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Abstract
Background: The yeast Saccharomyces cerevisiae is an important microorganism for both industrial
processes and scientific research. Consequently, there have been extensive efforts to characterize
its cellular processes. In order to fully understand the relationship between yeast's genome and its
physiology, the stockpiles of diverse biological data sets that describe its cellular components and
phenotypic behavior must be integrated at the genome-scale. Genome-scale metabolic networks
have been reconstructed for several microorganisms, including S. cerevisiae, and the properties of
these networks have been successfully analyzed using a variety of constraint-based methods.
Phenotypic phase plane analysis is a constraint-based method which provides a global view of how
optimal growth rates are affected by changes in two environmental variables such as a carbon and
an oxygen uptake rate. Some applications of phenotypic phase plane analysis include the study of
optimal growth rates and of network capacity and function.

Results: In this study, the Saccharomyces cerevisiae genome-scale metabolic network was used to
formulate a phenotypic phase plane that displays the maximum allowable growth rate and distinct
patterns of metabolic pathway utilization for all combinations of glucose and oxygen uptake rates.
In silico predictions of growth rate and secretion rates and in vivo data for three separate growth
conditions (aerobic glucose-limited, oxidative-fermentative, and microaerobic) were concordant.

Conclusions: Taken together, this study examines the function and capacity of yeast's metabolic
machinery and shows that the phenotypic phase plane can be used to accurately predict metabolic
phenotypes and to interpret experimental data in the context of a genome-scale model.

Background
The development of numerous high-throughput experi-
mental techniques such as DNA microarrays, genome
sequencing, and protein chips has revolutionized the
analysis of biological systems and generated a catalog of
information about a cell's components [1-3]. Efforts are
now focused on the integration of this data to enable the
systemic understanding of cellular functions [4-6]. This

integration is typically in the form of a mathematical
model that can be used to simulate complex cellular
behaviors based on a limited amount of biological data.

Several modeling approaches have been implemented in
the study of Saccharomyces cerevisiae. Flux-balance models
of yeast have appeared for small-scale network reconstruc-
tions. Most of these studies are specific for growth
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conditions, such as anaerobic, glucose-limited metabo-
lism [7], aerobic growth on galactose [8] or growth on
mixtures of glucose and ethanol [9]. In addition to flux-
balance models, many dynamic models of simplified cen-
tral metabolic networks in yeast also have been developed
[10,11], along with full-scale kinetic models specific to
pathways such as glycolysis [12,13] and the pentose phos-
phate pathway [14]. These models have been useful to
study detailed metabolic events such as concentration
changes of individual metabolites and key flux splits.

Small-scale reconstructions can be limited in their predic-
tion of cellular functions since these processes are typi-
cally dependent on the interaction of components at a
whole-cell level. This has motivated the development of
genome-scale models, several of which have already
appeared for bacterial cells, including Escherichia coli
[15,16], Haemophilus influenzae [17], and Helicobacter
pylori [18]. We have previously reconstructed a genome-
scale metabolic network of Saccharomyces cerevisiae based
on its annotated genome sequence and a thorough exam-
ination of online pathway databases, biochemistry text-
books, and journal publications [19]. A total of 708 open
reading frames, 1175 metabolic reactions, and 733
metabolites are accounted for in this stoichiometric net-
work, which includes both cytosolic and mitochondrial
compartments. This genome-scale reconstruction is the
most comprehensive model of yeast metabolism to date
and has been previously validated through in silico gene
deletion studies [20] and the calculation of key physiolog-
ical parameters [21].

The reconstruction and analysis of genome-scale micro-
bial networks have advanced significantly in recent years
[22,23], as has the development of a variety of constraint-
based modeling methods that allow for the deduction a
cell's phenotype based on its genotype and environmental
conditions [24-28]. Phenotypic phase plane (PhPP) anal-
ysis is a constraint-based method used to obtain a global
perspective of genotype-phenotype relationships in
genome-scale metabolic networks. In PhPP analysis, flux
balance analysis and linear programming are used to map
all of the cellular growth conditions represented by two
environmental variables onto a two-dimensional plane
and identify phases with distinct metabolic pathway utili-
zation patterns. Some applications of PhPP analysis
include the study of optimal growth rates [29], adaptabil-
ity of microorganisms [30,31], metabolic network func-
tions and capacities [15], and the impact of gene
regulations [32]. Thus, PhPP analysis provides a way to
guide experiments and analyze phenotypic functions
based on genome-scale metabolic networks.

The constraint-based modelling approach is based on the
assumption that organisms have developed control struc-

tures to ensure optimal growth in response to environ-
mental constraints [35]. Numerous experimental
observations have been made in support of this hypothe-
sis [36]. The mathematical descriptions for the PhPP have
relevant metabolic meaning for the biological systems
being studied. For example, any point in the PhPP corre-
sponds to a single solution of the linear programming
problem, which metabolically represents a possible
growth behavior. A phase or region in the PhPP (where
the shadow price is constant) represents a metabolic phe-
notype with specific pathway utilization. The shadow
prices change continuously at the boundary from one
phase to the next. Accordingly, the metabolic phenotype
will vary. Metabolically, this is interpreted as a different
optimal utilization of the metabolic pathways since each
basis solution corresponds to a different flux distribution.

In this study, we formulate a glucose-oxygen phenotypic
phase plane for yeast based on its recent genome-scale
metabolic reconstruction [19]. The growth states pre-
dicted by the PhPP are then characterized using shadow
price analysis, in silico gene deletion simulations, and in
vivo growth experiments. Finally, we evaluate the net-
work's predictions for these growth states by comparing in
silico biomass formation and by-product secretion rates to
in vivo measurements.

Results
S. cerevisiae phenotypic phase plane (PhPP)
The S. cerevisiae genome-scale metabolic network con-
structed by Forster et al. [19] was used to generate a PhPP
[33] that describes yeast's metabolic states at various levels
of glucose and oxygen availability (Fig. 1). The surface of
the three-dimensional PhPP corresponds to the maxi-
mum growth rate allowable for each pair of glucose and
oxygen uptake rates in the x-y plane (Fig. 1a). All feasible
metabolic flux distributions lie on or below this surface.
The two-dimensional projection of the PhPP (Fig. 1b) has
been divided into seven regions, or "phases," to allow for
qualitative comparisons (P1 - P7). The seven phases repre-
sent areas of the PhPP that have distinct metabolic pheno-
types as defined by shadow price analysis, which
identifies how changes in metabolite levels affect biomass
formation [33]. There also are two regions of the PhPP
with infeasible steady-state flux distributions: the area
along the y-axis and the small square near the origin.
Growth is infeasible in the region between the ordinate
and P1 since yeast cannot use more than six oxygen mol-
ecules per glucose molecule. The two red lines in Fig. 1b
are lines of optimality (LO). LOgrowth represents optimal
aerobic glucose-limited growth of S. cerevisiae in which
substrates are completely oxidized to produce biomass
and LOethanol corresponds to maximum ethanol produc-
tion under microaerobic conditions while growth is
maximized.
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Simulation of optimal metabolic phenotypes
Computer simulations (Fig. 1b) were used to illustrate the
change of metabolic phenotypes described by the yeast
phase plane. For the simulations, we arbitrarily set glucose
uptake rate to 5 mmol/gDCW/hr and varied the oxygen
uptake rate from 0 to 20 mmol/gDCW/hr. This allowed us
to study the influence of a single environmental variable

on cellular metabolism. Small amounts of NH3, sulfate
and phosphate were introduced for the biomass synthesis.
During anaerobic conditions (OUR = 0, on the x-axis), the
growth rate was low and the respiratory quotient (RQ)
was infinite by definition (Fig. 2a). As the oxygen uptake
rate increased to 13 mmol/gDCW/hr to reach LOgrowth, the
growth rate increased to its maximum value and the respi-
ratory quotient approached 1.06. Further increasing the
oxygen uptake rate caused both the growth rate and respi-
ratory quotient to decrease due to futile cycles in which a
combination of two or more biochemical reactions

The yeast glucose-oxygen phenotypic phase plane (PhPP)Figure 1
The yeast glucose-oxygen phenotypic phase plane 
(PhPP). (a) The three-dimensional S. cerevisiae PhPP drawn 
with Statistica™ (Statsoft, Tulsa, OK). The x and y axes rep-
resent the glucose uptake rate and oxygen uptake rate, 
respectively. The third dimension is the cellular growth rate. 
(b) A two-dimensional projection of the 3-D polytope in 
panel (a). The two lines of optimality are shown in red. 
LOgrowth represents optimal aerobic glucose-limited growth 
and LOethanol corresponds to maximum ethanol production 
under microaerobic conditions. P1 - P7 represent phases with 
various metabolic phenotypes. The hatched regions corre-
spond to infeasible growth conditions. The orange line (glu-
cose uptake flux = 5 mmol/gDCW/hr) represents the 
conditions which were used for the simulations in Figure 2.
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Simulation of metabolic behavior for optimal cellular growth as a function of oxygen availability, ranging from completely anaerobic fermentation to completely aerobic growth in S. cerevisiaeFigure 2
Simulation of metabolic behavior for optimal cellular 
growth as a function of oxygen availability, ranging 
from completely anaerobic fermentation to com-
pletely aerobic growth in S. cerevisiae. The range of 
oxygen uptake rates used in the simulations (orange line, Fig. 
1) allows for the characterization of the PhPP's seven phases 
(P1 - P7) and two lines of optimality (LOgrowth, LOethanol). (a) 
Growth rate and respiratory quotient (RQ). (b) Secretion 
profile for acetate, succinate, ethanol, and glycerol.
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resulted only in the hydrolysis of ATP or other high-
energy compounds [33].

Metabolic by-product secretion profiles also were calcu-
lated with increasing oxygen uptake rates. Since alterna-
tive optimal solutions exist in the genome-scale metabolic
flux models [34], a range of secretion rates can be found
amongst all of the equivalent optimal solutions for a fixed
point in the PhPP. Remarkably, there was less than 1%
difference between the maximum and minimum allowa-
ble secretion rates for a fixed maximal growth rate; thus,
only the maximum predicted secretion fluxes for ethanol,
succinate, glycerol, and acetate are shown (Fig. 2b). Dur-
ing anaerobic fermentation, ethanol, glycerol, and succi-
nate were produced. Maximum ethanol production
occurred at an oxygen uptake rate of 0.5 mmol/gDCW/hr,
a condition defining LOethanol. Glycerol production ceased
at this point. With a slight increase in oxygen uptake rate
above LOethanol, acetate began to be secreted but succinate
secretion decreased to zero. Ethanol and acetate were no
longer secreted once the oxygen uptake rate was equal to
or greater than 13 mmol/gDCW/hr, a point on LOgrowth
where the metabolic pathway utilization enables com-
plete aerobic growth.

Further characterization of oxidative-fermentative phases 
(P2 - P6)
Linear programming simulations generate parameters
called shadow prices that can be used to evaluate how
changes in metabolite availability affect the biomass for-
mation [33]. Shadow price analysis was used to further
characterize the oxidative-fermentative phases. A positive
shadow price indicated that a metabolite was available in
excess, meaning that a decrease in its availability would
increase biomass synthesis, and a negative shadow price
indicated that a metabolite was limiting such that increas-
ing its availability would increase the biomass synthesis.

In silico gene deletions were also performed in order to
determine which reactions were essential in each phase.
Essential reactions were defined as those whose deletion
resulted in no predicted growth (growth rate equal to
zero). This approach was especially useful for interpreting
the physiological differences between growth states in
phases 2 – 6 since their phenotypes were indistinguisha-
ble in terms of their secretion profiles.

Phase 2
In phase 2, the ratio of oxygen uptake rate and glucose
uptake rate (GUR) is lower than that on the line of opti-
mality. As a result, the cell is oxygen limited and begins to
ferment. Mitochondrial NAD+ is available in excess,
meaning that the biomass synthesis would improve if its
availability decreased. In order to maintain the cell's redox
balance, the excess mitochondrial NAD+ must be

reduced. This is done through the production of acetate
and ethanol, which begin to be secreted in this phase.
Thus it is the production of acetate and ethanol that
makes the optimal growth rate less than that defined on
the line of optimality.

Phase 3
As the ratio of oxygen and glucose uptake rates is further
decreased, three lower glycolysis reactions (fructose bis-
phosphate aldolase, triose phosphate dehydrogenase, and
phosphoglycerate kinase) become essential for growth in
phase 3. Although these deletions severely hinder growth
in phase 2 (reducing the growth rate by 55%, 19%, and
19%, respectively), the simulated growth rate is non-zero
so these reactions were not considered to be essential.
However, these reactions are essential in subsequent
phases as the oxygen uptake rate is further decreased. Due
to the limited oxygen, more carbons "overflows" into the
fermentation pathway while at the same time oxidative
metabolism becomes less effective.

Phase 4
Shifting from phase 3 to phase 4, the pentose phosphate
pathway is utilized to generate NADPH because not
enough NADPH is produced through respiration at the
lower oxygen uptake rate. The NADPH is then converted
to NADH which is subsequently used for ATP production.

Phase 5
Further lowering the ratio of oxygen and glucose uptake
rates restricts the cell's ability to produce pyruvate in
phase 5. Yeast can no longer utilize the oxidative path-
ways because an insufficient amount of cytosolic NAD+ is
produced. When comparing phases 4 and 5, all of the
metabolites with shadow price sign changes were folate
intermediates. These are important energy carriers that are
directly linked to the availability of both cytosolic and
mitochondrial NAD+ and NADP+.

Phase 6
As you enter phase 6, the acetate production is completely
ceased. Ethanol is secreted as the only metabolic by-prod-
uct to balance the redox potential of the cell.

Growth experiments
Three groups of experiments were conducted under differ-
ent growth conditions in the PhPP (Fig. 3a). These three
conditions were:

• Aerobic, glucose-limited (AGL) growth experiments
were conducted with a data acquisition and process
control system. The dissolved oxygen (DO) level was
maintained above 30% by sparging the compressed air
into the CelliGen® Plus bioreactor during the cell cultiva-
tion. The system was controlled at the respiratory quotient
Page 4 of 11
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of 1.06 for optimal S. cerevisiae growth by RQ-stat feeding
strategy to maintain the glucose concentration at a low,
stable level (Fig. 3b). The cell concentration rose steadily
with almost no acetate or ethanol production and most of
the carbon was incorporated into the yeast biomass.

• Oxidative-fermentative (OF) batch growth experiments
were carried out by allowing an essentially unlimited sup-
ply of oxygen and glucose. The DO level was maintained
above 30% by sparging the compressed air into the
shaker's flasks during the cell cultivation. Ethanol and ace-
tate were accumulated in the aerated processes (Fig. 3c).

Growth experiments shown on the PhPPFigure 3
Growth experiments shown on the PhPP. (a) The three groups of experimental data displayed on the S. cerevisiae PhPP 
were used as an index for the time course profiles in panels (b), (c) and (d). (b) Aerobic glucose-limited growth controlled by 
fed-batch operation. (c) Oxidative-fermentative growth with unlimited glucose and oxygen availability. (d) Microaerobic 
growth with unlimited glucose and very low oxygen availability. The AGL (b) and MA (d) data sets are located on lines of opti-
mality and as a result are stable metabolic states with only one degree of freedom (glucose for AGL and oxygen for MA). OF 
(c) is an unstable metabolic state with two degrees of freedom (glucose and oxygen), making it more difficult to control this 
type of growth condition. By perturbing the environmental conditions, cells in OF can be shifted to either AGL or MA (unpub-
lished results).
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• Microaerobic (MA) batch cultivations with S. cerevisiae
were performed at a low dissolved oxygen level. The
experiments were performed in side-arm flasks (Fig. 3d)
in which a small amount of air was allowed to diffuse into
the flasks via the cotton filter on the side arms. The DO
level was measured to be less than 5%. The initial glucose
concentration and the limited oxygen supply resulted in
high levels of ethanol and low levels of acetate.

Integration of experimental data and in silico predictions
The S. cerevisiae PhPP is a genome-scale model-based vis-
ualization platform which allows experimental data and
simulation results to be displayed and compared. The
three groups of batch and fed-batch experimental data are
projected on Fig. 3a using the experimentally measured
OUR and glucose uptake rates. These rates were then used
as constraints in the computer simulations. Table 1 shows
that the experimental observations and the in silico predic-
tions are in good agreement.

Discussion
In this study, the S. cerevisiae genome-scale metabolic net-
work constructed by Forster et al. [13] was used to gener-
ate a PhPP [9] that describes yeast's metabolic states at
various levels of glucose and oxygen availability (Fig. 1).
Examination of the S. cerevisiae PhPP has led to clear inter-
pretation and prediction of its metabolic capabilities.
First, only a few distinct optimal S. cerevisiae growth phe-
notypes were found in silico, and these phenotypes corre-
spond to well-defined phases of the PhPP. Second, two
lines of optimality were identified in yeast's PhPP:
LOgrowth, which represents optimal biomass production
during aerobic, glucose-limited growth, and LOethanol,
which corresponds to both maximal ethanol production
and optimal growth during microaerobic conditions. The
predictions of S. cerevisiae's PhPP and genome-scale
model were compared to independent experimental data.
The results showed that the agreement between the com-
puted and observed growth rates, uptake rates, and secre-
tion rates was close to the measured values or within the

experimental error, and qualitatively the predictions
agreed with published literature.

Analysis of experimental data within the PhPP formalism
suggests that yeast has only a few primary phenotypes,
designated by the various phases. In P1, the oxygen supply
is sufficient for growth by aerobic respiration, resulting in
carbon dioxide as the sole by-product. Phases P2-P6 corre-
spond to states of oxidative-fermentative growth, which is
characterized by secretion of oxidative and fermentative
metabolic by-products, i.e., acetate and ethanol, respec-
tively. These states are highly similar since the phases are
essentially co-planar in the 3-dimensional PhPP (Fig. 1a).
The secretion profile (Fig. 2b) does not show any pheno-
typic differences between phases P2 - P6. However,
through the use of shadow price analysis and in silico gene
deletions, distinct pathway utilization patterns could be
found for each phase. Finally, P7 represents microaerobic
conditions. In this environment, yeast grows primarily by
fermentation and secretes ethanol, glycerol, and succinate
(Fig. 2b). This limited range of metabolic states is
strikingly different from that found for E. coli, whose glu-
cose-oxygen PhPP has five distinct optimal in silico pheno-
types [32]. Comparison of the simulation results
generated by the E. coli [35] and S. cerevisiae [19] models
indicates that E. coli's metabolic by-product secretion pat-
terns are more sensitive to the OUR variation than those
of S. cerevisiae. Moreover, computer simulations show that
when the OUR is lower than 7 mmol/gDCW/hr at a glu-
cose uptake rate of 5 mmol/gDCW/hr, the TCA cycle in E.
coli is broken into two branched pathways, one operating
as a reductive pathway reversing the usual sequence from
succinate to oxaloacetate and the other continuing to
operate oxidatively to convert oxaloacetate to α-ketogluta-
rate. For S. cerevisiae, the pathway still functions as a cycle
even when the OUR is as low as 1 mmol/gDCW/hr. Thus,
it can be concluded by the comparison of E. coli and S. cer-
evisiae metabolic networks that yeast appears to be more
robust to environmental perturbations. Furthermore, we
predict that yeast secretes fewer metabolic by-products
under these conditions, suggesting that its metabolism is

Table 1: Comparison of In Silico Predictions and Experimental Measurements.

Microaerobic fermentation Oxidative-fermentative growth Aerobic, glucose-limited growth

OUR = 1, GUR = 14 OUR = 9, GUR = 12 OUR = 8, GUR = 2.5
In silico Experimental In silico Experimental In silico Experimental

Growth rate 0.33 0.31 0.53 0.51 0.22 0.20
Ethanol 21.29 20.08 11.98 11.07 0 0.16
Acetate 0.26 0.22 2.62 2.57 0 0.31

Abbreviations: oxygen uptake rate (OUR), glucose uptake rate (GUR)
Units: growth rate (1/hr), substrate uptake rates and metabolite production rates (mmol/gDCW/hr)
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more efficient than that of E. coli. This may represent a
universal difference in how prokaryotes and eukaryotes
respond to shifts in environmental parameters.

Another feature that distinguishes the S. cerevisiae PhPP
from the E. coli PhPP is the existence of two definable lines
of optimality. The conditions that define LOgrowth are sim-
ilar to those that define E. coli's sole line of optimality, i.e.
they both represent the relationship between the glucose
and oxygen uptake rates that results in optimal growth
rate. Analysis of yeast's PhPP suggests that at a specific
ratio of glucose and oxygen uptake rates glycerol produc-
tion is halted and NADH is re-oxidized by maximal etha-
nol formation. This phenomenon, defined by LOethanol,
has been supported by many research reports in the liter-
ature [3,17,25]. For example, Cysewski and Wilke [37]
found a sharp stimulation of the specific ethanol produc-
tivity at a very low but non-zero level of dissolved oxygen.
Later studies showed that a value of 10 ppb of dissolved
oxygen maximized ethanol production in yeast chemostat
cultures [25]. Thus, LOethanol, the second line of optimality
predicted by the genome-scale model, is consistent with
the experimental observations.

A useful application of the S. cerevisiae PhPP is to qualita-
tively classify yeast's metabolic state based on phenotypic
observations made in vivo (Fig. 3). The metabolite concen-
tration profile obtained from all of the experiments qual-
itatively agrees with the corresponding metabolic state
predicted by the PhPP. For example, in growth conditions
near LOethanol, cells are expected to grow almost entirely
by fermentation, with significant production of ethanol
and lesser amounts of glycerol, acetate and succinate
secretion. This phenotype is qualitatively similar to exper-
imental observation, in which more ethanol is produced
than acetate as shown in Fig. 3d. Points in the PhPP rep-
resentative of the three data sets also were used to quanti-
tatively predict yeast's metabolic phenotype (Table 1).
Overall, the predictions are in good agreement with the
experimental measurements. However, the predicted
growth rates are slightly higher than the measured values.
This difference may result from the model's prediction of
optimal performance not reflecting suboptimal growth in
vivo.

Conclusions
The genome-scale metabolic networks developed for
other microorganisms, namely Escherichia coli, Haemo-
philus influenzae, and Helicobacter pylori, have led to useful
insights into substrate preferences, the effects of gene dele-
tions, optimal growth patterns, outcomes of adaptive evo-
lution, and shifts in expression profiles [22]. With the
recent reconstruction of S. cerevisiae's genome-scale meta-
bolic network [19], these analytical techniques can now
be applied to the first genome-scale model of an eukaryo-

tic cell. By developing methods such as the PhPP to
explore in silico the metabolic capabilities of microorgan-
isms, we can generate new hypotheses as to how these
organisms operate, and, more importantly, we can gain
insight into the impact of individual cellular components
on the organism as a whole.

Methods
Experimental methods
Strains and media
All cultures were grown at 30°C in SD medium [38] and
supplemented with glucose (Sigma Chemical Co., St.
Louis, MO) as appropriate for each phase of the experi-
ment conducted. The S. cerevisiae strain FY4 MATα [39]
was used in this study.

Growth and fermentation system
For experiments, 5 ml of overnight culture inoculated
from single colonies grown on YPD agar was used to seed
50 ml of SD media pre-warmed to 30°C in a 250-ml
Erlenmeyer flask, which was placed in a 30°C shaking
incubator at 225 rpm for approximately 12 hours. This
secondary seed was then used to inoculate either a 1.5-L
Erlenmeyer flask with side arms for parallel batch fermen-
tations or a 1.0-L bioreactor (CelliGen® Plus, New Bruns-
wick Scientific Co., Inc., Edison, NJ, USA). Cultures for
aerobic, glucose-limited, fed-batch growth were initially
grown in a batch mode, and a specific substrate limited
after the culture reached particular biomass concentra-
tions in each respective experimental condition. All batch
culture experiments were performed in our multiple fer-
mentation system which consists of acrylic enclosures
filled with de-ionized water that can accommodate 32 cul-
tures in parallel in batch operation mode at volumes
ranging from 100 mL to 1500 mL capacity. We used this
setup with either shaker's flasks as reactor vessels. A mag-
netic agitator (Bellco Glass, Inc., Vineland, NJ, USA) was
used to continually mix flask contents at a speed of 225
rpm, and each flask was sealed with a rubber stopper con-
taining apertures for probes, nutrient inlets/outlets, and
sample harvesting. Temperature is strictly and uniformly
controlled using a water circulator (model C10, Thermo
Haake, Portsmouth, NH) with a temperature control
module that drives a closed circuit of water to and from
the controller to inlet and outlet drains on the water bath.
Dissolved oxygen is measured and controlled using a
polarographic electrode connected to DO meters/control-
lers. The fed-batch S. cerevisiae cultivations were automat-
ically controlled in the 1-L bioreactor (CelliGen® Plus,
New Brunswick Scientific Co., Inc., Edison, NJ, USA). It
has its own controllers for temperature, pH and dissolved
oxygen (DO). A Pentium II computer (233 MHz proces-
sor, Microsoft Windows 98) equipped with an AT-MIO-
16E-10 Analog Input computer interface board (National
Instruments Corp., Austin, TX, USA) was used for data
Page 7 of 11
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acquisition and process control for both the multiple fer-
mentation system and CelliGen® Plus bioreactor. Data
from the batch and fed-batch cell cultures, including pH,
temperature, and dissolved oxygen concentration were
acquired through the interface board. The real-time graph-
ical data acquisition and process control programs was
written in LabVIEW 6.0 (National Instrument Corp., Aus-
tin TX). Media fed to the bioreactor was controlled by a
feeding pump (Masterflex Computerized Drive 7550-90,
Cole-Parmer Instrument Co., Chicago, IL, USA), with a RS
232 serial link accepting control signal from the compu-
ter, for fed-batch cell cultivation process. Acquisition of
dissolved oxygen (DO) data was obtained with the aid of
a respirometer [40] using a dissolved oxygen probe (Cole-
Parmer Instrument Co., Chicago, IL, USA). For all the
experiments, temperature was controlled at 30°C.

Determination of respiratory quotient (RQ)
The ratio of carbon dioxide evolution rate (CER) to oxy-
gen uptake rate (OUR) has previously proven useful in
inferring a lack of substrates in the growth medium and in
the calculation of feeding rates [41]. For the fed-batch
experiment, compressed air was fed into the bioreactor
through a gas flowmeter (Manostat 125, New York, NY,
USA), which was manually adjusted to a flow rate of 100
mL/min. The composition of exhaust gas from the biore-
actor was measured using a gas analyzer (1440C Gas Ana-
lyzer, Servomex Co., Inc., Norwood, MA, USA) connected
to the interface board to gauge exiting O2 and CO2 levels.
Calculations for CER, OUR, and RQ were performed using
the equations:

where O2, in and CO2, in and O2, out and CO2, out are the oxy-
gen and carbon dioxide fractions in % v/v in the inlet air
and exiting gas measurements, respectively, Qin and Qout
are the air flow rates, and Vm is the working volume of the
bioreactor. When the estimated RQ reached 1.06, a peri-
staltic pump (Cole-Parmer) was utilized to begin feeding
10X concentrated growth medium into the bioreactor,
and this quotient was maintained by an RQ-stat control
strategy to limit the production of by-products or con-

sumption of these by-products as an alternative energy
source.

Sampling procedures
During cultivations, two separate 1-ml aliquot samples
were taken at early, mid, and late log-phase from both the
bioreactor and flasks. The first aliquot was used to deter-
mine cell density by measuring the optical density A600,
A420, using a spectrophotometer (Beckman DU640, Beck-
man Coulter, Inc., Fullerton, CA, USA), and cell counts
(Coulter Electronics Inc., Hialeah, FL, USA). The second
aliquot was then filtered on a manifold containing a dry,
pre-weighed, 0.2 µm pore-size filter to isolate a cell pellet,
and was washed three times with 250 ml of sterile
deionized water to ensure all salts were removed. After
washing, the filters are placed in aluminum foil inside a
65°C incubator for 24 hours and subsequently weighed
in an analytical balance to measure cell dry weight. The
second aliquot was filtered through a 0.45 µm acrodisc
syringe filter to separate cells from supernatant. The con-
centrations of metabolites in the supernatant such as glu-
cose, acetate, ethanol, and glycerol were determined by
using enzyme-based assay kits (glucose and acetate assay
kit, Sigma Chemical Co., St. Louis, MO, USA; ethanol and
glycerol assay kit, R-Biopharm, Inc., Marshall, MI, USA).

Growth rate, specific uptake/production rates and OURflask
All specific growth rate curves were obtained by a linear
regression of all data points within the exponential
growth phase using the following formula X = Xoeµt, where
X is the cell concentration (gL-1), Xo is the initial inoculum
cell concentration (gL-1), t is the time of inoculation, and
µ is the specific growth rate (1 hr-1). A minimum of ten
optical density measurements were needed for the growth
rate determination for both batch and fed-batch cultures.

The specific glucose uptake rate (GUR), ethanol and ace-
tate formation rates, and OURflask (OUR for the batch cul-
ture using flasks) were determined by fitting the dynamic
mass balance equations for glucose, ethanol, acetate and
DO measurements to the data points spanning the time
period of the exponential cell growth phase. The specific
uptake and production rates were then calculated by solv-
ing the dynamic mass balance equation within the culture
medium using the following equation:

where V (L) is the culture volume, [S] (mM) is the sub-
strate/product or DO concentration in the flask, q
(mmole/g-dry weight/hr) is the substrate uptake rate or
by-product formation rate or OURflask, and X(t) (g-dry
weight/L) is the biomass concentration at time = t (hr). +
is for the by-product formation and - is for the substrate
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consumption. The solution to this equation was fitted to
the experimental data points using the nonlinear estima-
tion routine in Statistica (StatSoft Inc, Tulsa OK) or the
solver in Microsoft Excel. All data, to be considered valid
and included in the analysis, must have correlation coeffi-
cients of 0.95 or greater. The data that were generated in
this way represented the "pseudo-steady-state" [42] of the
batch or fed-batch cell culture, and thus suitable for the
calculation of growth rate, specific uptake and production
rates, and OURflask.

In silico calculations
Flux balance analysis and linear programming
A genome-scale S. cerevisiae metabolic network has been
reconstructed [19]. The network includes 733 metabolites
and 1175 metabolic reactions, which are compartmental-
ized between the cytosol and the mitochondria. In meta-
bolic network analysis, the relationship between
metabolite concentrations, x, and reaction activities, v, is
described by the dynamic mass balance equation [43,44]:

where S is an m × n matrix of stoichiometric coefficients,
x is an m × 1 vector of metabolite concentrations, and v is
and n × 1 vector of reaction activities. Thus, the rows of S
correspond to the internal metabolites and the columns
represent the reactions in the network. Under steady-state
conditions, the dynamic mass balance equation simplifies
to:

S • v = 0  (Eq. 6)

Since the number of reactions is often greater than the
number of metabolites, Eq. 6 is underdetermined and
contains multiple solutions. One approach to solving Eq.
6 for microbial networks is to define a set of inputs and
outputs that correspond to the growth conditions and use
linear optimization to maximize the cell growth [35]. This
approach has been successful in capturing the phenotypic
behavior of S. cerevisiae for various growth conditions
[21].

Phenotypic phase plane (PhPP) formulation
The S. cerevisiae PhPP displays optimal growth rates for all
possible variations in two constraining environmental
variables, such as the carbon substrate and oxygen uptake
rates. In this study, the glucose uptake rate (x-axis) was
allowed to vary from 0 to 20 mmol/gDCW/hr and the
oxygen uptake rate (y-axis) ranged from 0.1 to 20 mmol/
gDCW/hr. The oxygen uptake rate was not allowed to
reach zero because anaerobic simulations required addi-
tional supplements to maintain cell growth (ergosterol
and zymosterol). Linear programming was used to calcu-

late the optimal growth rate for all points in the x-y plane.
Growth rate values were then plotted as the z-axis to form
the surface of a three-dimensional PhPP (Fig. 1a). A two-
dimensional PhPP was formed by projecting the 3-D
PhPP onto the x-y axis (Fig. 1b).

The phases of the PhPP were determined by the calcula-
tion of shadow prices [46], which describe the sensitivity
of the objective function (Z) to changes in the availability
of each metabolite:

where bi is the ith metabolite and γi is the ith shadow price.
Shadow prices were calculated for each point in the x-y
plane during the linear programming simulations. By def-
inition, phases were identified as regions of the PhPP in
which all of the points have the same shadow prices. Lines
of optimality, which represent the optimal ratio of glucose
and oxygen uptake rates for maximal biomass synthesis,
were also identified using shadow price analysis [45].

Shadow price analysis and in silico gene deletions
To obtain a physiological interpretation of the differences
between the oxidative fermentative phases (phases 2–6),
we analyzed how the shadow prices of key metabolites
changed across the phase boundaries. Simulations were
run at a fixed glucose uptake rate of 5 mmol/gDCW/hr
and an oxygen uptake rate ranging from 1.5 to 15 mmol/
gDCW/hr. The sign of the shadow price was used to iden-
tify whether a small change in the metabolite's availability
would positively or negatively affect the objective value.
According to the convention defined in [45], a negative
shadow price indicates that a metabolite is limiting, e.g.
the value of the objective function increases if the
metabolite's net production increases or its net consump-
tion decreases. Similarly, a positive shadow price indicates
that a metabolite is available in excess and a shadow price
equal to zero indicates that a change in the availability of
the metabolite does not affect the objective value.

Phases 2 – 6 were also characterized by performing gene
deletions in silico (as described in [20]). Single genes were
deleted at a representative point within each phase to
determine which reactions were essential for viability in
that region.

Secretion profile calculations
The first step in generating the secretion profile was to cal-
culate the optimal growth rate for a given glucose and oxy-
gen uptake rate. For the simulations in Figures 2a and 2b,
the glucose uptake rate was fixed at 5 mmol/gDCW/hr
and the oxygen uptake rate varied from 0 to 16 mmol/
gDCW/hr (ergosterol and zymosterol uptake rates of 5.92

dx

dt
Sv= ( . )Eq 5

γ i
i

dZ

db
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× 10-5 and 1.27 × 10-4 mmol/gDCW/hr, respectively, were
used for the calculation at OUR = 0). The simulations
were then re-run with a fixed glucose uptake rate, oxygen
uptake rate, and growth rate to determine the maximum
and minimum secretion rates of each metabolite with a
shadow price equal to zero.
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