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Abstract
Background: Much of the microarray data published at Stanford is based on mouse and human
arrays produced under controlled and monitored conditions at the Brown and Botstein
laboratories and at the Stanford Functional Genomics Facility (SFGF). Nevertheless, as large
datasets based on the Stanford Human array began to accumulate, a small but significant number
of discrepancies were detected that required a serious attempt to track down the original source
of error. Due to a controlled process environment, sufficient data was available to accurately track
the entire process leading to up to the final expression data. In this paper, we describe our
statistical methods to detect the inconsistencies in microarray data that arise from process errors,
and discuss our technique to locate and fix these errors.

Results: To date, the Brown and Botstein laboratories and the Stanford Functional Genomics
Facility have together produced 40,000 large-scale (10–50,000 feature) cDNA microarrays. By
applying the heuristic described here, we have been able to check most of these arrays for
misidentified features, and have been able to confidently apply fixes to the data where needed. Out
of the 265 million features checked in our database, problems were detected and corrected on 1.3
million of them.

Conclusion: Process errors in any genome scale high throughput production regime can lead to
subsequent errors in data analysis. We show the value of tracking multi-step high throughput
operations by using this knowledge to detect and correct misidentified data on gene expression
microarrays.

Background
Expression microarrays, with the capability to measure the
mRNA expression level of tens of thousands of genes

simultaneously, have found broad application in both
clinical and basic research [1-7]. With the generation of
large data sets from microarray experiments, statistical
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methods are needed to extract useful information. Many
methods have had specific implementations written for
the analysis of gene expression data, such as various forms
of clustering, self ordered maps, singular value decompo-
sition and significance analysis [8-13]. However, these
methods all rely on the assumption that there are no gross
process errors in the original data. Previous analyses of
systematic errors in microarray data have focused on
problems at the level of sample preparation, labelling, or
hybridization. This report focuses on steps in the microar-
ray production process prior to hybridization that may
ultimately result in errors in the underlying data. Much of
the microarray data published at Stanford is based on
mouse and human arrays produced under controlled and
monitored conditions at the Brown and Botstein labora-
tories and at the Stanford Functional Genomics Facility
(SFGF). Nevertheless, as large datasets based on the Stan-
ford Human array began to accumulate, a small but signif-
icant number of discrepancies were detected that required
a serious attempt to track down the original source of
error. Due to a controlled process environment, sufficient
data was available to accurately track the entire process
leading to up to the final expression data. In this paper, we
describe our statistical methods to detect the inconsisten-
cies in microarray data that arise from process errors, and
discuss our technique to locate and fix these errors. We are
able to fix those errors that originate at the level of any
microtiter plate used during a multi-step microarray pro-
duction process. The major process fail points in cDNA
microarray production at Stanford are shown in Table 1.
It is at these points that misidentifications can occur.
Other types of processes resulting in expression data will
have their own possible fail points. Regardless of the par-
ticular process, for the sake of subsequent error checking
it is important to track every instance where samples have
moved from one microtiter plate to another, or from
microtiter plate to microarray. Our process involves four
such reallocations: From an archival 96-well block to a 96-
well growth block, then to a 96-well PCR plate, then to
four 384-well print plates and finally to 250 10–40 thou-
sand element microarrays. Even in highly automated bar-
coded and vision controlled systems the possibility exists
that plates might become swapped, skipped, misordered,
or rotated by 180 degrees during one of the process steps.
Our own process is fairly well automated, but like most
academic and commercial efforts our process involves
hand loading of robots. For example in our case, during
the transfer from 96 to 384-well format, it is possible to
accidentally rotate a 96-well plate or misorder the 96 or
384-well plates. During printing a 384-well plate might be
accidentally skipped, swapped or printed in the wrong
orientation (rotated by 180 degrees). Even with the best
engineering controls to prevent plate rotations, the poten-
tial exists for misidentified plates. Inconsistencies in our
data were first detected both by visual inspection of

microarray data as well as the appearance of anomalously
large first components in singular value decomposition
analyses of Ovarian Tumour data [6] traced to different
production batches of arrays. Our algorithm was devel-
oped to detect and repair these types of errors, using the
similarities in expression levels between sets of spots from
different microarrays. The algorithm was used to check all
of the microarray data in our database for which there was
a sufficient process record. The general idea, illustrated in
Figure 1, is as follows: Partition the microarray expression
data from a single microarray into sets based on the vari-
ous microtiter plates the samples have been in throughout
their process history. For example, at Stanford we keep our
process fairly simple, with a minimum of plate changes,
so our spotting material can be said to have existed in
either 96 well or 384-well format during its entire process
history. Thus, we partition the data into sets correspond-
ing to the 96 or 384-well plate history. Next, an expression
vector for each element of the partition (each plate) based
on absolute (not relative) expression levels is formed and
compared to every other expression vector from every
other plate on many other array batches. A rank matrix of
correlation coefficients is formed which should be close to
unity on the diagonal and far from unity off the diagonal.
Non-unitary diagonal elements indicate problems with
that plate comparison. A rank comparison of the best cor-
relations can be made to find swapped plates. The algo-
rithm can be repeated assuming a rotated plate to check to
see if the discrepancy can be attributed to a plate rotation.
It should be noted that in cases where no process error is
indicated, the method can still indicate the presence of
problem plates, print batches or PCR rounds that should
be flagged for particular attention in downstream analy-
ses. Our algorithm (named MuFu for "MixupFixup") is for
arrays produced in the Brown and Botstein laboratories
and the Stanford Functional Genomics Facility. However,
the ideas are general and can be applied to many other
types of high throughput operations. In most of the
research studies using our human microarray, a common
reference [14] is compared against a tumour or tissue
specimen. The common reference is usually labelled with
the Cy3 dye, pseudo-colour green in most visualizations
of the data, while the sample specimens are labelled with
Cy5 dye, pseudo-colour red. Subtle corrections due to
background subtraction issues and normalization are not
important for this analysis. Because a common reference
is used in a large number of hybridization experiments at
Stanford, all of the Cy3 intensities (or Cy5 in some cases)
across various kinds of experiments are comparable. We
measure the similarities of two sets of spots by taking the
correlations between the common reference intensities of
these two sets of spots. For those experiments that do not
use common reference, the comparison is made using
experiments with similar samples in either the Cy3 or Cy5
channel.
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Results
Finding misidentified data
This example is from the analysis of experiments from an
ovarian tumor dataset[6] that first led us to develop
MuFu. Here, it was noticed that similar tissues were not
clustering across batch boundaries as expected. Also, an
anomalously large first component in a singular value
decomposition analysis[9] pointed to problems at the
array batch level. After some detective work, visual inspec-
tion uncovered anomalies in certain print plates as seen in
Figure 2. We were able to isolate the problem to distinct
sets of 96-well plates that had been swapped during an
upstream process step, probably during the transfer from
96-well plates to 384-well plates. Not wishing to go
through this sort of process again and again, MuFu was
developed to more succinctly recapitulate this finding and
apply it to all data.

With MuFu, a check using a 384-well plate partition of the
data shows a discrepancy but no obvious plate rotation or
misidentification. We then repartition and repeat our tests
at the 96-well plate level. The results are shown in Table
2a where we show a 12 way pair wise comparison. The
first four comparisons are for batches whose print plates

are made from the first PCR round. The middle four com-
pare the first PCR round to the second, and the last four
compare batches from the second PCR round.
Mismatches are evident in the middle set of comparisons.
From Table 2b we see that the distance matrix identifies a
match between plate h and plate i and plate n and plate o
for all four comparisons of the first PCR round to the
second.

In all four comparisons, the two distributions resolve
themselves well, as can be seen in Figure 3, leading to the
conclusion that h and i are swapped, and n and o are
swapped, most likely in the plates from the first PCR
round. The ambiguity is broken by sequencing a small
sampling of wells, which confirms that the misidentifica-
tions are in the print plates from the first round of PCR,
and not the second. In Figure 4 we show the effect on the
Ovarian data after the correction has been applied. Also,
in Figure 2 we show how, via visual inspection of the
actual spots on an array, one can verify that the fix has
properly reorganized the data. The figure shows spots
from the four different affected 96-well plates before and
after the fix is applied.

Table 1: Process steps The process fail points for cDNA based microarray production. Steps shown in italics are accessible to the testing 
methods outlined here. Earlier steps may require sequencing to test. The process ID is used to identify steps where the problems, if 
any, are found.

Process ID Problem Type Note

-999 Unidentified
0.0 Source.General persists across all arrays at clone, 96 level
0.1 Source.Contamination
0.2 Source.MisID
1.0 Prep.General persists across all arrays at clone, 96 level
1.1 Prep.Contamination
1.2 Prep.MisID
1.2.1 Prep.MisID.OrderError
1.2.2 Prep.MisID.Rot
1.3 Prep.Fail
2.0 PCR.General persists for 1 PCR round at 96 level
2.1 PCR.Contamination
2.2 PCR.MisID
2.3 PCR.Fail
2.4 PCR.Cleanup
3.0 Replate.General persists for 1 PCR round at 96 level
3.1 Replate.Contamination
3.2 Replate.MisID
3.2.1 Replate.MisID.OrderError
3.2.2 Replate.MisID.96Rot
3.2.3 Replate.MisID.384Rot
4.0 Print.General persists for 1 print run batch at 384 level
4.1 Print.Contamination
4.2 Print.MisID
4.2.1 Print.MisID.OrderError
4.2.2 Print.MisID.Rot
4.3 Print.Fail dried out plate, too concentrated, too weak etc.
5.0 Scan.General anything after array production
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Finding a 384-well plate rotation
We compare four arrays A1, A2, A3 and A4 from a partic-
ular print production batch A to four arrays B, C, D and E
from four other distinct print production batches. The
total number of 384 well microtiter plates in print batch
A is 113. The results of the plate rotation test are shown in
Table 3a. Here we see plate p, identified in both the rank
and rotated-rank matrices across print batches is a clear
candidate for a plate rotation. The data from the distance
matrix comparisons is shown in Table 3b. In Figure 5 we
show the distributions of the diagonal elements of the dis-
tance matrix and the rotated-distance matrix. These
distributions are well resolved and allow us to easily dis-
tinguish data due to a plate rotation from noisy data.

Finding a misidentified 384-well plate
In this example we compare four arrays A1, A2, A3 and A4
from a particular print batch A to four other arrays B, C, D
and E from four other distinct print batches. As seen in
Table 4a no plate is found to be a candidate for plate rota-
tion, however we do find that plate q has a poor self-
match comparison. Indeed, when the distance matrix is
examined, we see the plate matches instead plate r across
the four array comparisons. We check the three criteria for
plate misidentification and summarize these data in Table
4b. In Figure 6 we show the distributions of the match and
mismatch distributions. These distributions are quite
distinct and give us confidence that we can distinguish the
proper match from an accidental match.

Discussion
Out of the 265 million features checked in our database
using MuFu, problems were detected and corrected on 1.3

million of them. That we were able to find and correct
both previously known and unknown problems gives us
confidence in the algorithm. That so few problems existed
overall (0.5%) reassures us as to the robustness of our
process in general.

Microarray data, by its sheer volume, presents interesting
laboratory information management challenges. The data
arrive at the investigators desk after a significant number
of steps. We have found that the better you track produc-
tion, quality control, and experimental steps, the better
chance you have of uncovering the reasons behind dis-
crepancies that may appear in the data. Often, statistical
analyses look only at the data presented as final expres-
sion values or ratios, without taking into account relevant
quality control data. In our effort to understand our errors
and the source of large systematic discrepancies in our
data we have found the MuFu algorithm a useful test of
certain classes of process errors, and as a check for general
problems with specific process steps or microtiter plates.
We use MuFu to find, verify and fix problems that can be
attributed to an error in plate processing. We also flag
plates for which we can find no specific problem but we
see yield inconsistent results. These may be plates that, at
some point in the process, had a problem (cross
contamination, a PCR problem) that was not detected
while the process step was being carried out. The fact that
we can test the data, using our standard quality control
hybridizations, for these types of quality issues is reassur-
ing and has helped us gain confidence in our data.

Obviously, there are many other classes of error that creep
into microarray data. Aside from the gross process errors
that are amenable to detection, as we have described here,

MuFu flowchartFigure 1
MuFu flowchart. Flow of the MuFu algorithm. Looping and 
re-partitions of the data are not shown.

Ovarian tumour dataFigure 2
Ovarian tumour data. Visual inspection of the anomalous 
spots from the Ovarian tumor data before and after applying 
MuFu. In each case the top row shows that the feature align-
ment is inconsistent with the contents of the plate. In the 
bottom row features group together as expected.
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there is also a large class of more subtle systematic errors
that can contribute to the overall systematic error on the
expression ratio measurement. Isolating the source of
these individual errors is sometimes quite difficult. Prop-
erties of the microarray feature such as spot size, shape
and uniformity can contribute, but the majority of sys-
tematic errors are introduced at the time the experiment is
performed. Slide post processing, RNA quality, labelling,
hybridization and washing all lend the possibility for

introducing systematic errors. Improvements in protocols
and hybridization apparatus have helped reduce these
errors and should continue to do so in the future. As these
sources of error are identified and eliminated, expression
microarrays will continue to provide progressively more
sensitive measures of gene expression.

Table 2: Test for 96 well plate handling error. a) In this table we see that the middle bank of comparisons indicates a discrepancy 
between data from the first PCR run and the second, at the 96-well plate level. b) A check of the distance matrix results show that the 
swapped plates are h and i in one case, and n and o in the other. Bold indicates P-value = 0.3, italic indicates P-values between 1.0E-03 
and 1.0E-04, while regular font indicates P-values < 1.0E-04.

a) R_{m, m}

PCR Round 1 vs 1 PCR Round 1 vs 2 PCR Round 2 vs 2

Plates A1 v A2 A2 v A3 A3 v A4 A4 v A5 A2 v B1 A3 v B2 A4 v B3 A5 v B4 B1 v B2 B5 v B3 B1 v B4 B5 v B4

{a, a} 1 1 1 1 1 1 1 2 1 1 2 1
{b, b} 1 1 1 1 1 1 1 1 7 1 3 1
{c, c} 1 1 1 1 1 1 1 1 1 1 1 1
{d, d} 2 1 1 1 1 1 5 9 1 1 1 1
{e, e} 1 1 1 1 1 1 1 2 1 1 2 1
{f, f} 1 1 1 1 1 1 1 1 1 1 1 1
{g, g} 3 1 1 1 1 1 1 1 1 2 1 1
{h, h} 1 1 1 1 343 322 408 294 1 1 1 1
{i, i} 2 1 1 1 421 290 402 359 1 1 1 1
{j, j} 1 1 1 1 2 1 1 1 2 1 4 1
{k, k} 1 1 1 1 2 1 1 1 1 1 1 1
{l, l} 1 1 1 1 1 2 1 1 1 1 1 2
{m, m} 1 1 1 1 1 1 1 1 1 1 1 1
{n, n} 1 1 1 1 255 141 20 167 1 1 1 1
{o, o} 1 1 1 1 330 248 357 277 3 1 5 6
{p, p} 1 1 1 1 1 3 1 1 3 2 1 1
{q, q} 1 1 1 1 4 3 3 2 1 1 1 1
{r, r} 1 1 1 1 1 1 1 5 1 1 5 1
{s, s} 3 1 1 1 1 1 1 1 1 1 1 1
{t, t} 1 1 1 1 1 1 1 1 1 1 1 1
{u, u} 1 1 1 1 1 1 1 1 1 1 1 1
{v, v} 1 1 1 1 1 1 7 1 1 1 1 1
{w, w} 2 1 1 1 1 16 1 2 1 1 1 1

b) A2 v B1 A3 v B2 A4 v B3 A5 v B4

D_{mm} D_{mn} D_{mm} D_{mn} D_{mm} D_{mn} D_{mm} D_{mn}

MEAN 0.33 0.97 0.34 0.89 0.44 0.98 0.37 0.96
SD 0.2 0.11 0.2 0.13 0.21 0.11 0.21 0.12
{h, h} 0.99 1.02 1.07 1
{i, i} 1.09 1 1.07 1.06
{h, i} 0.22 0.09 0.33 0.31
{i, h} 0.28 0.07 0.11 0.14
{n, n} 0.98 0.91 0.85 0.92
{o, o} 1.01 1.02 1.07 1.02
{n, o} 0.1 0.51 0.45 0.52
{o, n} 0.04 0.17 0.11 0.05
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Conclusions
Process errors in any genome scale high throughput pro-
duction regime can lead to subsequent errors in data anal-
ysis. We have shown the value of tracking multi-step high
throughput operations by using this knowledge to detect
and correct misidentified data on gene expression micro-
arrays. We generalized our procedure using a simple heu-
ristic, which found and fixed several problems with the
proper assignment of gene identifier with physical micro-
array feature. We found thirteen print runs (9K arrays)
that had four plates mistracked, six print runs with single
384 plate rotations, and one instance of a plate rotation at
the 96 well plate level. One skipped plate was detected, as
well as one plate printed twice. Out of the 265 million fea-
tures checked in our database using MuFu, problems were
detected and corrected on 1.3 million of them. That we
were able to find and correct both previously known and
unknown problems gives us confidence in the algorithm.
That so few problems existed overall (0.5%) reassures us
as to the robustness of our process in general. A list of
corrected arrays can be found at http://www.microar
ray.org/mufu.

Methods
We follow the simple heuristic outlined here. The flow-
chart for the program is shown in Figure 1. In the figure
we do not include additional loops needed to repartition
the data in different ways for different scenarios.

Data partitioning
1. Begin by partitioning the gene expression data on an
array into subsets according to plate. Other partitions can
also be made but the plate level partition is the most
useful for our purposes. Let Aij be the intensity measure-
ments of array A, subset i and gene index j. The measure-
ments are usually of the channel (Cy3 or Cy5) used as a
common reference. For example, if we partition the data
by the 384-well plate each feature once occupied at some
point in its process history, A is the array id, i is the plate
id, and j is the well index between 1–384. Let Ai be the vec-
tor (Ai1,...,Ai384). In our vernacular this is the 384-well
plate expression vector for plate i. Let Bij andBi be the sim-
ilar definitions for array B. We also reverse the data vectors
from array A and label it Ai' . In our notation, Ai' =

Table 3: Test for rotated plates. a) Plate rotation results from the rank matrices R and R' . The flagged comparisons indicate a plate 
rotation for plate p. b) Plate rotation distance matrix comparison. The data meet the criteria for a plate rotation.

a) A1 v B A2 v C A3 v D A4 v E

Plates R_{mm} R'_{mm} R_{mm} R'_{mm} R_{mm} R'_{mm} R_{mm} R'_{mm}

{i, i} 1 102 1 95 1 82 1 93
{j, j} 1 18 1 102 1 16 1 64
{k, k} 1 52 1 99 1 102 1 41
{l, l} 6 108 3 35 9 76 1 22
{m, m} 1 51 1 79 1 85 1 68
{n, n} 1 14 1 35 1 41 1 93
{o, o} 1 92 1 92 1 102 1 76
{p, p} 78 1 48 1 46 1 65 1
{q, q} 1 117 1 96 1 87 1 111
{r, r} 1 118 1 110 1 115 1 112
{s, s} 1 116 1 108 1 109 1 113
{t, t} 1 69 1 93 3 20 1 103
{u, u} 1 116 1 103 1 72 1 84
{v, v} 1 83 1 104 1 85 1 64

b) A1 v B A2 v C A3 v D A4 v E

D_{mm} D'_{mm} D_{mm} D'_{mm} D_{mm} D'_{mm} D_{mm} D'_{mm}

MEAN 0.26 0.96 0.23 0.88 0.19 0.81 0.21 0.88
SD 0.14 0.1 0.14 0.14 0.1 0.17 0.13 0.14
{pp} 0.95 0.84 0.85 0.97
{pp} 0.21 0.14 0.23 0.24
P-value 4.10E-07 3.20E-14 6.60E-06 6.30E-08 2.10E-11 3.20E-04 2.50E-09 2.40E-06
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(Ai384,...,Ai1) is the expression vector for a plate rotated by
180°.

2. Generate a distance matrix {Dmn, 1 ≤ m, n ≤ N} in which
each element Dmn = 1 - corr(Am, Bn). For the 384-well plate

example, Am is the 384-well expression vector for plate m
on array A, Bn is the 384-well expression vector for plate n
on array B, and Dmn is the distance between the two vec-
tors in this 384 dimensional space. We also generate the
corresponding rotated-distance matrix {D'mn, 1 ≤ m, n ≤

Match, mismatch distance distributionsFigure 3
Match, mismatch distance distributions. Good separation between match and mismatch distance distributions at the 96-
well plate level lends confidence to our ability to discriminate between chance matches and actual matches. The green bars 
refer to the distance distributions of matched plates and the red bars for mis-matched plates.
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Ovarian tumour clustersFigure 4
Ovarian tumour clusters. In Ovarian tumor data it was noticed that similar experiments were not clustering as expected 
(upper cluster diagram). Using MuFu we were able to isolate the problem to a distinct set of 96-well plates that had been 
swapped during an upstream process step, probably during the transfer from 96-well plates to 384-well plates. The samples 
cluster together as expected after correction (lower cluster diagram).
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N} for the plate rotation case, in which each element D'mn
= 1 - corr(A'm, Bn). We tried several correlation functions
including Euclidean and Pearson but found the Pearson
to be best suited to this task.

3. Generate a rank matrix {Rmn, 1 ≤ m, n ≤ N} by convert-
ing the distances to ranks such that the row m in the rank
matrix is the order statistic of the row m of the distance
matrix. We also generate the corresponding rotated-rank
matrix {R'mn} for {D'mn}. Ideally, for the case where we
are comparing identical subsets from two different arrays
we expect the diagonal elements of the rank matrix to all
be equal to one, which means that each subset of genes
from the first array matches its corresponding subset in
the second array the best. In general, due to the statistical

variation in array data, the diagonal elements are not all
equal to one, even if there are no misidentification errors.
The examples show that this does not hinder us from
making a clear distinction between real problems in the
data and statistical fluctuations.

Identification of rotated plates
A plate rotation may have an affect on a single microarray
batch if it occurs during array printing or may persist
across many print batches if it happens during a 96-well
(PCR) process step. In any case, the mismatch will persist
across many array comparisons. To check for plate rota-
tions in a print batch, we compare an array sample (A1,
A2, A3, A4 in the example) from the print batch in ques-
tion to a control sample of arrays (B, C, D, E in the exam-

Plate rotation distance comparisonFigure 5
Plate rotation distance comparison. Histogram of the distance comparisons for the plate rotated and not rotated cases. 
The distributions are well separated, where the green bars refer to the distance distributions for non-rotated plates and the 
red bars for rotated plates.
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ple) selected from several distinct print batches. By
comparing the rank R, and rotated-rank R', matrix assign-
ments for comparisons across array batch boundaries we
can quickly flag possible rotated plates. A visualization of
this test is shown in Table 3a. In the table we have flagged
the top 5% of all ranks in the rotated column and the bot-
tom 95% in the unrotated column. If the flags agree across
all comparisons, we have a strong indication that a plate
rotation has occurred. If we see a flag raised in this test,
but we cannot attribute it to a plate rotation, this may
indicate a different class of process error. In particular, if
the flag is raised for all pairwise comparisons of the batch
being tested (in this case batch A) against all of the control
batches (in this case batches B, C, D and E) in the non-
rotated case, we conclude that the corresponding flagged

plate or partition from batch A may be misidentified.
Note that in the limit that the partitions of the array are all
uniform in expression ratios there is a 5% probability of a
spurious flag. For this reason it is better to use high qual-
ity, highly variegated control arrays for such tests. Next, to
better resolve ambiguous cases and to check our rank
matrix determination we use the distance rather than rank
matrix. If, for example, a plate x is to be considered a
rotated plate, the following three criteria must be met.

1. D'xx <Dxx. The rotated-distance must be less than the
non-rotated distance.

Misidentification distance comparisonFigure 6
Misidentification distance comparison. Misidentified plate distance histogram showing good separation between the 
match and mismatch distance distributions. The green bars refer to the distance distributions of matched plates and the red 
bars for mis-matched plates.
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2. D'xx is close to the mean of the distribution, {Dmm, 1 ≤
m ≤ N}, and Dxx is close to the mean of the distribution
{D'mm, 1 ≤ m ≤ N}.

3. D'xx is an outlier of the distribution {D'mm, 1 ≤ m ≤ N},
and Dxx is an outlier of the distribution {Dmm, 1 ≤ m ≤ N}.

The second and third criteria above are valid if the distri-
butions of {D'mm, 1 ≤ m ≤ N} and {Dmm, 1 ≤ m ≤ N} sep-
arate well. In Figure 5 we showed that our data support
this model.

Finding misidentified plates
If a plate has consistently poor self-match rankings and a
plate rotation has been excluded as a possible source of
error, this next step tests for a plate misidentification.
From the rank matrix we can identify the best alternative
match. We test a suspect plate x for a match with plate y
with the following criteria:

1. Dxy <Dxx. The mismatch distance is shorter than the
match distance.

2. Dxy is close to the mean of the distribution {Dmm, 1 ≤ m
≤ N}, and Dxx is close to the mean of the distribution
{Dmn, 1 ≤ m ≠ n ≤ N}.

3. Dxx is an outlier of the distribution {Dmm, 1 ≤ m ≤ N},
and Dxy is an outlier of the distribution {Dmn, 1 ≤ m ≠ n ≤
N}.

Again, the second and third criteria above are valid if the
distributions of {Dmm, 1 ≤ m ≤ N} and {Dmn, 1 ≤ m ≠ n ≤
N} are well resolved.
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IT, MF developed the heuristic and carried out analysis
and implementation.

MS brought this problem to our attention and provided
test data.

MD provided advice and checked our work with an alter-
native technique.

All authors read and approved the final manuscript.

Table 4: Test for swapped plates. a) Plate r is seen here to have a problem, but from the table we see that it is most certainly not a plate 
rotation. b) A check of the distance matrix shows the {r, q} comparison to be quite good and satisfies the criteria for a match, indicating 
that plates r and q have been accidentally swapped.

a) A1 v B A2 v C A3 v D A4 v E

Plates R_{mm} R'_{mm} R_{mm} R'_{mm} R_{mm} R'_{mm} R_{mm} R'_{mm}

{i, i} 1 82 1 48 1 107 1 76
{j, j} 1 45 1 87 1 87 1 89
{k, k} 1 18 1 45 1 63 1 15
{l, l} 1 85 1 106 1 103 1 93
{m, m} 1 30 1 49 1 53 1 37
{n, n} 1 115 1 113 1 37 1 102
{o, o} 1 24 1 64 1 82 1 100
{p, p} 1 110 1 102 1 104 1 93
{q, q} 1 118 1 111 1 110 1 91
{r, r} 77 7 48 12 51 22 16 23
{s, s} 1 55 1 44 1 90 1 88
{t, t} 1 115 1 101 1 110 1 99
{u, u} 1 118 1 93 1 74 1 95
{v, v} 1 15 1 13 1 29 1 71

b) A1 v B A2 v C A3 v D A4 v E

D_{mm} D_{mn} D_{mm} D_{mn} D_{mm} D_{mn} D_{mm} D_{mn}

MEAN 0.19 0.93 0.25 0.94 0.28 0.95 0.2 0.81
SD 0.14 0.07 0.19 0.07 0.17 0.07 0.16 0.1
{rq} 0.3 0.26 0.25 0.34
{rr} 0.97 0.95 0.98 0.72
P-value 1.30E-08 0 1.10E-04 0 1.90E-05 0 5.80E-04 1.30E-06
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