distinguished in indi-
vidual microarray experiments and indicates hybridiza-
tion quality.

The discriminatory power of a threshold based on the re-
ceiver operating characteristics depends on the proper
controls included in the study and this choice will affect
the interpretation of the data. Unlike spots containing
printed control DNA (plant, bacterial, or viral), blank
spots printed with 3X SSC often show strong signals indi-
cating that unusually large amounts of label are inexplica-
bly deposited on these manifestly blank areas. (The
morphology of SSC spots giving relatively high signals are
quite distinct from spots where DNA has been deposited,
often showing small, highly concentrated areas of fluores-
cence. The cause of this fluorescence is not well under-
stood. Their signal distribution is skewed towards large
signals as compared to plant, bacterial, and viral genes;

Table 1: Use of ROC analysis for the selection of cut-off values for individual microarray experiments.

Array 1 Array 2
Threshold Specificity [%] Sensitivity [%] % genes below 

threshold*
Threshold Specificity [%] Sensitivity [%] % genes below 

threshold*

0.010 0.0 100 0 0.005 0.0 100 0
0.030 1.8 100 0 0.010 2.5 100 0
0.040 13.4 100 0 0.015 9.3 100 0

a0.057 49.7 99.7 0 0.020 30.5 100 0
0.060 52.7 99.6 1 a0.027 51.0 100 0

b0.077 68.6 99.4 7 0.030 57.7 100 1
0.080 71.1 99.4 7 b0.031 58.6 100 1
0.100 81.3 99.0 17 0.040 75.4 99.9 12
0.120 86.8 98.2 26 0.050 89.9 99.8 20
0.140 90.0 97.7 36 0.060 93.9 99.6 29
0.170 94.9 96.5 44 0.062 94.9 99.6 31

d0.180 95.6 96.1 44 0.064 95.6 99.9 33
c0.192 96.6 95.8 47 c0.066 96.0 99.5 36
0.200 97.4 95.7 48 d0.090 98.1 98.5 43
0.300 98.6 92.8 65 0.100 99.1 98.3 45
0.400 99.5 89.9 77 0.110 100 97.6 48
0.500 100 85.0 79 0.200 100 92.0 65
0.700 100 74.7 83 0.500 100 85.7 81
1.000 100 56.6 89 0.800 100 72.4 90
1.500 100 28.7 95 1.000 100 50.8 94
2.000 100 19.4 98 1.500 100 17.1 97
3.000 100 10.2 98 2.000 100 7.7 98
5.000 100 5.4 99 2.500 100 2.9 98
10.000 100 1.2 100 3.000 100 2.1 99
12.000 100 0.0 100 5.000 100 0.0 100

Specificity and sensitivity for 25 signal cut-offs from 2 microarray experiments. Three thresholds (a-c) are calculated from the negative reference 
controls only and compared to the threshold with maximum specificity and senitivity (TM) obtained as the point of intersection in figure 2. a: mean 
(TX), b: median (T0.5X), c: mean + 2 standard deviations (TX2SD); d:TM Note the different signal range for array 1 and array 2. *normalized Cy3 and 
Cy5 pool.
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data not shown). Consequently, the inclusion of SSC
spots results in a considerable overlap with positive con-
trols resulting in increased thresholds and a lower overall
discriminatory power (Table 2).

To illustrate the importance of signal threshold detection,
we categorized differentially expressed genes of the
melanoma study [17] according to confidence based on
our predictive model (Table 3). For this purpose, we use
TM as the threshold. Group A contains gene expression ra-
tios derived from signals that exceed the selected thresh-
old in both channels and are assigned high confidence
ratios. In group B, either Cy3 or Cy5 signals were below
that threshold, whereas in group C signals from both
channels were below the defined detection limit. 'Risky'
absolute intensities can be flagged and displayed when
further processing the data (e.g. clustering analysis).

Discussion
Microarray data are generated from multi-step biochemi-
cal reactions, scanning/data collection, image analysis
and data processing. This process is inherently prone to
variability that affects the specificity and sensitivity of the
assay, thus requiring evaluation of each microarray data
set [9,10,12]. In order to calibrate the sensitivity and spe-
cificity of the output data, appropriate statistical tools ap-
plied to reference sequences composed of positive and
negative controls may be used to quality control data from
a given hybridization. We argue that any procedure which
uses raw intensity ratios alone to infer differential expres-
sion may be inefficient and thus may lead to excessive er-
rors.

Since ratios are simply the result of uneven signal distribu-
tions between Cy5 and Cy3 channels, analyzing these dis-
tributions will help interpret the biological relevance of

Table 2: ROC parameters for different negative control groups.

Threshold with maxi-
mum specificity and 
sensitivity*

β error α error Threshold value 
for α = 0.05

Discriminatory power 
(Area under ROC plot)

Array 1 0.40 (+SSC) 0.101 0.096 0.50 0.969
0.18 (-SSC) 0.039 0.044 0.17 0.994

Array 2 0.25 (+SSC) 0.089 0.099 0.33 0.984
0.09 (-SSC) 0.015 0.019 0.06 0.999

SCC spots or spots with deposited DNA perform differently in ROC-analysis yielding different areas under the ROC curve as well as different 
thresholds with maximum specificity and sensitivity. The area under the ROC curve may be used as an indicator for microarray hybridization qual-
ity. *characterized by smallest α and β errors. Note that in this case the α error can be >0.05.

Table 3: Analysis of fluorescence ratios of genes known to be involved in cancer invasion.

Gene Invasive signal Non-invasive signal Ratio Confidence cat-
egory

Array 1 Array 2 Array 1 Array 2 Array 1 Array 2

TIMP-1 1.70 0.92 0.25 0.30 6.9 3.1 A
TIMP-2 0.63 0.25 0.24 0.70 2.5 0.4
MMP-9 4.16 2.22 1.70 1.01 2.5 2.2

Ln-5, γ2 1.27 1.22 0.06 0.03 22.5 35.5 B
Integrin α3 0.24 0.16 0.12 0.06 2.0 2.8

Ln-5, β3 0.15 0.06 0.09 0.04 1.9 1.6 C

Ratios were qualitatively assigned to confidence categories according to their level of expression. All ratios met p < 0.05. TM was 0.18 for array 1 
and 0.09 for array 2.
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an observed ratio. Signals are the result of specific and
non-specific binding when a complex probe DNA mixture
is incubated on the slide surface containing target DNA.
The quality of DNA microarray data rests on the ability to
measure non-specific components of a spot signal and
eliminate them from ratio analysis. Such a component
analysis on spotted DNA microarrays is not possible with
today's technology and the proportion of non-specific
binding will vary for each spot because of competitive
binding in the presence of sequence specific hybridization
(Note: GeneChip arrays from Affymetrix using perfect vs.
mismatch oligonucleotide pairs do, to a certain extent,
measure the non-specific binding component of every se-
quence; see technical note discussing probe length and
performance,  [http://www.affymetrix.com/support/tech-
nical/technotes/25mer_technote.pdf]). Since the influ-
ence of non-specific binding is more severe for probes
where no or little specific hybridization occurs [8], we
treat the problem as one of detecting a threshold value
that is both determined by the highest signals attributable
to spots representing non-specific hybridization and the
lowest signals from spots where sequence specific hybrid-
ization must be assumed. Simply put, we determine a
threshold separating specific from non-specific hybridiza-
tion assuming that the former usually results in stronger
signals than the latter [18]. A similar approach has been
reported for Affymetrix GeneChip arrays, so called 'LUT
based scoring system' [8] (tables to check noise level of
particular chips or noise filtering look up tables).

Methods used to determine a signal threshold include the
use of arbitrary fluorescence intensities [19], relative er-
rors in Cy3/Cy5 ratios [9,20,21] or certain signal-to-back-
ground ratios [22]. However, these methods lack
information about the specificity and sensitivity of the
threshold, which are crucial parameters for estimation of
the diagnostic accuracy of microarray hybridizations. To
select a threshold, we have exploited a reference set of pos-
itive and negative control genes based on presence or ab-
sence of their cognate labeled cDNAs in the hybridization
mix.

Positive controls may be spiked RNAs from non-homolo-
gous species or transcripts known to be expressed in the
sample i.e. housekeepers [13,23]. Signals from positive
controls should cover the range of test signals. This can be
achieved by appropriate spiking and/or selection of
housekeeping genes that fulfill this criterion.

The negative controls should be chosen to lack sequence
homology to test genes, however, choosing appropriate
control sequences for a ROC plot analysis is crucial: we
conclude that SSC spots show a distinct signal pattern dif-
ferent from plant, bacterial and viral DNA deposits. Un-
like spots containing control DNA, blank spots are not

representative of non-specific hybridization to cellular
probe DNA, do not behave well as control spots, and
should be disregarded for threshold detection on custom
arrays.

The robustness of ROC analysis to yield TM and ROC area
values to discriminate 'good' from 'poor' microarray hy-
bridizations relies on the relative positions of signal rang-
es from positive and negative controls as well as from
target genes. We can imagine two szenarios making ROC
analysis inappropriate for determination of threshold
and/or microarray hybridization quality: (i) If the set of
positive controls is in the high signal range, ROC analysis
will yield a higher TM and ROC areas close to 1.0 (indicat-
ing good microarray hybridization) because positive and
negative signals are well separated, irrespective of the dis-
tance between the greatest observation in the negative and
the lowest observation in the positive sample. Conse-
quently, a large portion of target genes will be discarded
because of the relatively high TM. (ii) Alternatively, if the
positive controls are spiked below the detection limit of
microarrays (i.e. typically 1:500,000 wt/wt), their signal
range may resemble the one from negative controls. This
scenario will produce a low TM and ROC areas close to 0.5
falsley indicating 'poor' hybridization.

The overall performance of individual microarray hybrid-
izations can be assessed by the position of the receiver op-
erating characteristic line (Figure 3) using one single
parameter: the area under the ROC curve (Table 2). Poor
microarray hybridizations have lines close to the rising di-
agonal (or values ~0.5), whereas the lines for 'perfect' hy-
bridizations would rise steeply and pass closely to the top
left hand corner (or values ~1.0), where both, the specifi-
city and sensitivity are 100%. In high-throughput applica-
tions such as routine diagnostic examinations, where a
large number of hybridizations may be performed using a
standard microarray-design, the ROC-plot area may be
used as a 'hybridization quality checkpoint' to either ac-
cept or discard individual microarray hybridizations (for
example 0.990 for array 1 and 2, Table 2). The area under
the ROC curve represents a summary statistic of the over-
all performance of individual microarray hybridizations.
A modification of the Wilcoxon rank-sum procedure may
then be used as a statistical test to determine whether two
ROC curves are significantly different [15].

Among 25 thresholds calculated here we have compared
Sp and Se of 3 commonly used cut-offs with the ROC
analysis-derived threshold TM (Table 1). The median or
mean of a negative control group is regarded an adequate
measure for non-specific hybridization [13], however,
due to low specificity (~50%) we conclude that neither
thresholds should be used if maximum specificity is re-
quired. In such a case, we find that the widely used cut-off
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value defined as the mean plus two standard deviations of
the negative reference sample may be used adequately for
DNA microarrays. The underlying rationale of using this
threshold is to establish a cut-off value providing a specif-
icity of 97.5% [24,25]. In our own example (Figure 1)
skewness to the left makes the TX2SD overly conservative,
which will sacrifice sensitivity unnecessarily. Hence,
TX2SD may be inadequate and to adjust the sensitivity one
should use TM. Most importantly, the TX2SD procedure
does not account for the sensitivity of the threshold. Al-
though the ROC-analysis derived cut-off resembles closely
the cut-off defined as the mean + 2 SD, it is entirely possi-
ble that choosing a finer-grained partition of the signal
space would alter the relative positions of theses two
points. Likewise, this may be a characteristic for the 2 ex-
emplary microarrays. Usually, the cut-off selection proce-
dure is an informed decision based on the motivation of
the individual to accept false positives (high Sp) or false
negatives (high Se) that takes into account whether it is
crucial to exclude any false positives (high Sp) or to cover
the broadest signal range possible (high Se). Which cutoff
to use depends on the objective of the experiment: If one
needs to make sure that the 'present' or 'absent' call for a
particular gene is correct, a cut-off with high Sp should be
chosen, whereas if one is willing to accept false-positives
where signals are low, high Se will be the driving force.

The signal intensity is the most critical parameter that in-
fluences the informative value of ratio estimates [26].
Therefore, ratios should be judged based on the absolute
signal intensity of each gene. To diagnose the metastatic
potential of highly versus poorly invasive melanoma cells
we compared their gene expression profile with our me-
tastasis chip, which contains genes critical for aspects of
the metastatic process, including tumor cell motility and
the ability to form primitive tubular networks [17,27].
Each ratio was tested for the Null hypothesis that there is
no difference between the means of the ranks of the Cy5
and Cy3 signals over 6 replicate spots representing a
unique sequence. At signal intensities below the threshold
with maximum specificity and sensitivity some genes gave
a ratio greater than 1.6-fold (at a confidence level of p <
0.05). In such a case, however, ratios are not optimal esti-
mators because the low denominator value introduces
large artifacts [8]. Therefore we sought to determine ratio
confidence categories based on the absolute signal inten-
sities [13]. Assuming that the ROC-analysis derived
threshold is an 'appropriate' cut-off for distinguishing ab-
sent/present genes, the proposed 'confidence categories'
may be interpreted as follows:

(A) The gene is present in both samples, and this is the
best estimate of the true ratio, while further statistical eval-
uation should be applied to take into account the variabil-
ity of the measurements.

(B) The gene is present in one sample and absent in the
other. Ratios are meaningless, but this is still an extremely
significant biological result!

(C) The gene is absent in both samples. Not only are the
ratios meaningless, but so are the intensity estimates.

As a result of threshold setting, certain genes may be false-
ly included (=false positives) or, less frequently [5], falsely
discarded (=false negatives) from further analysis (i.e. ra-
tio calculations, clustering analysis, etc.) as exemplified
here with the microarray experiment for investigating in-
vasion in cancer. The ROC-derived threshold correctly
classifies the signal for Laminin-5, γ2 as 'absent', whereas
the mean- or median -derived thresholds would produce
a false-positive result. Since this gene product plays a sig-
nificant role in vasculogenic mimicry [17]. Classifying the
expression level is biologically crucial. ROC analysis leads
to a result (Type B, above) that is in line with data ob-
tained otherwise, whereas both mean- or median -derived
threshold would have resulted in accepting falsely a
change (type A, above) in Laminin-5, γ2 expression.

Collectively, the present study demonstrated that microar-
ray-derived signals from positive and negative controls
may be used to compute accurately type I and type II er-
rors for a series of signal thresholds. We have introduced
a new model for signal threshold determination for gene
expression microarray experiments that greatly eases the
interpretation and comparison of these data. This model
is based on analysis of signal intensities and distributions
of a reference set of positive and negative controls includ-
ed on each microarray. It provides a framework for deter-
mination of detection limits, confidence about
fluorescent ratios and for pre-processing data for subse-
quent data analyses, such as cluster analyses [23,28].

Materials & Methods
Synthesis of PCR products
IMAGE cDNA clones representing 72 human genes in-
volved in cell migration were purchased from Research
Genetics (Huntsville, AL) and sequence verified in-house.
Control cDNA clones (GenBank Accession numbers are in
brackets) from Arabidopsis thaliana (T76518, T45394,
H37673), human cytomegalovirus (NP_039949,
NP_039950, NP_039952, NP_039955, NP_039971,
NP_039974, NP_039976) E. coli (J04423: BioB, BioC, Bi-
oD) and B. subtilis (X04603, M24537, X17013, L38424)
were provided by the Scripps Research Institute's microar-
ray facility and were chosen to lack homology to human
sequences. Plasmids were prepared from IMAGE clones
using Qiagen's (Santa Clara, CA) plasmid mini prep kits
following manufacturer's protocols. All plasmid inserts
were amplified in 100 µl reactions using the following
primer sequences:
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M13 Forward 5'-GTTTTCCCAGTCACGACGTTG-3'

M13 Reverse 5'-TGAGCGGATAACAATTTCACACAG

PCR reactions were cycled 35 times under the following
conditions: 94 degrees for 30 seconds, 55 degrees for 1
minute and 72 degrees for 2 minutes. All PCR products
were analyzed by gel electrophoresis to confirm the pres-
ence of a single band. PCR products showing weak and/or
multiple bands were reamplified using variable MgCl2
concentrations (1.5–2.5 mM) until single bands were gen-
erated. The PCR products were purified using Qiagen's 96-
well PCR purification kit according to manufacturer's pro-
tocols. Purified PCR products were dried down and resus-
pended in 80 ul 3X SSC (standard saline citrate- 1X SSC =
150 mM NaCl, 15 mM sodium citrate) with 0.01% sodi-
um dodecyl sulfate (SDS).

Microarray production
Each gene was spotted 6 times at various locations across
one of the four subarrays printed on each glass slide. DNA
was printed on poly-lysine coated slides using a custom
built robotic arrayer in the TSRI's DNA Microarray Core
Facility. This facility houses a custom made spotter built
by Robotic Labware Designs (Carlsbad, CA). The arraying
instrument was conceptually modeled after that of Dr.
Patrick Brown and colleagues at Stanford University (de-
tails can be obtained from:  [http://cmgm.stanford.edu/
pbrown/array.html]). Spotting tips (CMPB2) are pur-
chased from Telechem International (San Jose, CA). Poly-
lysine coated slides were prepared as described in the
Brown lab website (see above).

Preparation of Cy3 and Cy5 labeled cDNA probes
Cy3 and Cy5 -labeled cDNA probes were synthesized as
described in (14) Briefly, 2 µg mRNA spiked with B. subti-
lis RNA cocktail (described below) at indicated amounts.
mRNA was added to 4 µg of oligo (dT21) primer (Life
Technologies, Rockville, MD), DEPC water was used to
bring the volume to 27 µl and the mixture was incubated
at 65°C for 10 min and placed on ice. A reaction mixture
consisting of mRNA, first-strand buffer (Life Technolo-
gies), DTT (0.1 M), d(GAT)TP (25 mM), dCTP (1 mM),
Cy3-dCTP (2 mM)(Amersham, Piscataway, NJ) and Su-
perscript RT II (200 units) were added and incubated at
room temperature for 10 minutes and then at 42°C for 2
hours. The cDNA:mRNA hybrid was isolated on a
Qiaquick PCR purification column (Qiagen) and degrad-
ed after addition of 2.5 µl 1 N NaOH for 10 minutes at
37°C. After addition of 2.5 µl 1 N Tris/HCl (pH 7.5), la-
beled cDNA was concentrated by ETOH precipitation and
resuspended in 2 µl water.

Generation of B. subtilis RNA cocktail
Four B. subtilis clones containing engineered polyA tails
were purchased as plasmids from ATCC (Manassas, VA;
ATCC No. pglbs-lys, pglbs-phe, pglbs-thr, pglbs-dap).
Polyadenylated control RNA was prepared from these
clones by in-vitro transcription of linearized plasmids us-
ing the AmpliScribe transcription kit (Epicenter Technol-
ogies, Madison, WI) following the manufacturer's
instructions. The B. subtilis control cocktail contained
equal proportions (wt/wt) of each RNA species and was
spiked into cDNA reactions at 125 pg/2 ug mRNA in order
to normalize Cy3 and Cy5 signals after scanning.

Hybridization, image processing and normalization
Resuspended probes were mixed with 4 µl of 5 × hybridi-
zation buffer (20 × SSX, 1%SDS), 1 µl human Cot-1 DNA
(10 µg/µl), 1 µl polyA DNA (2 µg/µl) (Amersham) and 8
µl formamide (Sigma, St. Louis, MO), heated to 65°C for
2 min and then centrifuged briefly. Samples were hybrid-
ized to a previously prepared microarray overnight at
42°C in a humid chamber in the dark. Following hybridi-
zation, slides were washed serially in 2× SSC, 0.2% SDS,
once in 2× SSC and once in 0.2× SSC for 5 min at room
temperature each. The slides were then air dried and
scanned on a ScanArray 5000 (GSI Lumonics, Watertown,
MA) using the appropriate excitation and emission filter
wavelengths for Cy3 and Cy5. Image files were analyzed
using ImaGene 4.0 (Biodiscovery). Background subtract-
ed fluorescence intensities were normalized by dividing
all signals on the microarray by the median signal gener-
ated by the four B. subtilis genes dap, lys, phe and thr (n =
96 = 4 × 24) [29–31].; for reviews about current normali-
zation strategies see [10,23].

ROC analysis
For signal threshold determination we used normalized
Cy3 and Cy5 signal intensities from a study carried out to
compare highly invasive vs. poorly invasive uveal
(MUM2B vs. MUM2C; array 1) and cutaneous (C8161 vs.
C81–61; array 2) melanoma cells [17]. Although thresh-
olds may be determined for each channel individually,
normalizing fluorescence intensities allows the pooling of
Cy3 and Cy5 data thus simplifying the process. A negative
control group consisting of cDNAs from three A. thaliana,
three E. coli and 7 human cytomegalovirus genes were
printed on the microarrays and used to measure non-spe-
cific hybridization. cDNAs derived from 7 housekeeping
genes (ribosomal proteins L13A, L30, S9; α-tubulin; β-ac-
tin; ubiquitin c and hypoxanthine guanine phosphoribo-
syl transferase) and four B. subtilis clones (designed to
hybridize to the B. subtilis RNA cocktail spiked into the
cDNA reactions) were printed on the microarrays to serve
as specific hybridization controls (positive controls).
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Steps for construction of the ROC curves
1: Divide the positive and negative control signals arith-
metically into an appropriate number of intervals (e.g.
20–30) with the resulting limits termed 'thresholds' (Tj).
Alternatively, each observed measurement point (i.e. sig-
nal from positive and negative controls) may be used as
Tj. (Scott, DW; 1976. Nonparametric Probability Density
Estimation by Optimization Theoretic Techniques, Tech-
nical report TR476-131-1,  [http://www.stat.rice.edu/stat/
techr.html])

2: Specificity Spj and Sensitivity Sej obtained with each
threshold value Tj are calculated as the proportion of pos-
itive results in the positive and negative results in the neg-
ative reference group, respectively. Note that these
calculations are estimates of type I and type II errors
(equivalent to α and β errors) for each threshold.

3: Draw a ROC curve by plotting the false positive rate or
(100 – specificity) on the x-axis. The y-axis shows the true
positive rate or sensitivity. The area under the ROC plot is
an estimator of the discriminatory power of selecting a
cut-off and varies from array to array. The area of the ROC
plot was calculated as the sum of

Area = Σ {[αt(n) – (αt(n+1))]/ [1-βt(n)]}

where t(n) denotes the threshold n = 1, 2,...22, α = alpha
error, and β= beta error. (For a detailed description of
ROC-area calculation: [15,16]). A sum of 0.5 indicates
that negative and positive test groups cannot be distin-
guished. A ROC curve representing a parameter with no
discrimination at all is a 45° diagonal line from the left
lower corner (0% true positive rate and 0% false positive
rate) to the upper right corner (100% true positive rate
and 100% false positive rate) with an area under the curve
of 0.5. A parameter with no overlap between the two con-
ditions will discriminate perfectly and has an ROC curve
passing along the y-axis to the upper left corner (100%
true positive rate and 0% false positive rate) to end again
in the upper right corner with an area under the curve of
1.0. Software for ROC analysis is available commercially
or as spreadsheet calculation macros [24].
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