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Abstract
Background: The recent development of array based comparative genomic hybridization (CGH)
technology provides improved resolution for detection of genomic DNA copy number alterations.
In array CGH, generating spotting solution is a multi-step process where bacterial artificial
chromosome (BAC) clones are converted to replenishable PCR amplified fragments pools (AFP)
for use as spotting solution in a microarray format on glass substrate. With completion of the
human and mouse genome sequencing, large BAC clone sets providing complete genome coverage
are available for construction of whole genome BAC arrays. Currently, Southern hybridization,
fluorescent in-situ hybridization (FISH), and BAC end sequencing methods are commonly used to
identify the initial BAC clone but not the end product used for spotting arrays. The AFP sequencing
technique described in this study is a novel method designed to verify the identity of array spotting
solution in a high throughput manner.

Results: We show here that Southern hybridization, FISH, and AFP sequencing can be used to
verify the identity of final spotting solutions using less than 10% of the AFP product. Single pass AFP
sequencing identified over half of the 960 AFPs analyzed. Moreover, using two vector primers
approximately 90% of the AFP spotting solutions can be identified.

Conclusions: In this feasibility study we demonstrate that current methods for identifying initial
BAC clones can be adapted to verify the identity of AFP spotting solutions used in printing arrays.
Of these methods, AFP sequencing proves to be the most efficient for large scale identification of
spotting solution in a high throughput manner.

Background
Comparative genomic hybridization (CGH) is a tech-
nique used to determine regional DNA copy number
changes across an entire genome [1]. This is accomplished
by co-hybridizing differentially labeled genomic sample
and reference DNA to a metaphase chromosome spread of
cultured cells. Analysis of the metaphase chromosomes

will reveal regions of amplification or deletion in the sam-
ple DNA [2]. This technique is limited to the resolution at
which the amplifications and deletions can be detected of
approximately 10–20 Mb [1]. The recent development of
array based CGH technology has improved the resolution
of genomic profiling [3]. This involves the substitution of
the target DNA from metaphase chromosomes to selected
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DNA segments spotted onto a microarray, where the dis-
tance between target segments determines the resolution.
Current methods for creating CGH arrays include spotting
whole bacterial artificial chromosomes (BAC) DNA,
degenerate oligonucleotide primer (DOP) PCR deriva-
tives of BAC DNA, and amplified fragment pools (AFP) of
BAC DNA generated by linker mediated (LM) PCR [4-6].
These procedures aim at producing large quantities of
DNA from a library of clones, generating spotting solu-
tions with high DNA concentration.

As the printing of microarrays using whole BAC DNA
requires large-scale bacterial culturing and is therefore too
labour intensive for projects involving large clone sets.
Amplification of BAC DNA by PCR circumvents this limi-
tation. DOP PCR is designed to amplify representative
fragments of the BAC DNA with degenerate primers in a
single step. LMPCR requires restriction enzyme digestion
and linker ligation prior to PCR amplification and is more
commonly used (Fig. 1A) as it allows linear amplification.
Typically, BAC DNA or its amplified derivative is precipi-
tated and resuspended in spotting solvent prior to array
printing.

Currently the highest density genome wide CGH array
consist of 2460 LMPCR synthesized AFP spaced at 1.4 Mb
intervals throughout the human genome [10]. However,
with the completion of the human and mouse genome
sequencing, large clone sets (tens of thousands of BAC
clones) providing complete genome coverage are availa-
ble for construction of higher resolution arrays [11-14].
Since generating spotting solution from the initial BAC
DNA requires multiple liquid transfer steps it is necessary
to verify that the final spotting solution is representative
of the initial clone. The construction of whole genome
arrays necessitates the development of high throughput
methods suitable for verification of AFPs prior to spotting
arrays.

DNA restriction digest fingerprint analysis, fluorescent in-
situ hybridization (FISH) mapping, and BAC end
sequencing are commonly used to verify the identity and
genomic location of BAC clones [7-9]. However, these
clone verification procedures are applied to the BAC DNA
prior to multi-step spotting solution synthesis.

Here we demonstrate that these commonly used methods
applicable for identification of the initial BAC clone DNA
can be adapted for use in verifying AFP just prior to spot-
ting the array.

Results and discussion
Southern hybridization, FISH mapping, and modified
BAC end sequencing are proven methods for confirming

Flow diagram of analysis of amplified fragment pool (AFP)Figure 1
Flow diagram of analysis of amplified fragment pool (AFP). 
(A) Multistep process for the conversion of BAC DNA to 
AFP. (B) Target fragments for specific primer extension for 
AFP analysis.
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clone identity and position in construction of array CGH.
In this study we determined if these methods could be
applied to verify the amplified fragment pools derived
from BAC DNA. The merits of each method are summa-
rized in Table 1.

Southern hybridization
Hybridization of the AFP to the HindIII digested BAC
clone allowed accurate identification (Fig. 2). For exam-
ple, the AFP derived from the BAC clone RP11-104F13
hybridized to the correct BAC detecting all HindIII frag-
ments showing complete representation but did not
hybridize to the RP11-104F14, excluding the common
vector bands (Fig. 2C). However, in the absence of Cot-1
DNA the AFP cross hybridized to multiple fragments on
the wrong clone digest due to the presence of repetitive
elements (Fig. 2B). Southern analysis therefore requires
the presence of Cot-1 DNA increasing the cost associated
with this assay.

FISH mapping
An AFP can be labeled as a probe for fluorescent in situ
hybridization. Metaphase FISH analysis allowed mapping
of the AFP to a chromosomal region but did not provide
positive identification (Fig. 3). This raises uncertainty
when verifying a large clone set since many AFPs will map
to the same genomic location within the resolution of
FISH on metaphase chromosomes. One concern is if the
BAC contains elements which map to multiple areas in
the genome, a BAC may hybridize to multiple chromo-
somal regions even when Cot-1 blocked.

These methods are suitable for sampling AFPs derived
from individual BAC clones. Although multiple FISH or
Southern analysis can be performed in parallel, these
approaches are not easily adapted for high throughput
analysis (Table 1).

AFP sequencing
BAC end sequencing can be processed in a 96 well format
but requires purified DNA template. AFPs are typically
precipitated with ethanol and resuspended directly in

spotting solvent (i.e., 20% DMSO, 50% formamide),
which will inhibit the sequencing reaction. In this study
we demonstrate that modifications to the Applied Biosys-
tems sequencing protocol allow unpurified AFPs to serve
as templates for sequence identification (Fig. 1B). To com-
pensate for sub-optimal conditions due to carry over of
unpurified material we increased the template quantity to
20 fmol from the minimum recommended of 2 fmol, and
increased the number of sequencing cycles from the typi-
cal 35 to 85. Reactions performed using less than 20 fmol
or fewer than 85 cycles did not yield sufficient signal for
analysis (data not shown). These modifications may have
been necessary due to the carry over of primers and
reagents from the previous PCR reactions (Fig. 1A) and
the complexity of the DNA mixture in the AFP.

To demonstrate the utility of this method we randomly
selected 960 clones from the RPCI-11 or RPCI-13 human
BAC libraries [15,16] After LMPCR amplification (see
methods), 4% of the total unpurified AFP were sequenced
using the T7 primer. Half (468) of the AFP yielded
sequences and 448 of these were matched to specific BAC
clone sequences. Twenty matched repetitive sequences,
representing multiple GeneBank entries.

Since the AFPs were generated via a LMPCR protocol
involving MseI restriction digested BAC DNA; some of the
failed sequence reads may be attributed to the presence of
an MseI site downstream of the primer sequence that
would truncate primer extension (Fig. 4). To obtain a usa-
ble sequence return, the MseI restriction site must be a sig-
nificant distance from the sequencing primer, preferably
greater than 50 nucleotides before MseI recognizes the
sequence TTAA.

To determine if the probability of identifying the LMPCR
product increased with use of the Sp6 primer, 83 AFPs
were sequenced. Of the 83 AFP sequenced, 64 returned
usable sequences and 60 of these were matched to a spe-
cific BAC. Four matched repetitive sequences, represent-
ing multiple GeneBank entries. Combining the results

Table 1: Comparison of three techniques for AFP identification.

MERITS FISH ANALYSIS SOUTHERN ANALYSIS BAC END SEQUENCING

Chromosomal localization Genomic position No Genomic position
Verification of AFP to original BAC No Yes Yes
Representation of original BAC in AFP No Yes No
Relative cost per assay Expensive Moderately expensive Inexpensive
Time 3+ Days 3 days 4 hours
Other Requires normal cell line for 

metaphase
Requires 200 ng of digested 

BAC DNA
Can be automated for high 

throughput analysis
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from the Sp6 and T7 sequence reads, it was possible to
identify 76 of the 83 AFPs (91%).

Conclusions
Since PCR amplification of large clone sets are typically
processed in a 96 well format, a method for discovering
any plate exchanges or mislabeling is essential for quality
control of the final AFP set. Of the three methods demon-
strated, all identified AFP produced for spotting DNA
microarrays. High throughput AFP sequencing will allow
identification of 91% of the clones in a clone set when
using both the Sp6 and T7 primers. Sequencing of three
clones from a plate with the T7 primer allows an 85%
determination of plate identity while using Sp6 or both
allows 97% and 99.9%, respectively (Fig. 5). For large
clone sets the sequencing of all AFPs is desirable but may
be prohibitive due to the significant cost associated with
large scale sequencing. As a cost effective alternative, we
recommend the sequencing of three clones per 96 well

plate for both forward and reverse BAC primers. Direct
sequencing of AFPs verified all 96 well plates in our test
set. Sequencing of the spotting solution rather than the
AFPs is possible only if the spotting solution solvent does
not interfere with the sequencing reaction.

The ability to sequence unrefined PCR products and the
requirement of only 4% of the AFP makes direct end
sequencing of AFP an effective means of verifying array
spotting solution.

Methods
Linker mediated PCR amplification of BAC DNA
Fifty nanograms of each BAC DNA sample was transferred
to a 96 well plate and digested for eight hours with 5 U of
MseI (New England Biolabs) in a 40 µl reaction. The
reaction mixture was inactivated at 65°C for 10 min. Ten
percent of the product was transferred to a new plate and
ligated to linkers. The ligation mixture consisted of the
digested DNA, 0.2 µM primers each of MseI long (5' AGT-
GGGATTCCGCATGCTAGT 3') and MseI short (5'
TAACTAGCATCG 3') (Alpha DNA, Quebec) and 80 U of
T4 DNA ligase in NEB ligase buffer (New England
Biolabs). The primers were allowed to anneal for 5 min at
room temperature before addition to the ligation mix. The
ligation was performed overnight (12–16 h) at 16°C.

A 2.5 µl aliquot of the 40 µl ligation mixture was ampli-
fied in a 50 µl PCR reaction. The reaction mixture
contained the linker-ligated DNA template, 8 mM MgCl2,
1 mM each dNTP's (Promega), 0.4 µM MseI longprimer,
and 5 U of Taq polymerase (Promega, storage buffer B) in
Promega PCR buffer. After a 3 min 95°C denaturation
step, the PCR cycled at 95°C for 1 min, 55°C for 1 min,
and 72°C for 3 min, for 30 cycles. A 10 min extension at
72°C completed the protocol. The second round of PCR
was initiated using 0.25 µl of the PCR product under the
same conditions for 35 cycles. After ethanol precipitation,
the final concentration of DNA was quantified using a
ND-1000 spectrophotometer (Nanodrop, Delaware).
Typical yield for LMPCR was 40–50 µg.

Sequencing of AFP
To determine the sequence of each amplified fragment
pool, 2 µl of AFP was combined with 4 µl Big Dye (Perkin
Elmer), 0.32 pmol T7 primer (5' TAATACGACTCACTAT-
AGG 3') or SP6 (5' ATTTAGGTGACACTATAG 3') (Alpha
DNA) in a 10 µl final volume. After a 1 min initial dena-
turation step at 95°C, the reaction mixture was subjected
to 85 cycles of 95°C 15 s, 50°C for 5 s, and 72°C for 4
min. All steps were ramped at 1°C/s using a MJ Research
Peltier thermocycler. The big dye sequencing reaction
product was either ethanol precipitated or purified via
PCR Min-elute (Qiagen). Sequencing reaction products

Use of AFPs as hybridisation probe in Southern AnalysisFigure 2
Use of AFPs as hybridisation probe in Southern Analysis. 200 
ng RP11-156K13 HindIII digest (lane 1). 200 ng RP11-104F14 
HindIII digest (lane 2). (A) In silico fingerprint of RP11-
156K13 and RP11-104F14 generated from the BAC database 
[19] using the FPC software [20]. (B) Southern transfer 
hybridized with radiolabeled AFP from BAC clone RP11-
156K13 without Cot-1 DNA blocking. (C) Southern transfer 
hybridized with radiolabeled AFP from BAC clone RP11-
156K13 with 50 µg Cot1 DNA blocking.
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were resolved using an ABI Model 377 or ABI Model 3700
sequencer (Applied Biosystems).

Clone identification
Sequences were analyzed using NCBI BLAST to query the
non-redundant (nr) and high throughput genomic
sequences (htgs) database of GeneBank v.2.2.5. The FTP
version of BLAST [17] was downloaded and a script writ-
ten to allow all 960 sequences to query automatically.

Expect values (E values) of 0.001 and bit scores of 30 were
used as the minimum allowed cut off.

Southern analysis
The use of Southern analysis to verify BAC clones for array
construction has previously been described [18]. DNA
was prepared from overnight cultures of BAC clones. Two
hundred nanograms of HindIII digested BAC DNA frag-
ments were separated by electrophoresis on a 1% agarose

Use of AFPs as a hybridization probe in FISH analysisFigure 3
Use of AFPs as a hybridization probe in FISH analysis. Red represents random primed AFP probe generated from clone RP11-
328P22 (locus: AL353195) labeled with Cy3-dCTP. Chromosomes background stained with DAPI.
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gel. The separated fragments were transferred to a
Hybond-N+ membrane as recommended by the manufac-
turer (Amersham). One microlitre of AFP (~1 µg) was
labeled with α32P-dATP using the RadPrime random
priming system (Invitrogen). The labeled probes were pre-
cipitated in ethanol with (or without) 50 µg Cot-1 DNA
(Invitrogen) and redissolved in 15 µl of hybridization

solution (50% formamide, 2X SSC, 10% dextran sulfate,
4% SDS). The probe was denatured at 80°C for 10 min
and allowed to cool to 37°C for 2 h before addition to the
prehybridized membrane. Hybridization was performed
at 65°C overnight in the presence of 0.5 µg/µl of sheared
herring sperm DNA (Invitrogen). Washes were performed
at 65°C with Buffer 1 (5 mg/ml BSA, 0.5 mM EDTA, 40

Three AFP sequence productsFigure 4
Three AFP sequence products. (A) Sequence read of an AFP derived from BAC RP11-124P12 with an MseI restriction site 260 
bp downstream of the T7 primer. (B) Sequence read of an AFP derived from BAC RP11-125E6 with an MseI restriction site 
127 bp downstream of the T7 primer. (C) Sequence read of an AFP derived from BAC RP11-124P22 with an MseI restriction 
site 17 bp downstream of the T7 primer.
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mM Na2HPO4 (pH 7.2), 5% SDS) followed by Buffer 2 (2
mM EDTA, 80 mM Na2HPO4 (pH 7.2), 2% SDS). Autora-
diographs were generated from phosphoimager plates
and analyzed using the STORM 860 system (Amersham).

Fluorescence in situ hybridization
Selected AFPs were mapped by FISH using metaphase
chromosomes. Two microlitres of AFP (~2 µg) were
labeled by random priming overnight in the presence of 2
nmol of Cy3-dCTP, Cy5-dCTP (Perkin Elmer), FITC-
dUTP, or Texas Red-dUTP using the BioPrime kit (Invitro-
gen) as per manufactures directions. The labeled probe
was purified using a Sephadex G-50 column, combined
with 21 µg of Cot-1 DNA and precipitated with ethanol.
The labeled probe was then resuspended in 80 µl of
hybridization buffer (50% formamide, 2X SSC, 10% dex-
tran sulfate, 0.1% Tween-20, 10 mM Tris pH 7.4) and
denatured for 5 min at 100°C. The metaphase slide was
dehydrated through a series of 70%, 80%, and 100% eth-
anol washes for 2 min each, denatured in 70% formamide
in 0.6X SSC for 2 min at 70°C and processed through the
same ethanol series at -20°C and allowed to dry. Thirty-
five microlitres of probe was then added to the slide and
hybridized overnight at 37°C. Images were processed
with Qcapture (Q-imaging, Vancouver) with a Zeiss Axio-
scope microscope.
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