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Abstract

Background: Systematic identification and functional characterization of novel types of noncoding
(nc)RNA in genomes is more difficult than it is for protein coding mRNAs, since ncRNAs typically
do not possess sequence features such as splicing or translation signals, or long open reading
frames. Recent "tiling" microarray studies have reported that a surprisingly larger proportion of
mammalian genomes is transcribed than was previously anticipated. However, these non-genic
transcripts often appear to be low in abundance, and their functional significance is not known.

Results: To systematically search for functional ncRNAs, we designed microarrays to detect 3,478
intergenic and intronic sequences that are conserved between the human, mouse, and rat genomes,
and that score highly by other criteria that characterize ncRNAs. We probed these arrays with
total RNA isolated from |6 wild-type mouse tissues. Among 55 candidates for highly-expressed
novel ncRNAs tested by northern blotting, eight were confirmed as small, highly-and ubiquitously-
expressed RNAs in mouse. Of the eight, five were also detected in rat tissues, but none were
detected at appreciable levels in human tissues or cultured cells.

Conclusion: Since the sequence and expression of most known coding transcripts and functional
ncRNAs is conserved between human and mouse, the lack of northern-detectable expression in
human cells and tissues of the novel mouse and rat ncRNAs that we identified suggests that they
are not functional or possibly have rodent-specific functions. Our results confirm that relatively
little of the intergenic sequence conserved between human, mouse and rat is transcribed at high
levels in mammalian tissues, possibly suggesting a limited role for transcribed intergenic and intronic
sequences as independent functional elements.

Background arily-diverged intergenic sequences. Large-scale microar-

Comparative genomics has revealed that approximately
5% of the mammalian genome is under purifying selec-
tion [1,2]. While exons make up roughly 1.5% of the
genome [3], relatively little is known about the role of the
remaining 3.5% of the highly conserved genomic regions,
and even less about the functional potential of evolution-

ray tiling analyses (i.e. using a set of probes designed to
detect all or most of a targeted genome or genomic
region), as well as high-throughput cDNA sequencing
efforts, have indicated that the "transcriptome" is signifi-
cantly larger than was previously appreciated, although
the functional significance of the vast majority of the
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novel, apparently noncoding (nc) transcripts detected by
these approaches has remained elusive [4-8]. To date, sev-
eral studies have reported large-scale tiling efforts of the
human genome [4,5,9,10]. In all cases a significantly
higher proportion of transcribed sequence was reported
than could be accounted for by existing exon annotation
data, and much of the remainder did not appear to encode
protein [4]. Comparison of datasets suggests that a high
proportion of the novel transcripts are specific to tissues
or cell lines [4,9]. This trend was particularly evident for
cell lines, where novel cell-line specific transcripts were
even more numerous than annotated cell-line specific
exons [4], implying that many of these transcripts may not
have endogenous functions in whole organisms. Further
supporting this possibility was the observation that the
majority of the novel transcripts were detected at very low
levels [5].

A second source of evidence for a more extensive tran-
scriptome arises from large-scale ¢cDNA compilation
efforts. The mouse cDNA sequencing effort led by the
RIKEN Consortium identified 60,770 unique cDNA tran-
scripts from a variety of mouse tissues and cell lines [7].
Approximately half (33,409 sequences) were derived
from unique genomic locations (Transcriptional Units),
of which 15,815 did not map to known or predicted cod-
ing genes in mouse [7]. Further refinement identified a set
of 4,280 mRNA-like noncoding RNAs which had no
homology to any known protein sequences and com-
prised of sequences mapped to regions located between
predicted exon boundaries [6]. Many of these sequences
were reported elsewhere in EST databases and displayed
features of polymerase II transcripts [6]. However, unlike
protein-coding mouse genes, of which 99% have
homologs in the human genome [1], only 10.6% of the
4,280 apparent nc transcripts were represented by homol-
ogous sequences in the human genome [6,7]. In fact,
Wang et al. [11] demonstrated that most of these tran-
scripts are no more conserved than intergenic sequence in
general, and less conserved than a comprehensive set of
321 known ncRNAs with established functional roles. In
addition, expression profiling of a different but overlap-
ping (FANTOM1) subset of cDNAs that do not map to
known ESTs or protein sequences (3,388), revealed that
most transcripts in this uncharacterized class were present
at low abundance [12]. Collectively, these results demon-
strate the transcription of uncharacterized sequence, but
raise questions about the functional relevance of the novel
"noncoding" set.

One possible explanation for the observed low-level
expression of a much larger fraction of genomes than can
be accounted for by known genes comes from the recent
discovery of a nuclear posttranscriptional quality-control
pathway that degrades "cryptic unstable transcripts”
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(CUTs) in yeast [13]. CUTs are transcribed by Pol II and
are detectable by both microarrays and RT-PCR in wild-
type yeast, and also appear to be frequently represented as
single tags in SAGE libraries, but are undetectable by
Northern blotting and do not contain significant open
reading frames. However, in mutants in the quality-con-
trol pathway, they appear as a smear on Northern blots
due to the fact that they have heterogeneous 3' ends [13].
The fact that a posttranscriptional quality control exists to
prevent accumulation of CUTs suggests that they are aber-
rant and predicts that there should be little selection pres-
sure on their expression. Moreover, these observations
suggest that nonfunctional transcripts might be distin-
guished from bona fide functional transcripts on the basis
of formation of a discrete species on Northern blotting,
and by conservation of expression among different
organisms.

In this study, we describe a systematic approach to predict
and screen novel ncRNA transcripts in the mouse genome.
We first identified non-exonic sequences that are most
likely to encode functional ncRNAs (functional transcripts
that do not encode proteins) by using the program QRNA,
which searches for conserved regions with compensatory
mutation patterns that are consistent with the evolution-
ary conservation of secondary structure in functional non-
coding sequences [14]. These are hallmarks of most
known functional ncRNAs, and QRNA has been used suc-
cessfully to identify novel structural ncRNAs in E. coli [15]
and S. cerevisiae [16]. However, even in these organisms,
which have relatively compact genomes, a high false-pos-
itive prediction rate was observed [16], which presents a
challenge for screening large genomes. We therefore used
a custom oligonucleotide microarray [17] as an initial
high-throughput screen for expression. We then tested the
55 highest-expressed candidates to ask whether they are
detectable as discrete species on Northern blots. We report
eight novel mouse transcripts identified using this
approach. However, none of the eight appears to be
expressed in humans, casting doubt on their role as inde-
pendent functional elements. Taken together with the low
proportion of intergenic sequences that we detected, our
results suggest that much of the recently-discovered
expanded transcriptome [4-7,9,10] may correspond to
cryptic transcripts [13], suggesting a limited role for tran-
scribed intergenic and intronic sequences as independent
functional elements.

Results

Predicting novel ncRNA candidates

We identified novel structural ncRNA candidates on the
basis of two features: high sequence conservation and a
mutation pattern consistent with sequences being under
selective pressure to maintain a conserved secondary
structure [see Methods for details]. Figure 1 outlines the
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Summary of computational prediction and sorting of novel mammalian noncoding RNA. (a) Whole genome alignments were
downloaded from UCSC [18], subset to regions of greater than 85% sequence identity, and analyzed with QRNA [14].
Removal of redundant and coding sequences left 36,756 ncRNA candidates containing 62 known ncRNAs (of approximately
400 known ncRNAs). Candidates were then sorted and the top 3,478 predicted RNAs, which contained 38 known ncRNAs
(representing a 1,700 fold enrichment of real ncRNAs over random selection from genomic sequence), were selected for fur-
ther screening. (b) Sorting was based on the QRNA score, stability (measured as a predicted free energy change using Mfold
[44]), overlap with rat-mouse QRNA predictions, and genomic clustering (many predictions close to one another are likely the
same transcript). This combination of four criteria was more powerful in identifying real ncRNAs than using the QRNA score

alone. *UCSC [18], **See (b).

computational screen we employed for finding novel
ncRNAs. We obtained human-mouse pairwise sequence
alignments from UCSC [18] and subset them to align-
ments with a minimum of 85% sequence identity using a
200 nt scanning window. This eliminated sequences that
are unlikely to be under evolutionary selection [1,11] and
reduced the dataset to a computationally manageable
size. We used QRNA v.1.1 [14-16] to screen the align-
ments for putative ncRNAs. This generated 106,320 pre-
dicted ncRNAs. We then removed redundant sequences
and predicted ncRNAs with sequences similar or identical
to coding genes annotated in the Mouse RefSeq mRNA
database [19], RIKEN cDNA [7], Mouse Protein NR data-
base [20], or coding genes in other organisms annotated
in GenBank [21]. The remaining 36,756 predicted
ncRNAs were sorted by logistic regression using four
parameters that we identified to be useful for distinguish-
ing known ncRNAs from QRNA predictions of putative

new ncRNAs: 1) the QRNA logodds RNA score; 2) the
thermodynamic stability of the predicted secondary struc-
ture of each prediction; 3) a genomic clustering score of
closely mapped predictions on the genome (presumed to
be multiple regions of a longer ncRNA transcript); and 4)
an overlap between mouse-human and mouse-rat QRNA
predictions (processed similarly to mouse-human align-
ments). The QRNA score was the strongest indicator of
defined ncRNAs (data not shown), but combining the
additional parameters increased the sorting power, espe-
cially for the top 10% of the predicted RNAs (Fig. 1B).
Other parameters such as GC content and length of the
sequences did not improve the sorting (data not shown).
To further characterize the set of predicted ncRNAs, we
screened them computationally for tRNAs and snoRNAs
[22,23] and searched for similar sequences in the RIKEN
FANTOM?2 mRNA-like ncRNA collection. For a summary
of these features, see Additional file 1.
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Table I: List of tissues used in microarray expression analysis

Tissues/Organs/Cells screened for novel noncoding RNAs

Bladder

Brain

Embryonic Stem Cells
Femur

Heart

Intestine

Liver

Lung

Mammary Gland
Muscle

Stomach

Teeth

Testis

12.5-day Embryo
15-day Embryo
9.5-day Placenta

Array design

Due to the generic nature of the algorithm, QRNA has a
high false positive rate, much higher than coding gene-
finding algorithms, thus experimental validation is essen-
tial. Using the prediction scheme and sorting criteria
described above, we designed a microarray to detect 3,478
QRNA predictions with properties most indicative of
ncRNAs. The microarray contained probes for the top
9.5% of the total ncRNA predictions, and probes for 38
known ncRNAs [see Additional file 2]. The design
included 20,867 complementary DNA probes to the
QRNA predictions (with six probes per prediction; three
for each orientation), 200 random probe sequences and
305 intergenic probes that served as negative controls, and
705 positive control probes tiled across U4, U5 and
mature rRNA transcripts. A list of all microarray probes is
included in Additional file 3.

Analysis of RNA from diverse mouse tissues

Since ncRNAs can be expressed in a tissue-or developmen-
tal-stage-specific manner [24-29] we screened 16 mouse
tissues/organs encompassing a variety of tissue sources,
including two embryonic stages of development (Table
1). The intensity distribution over all measurements is
shown in Figure 2. As expected, the majority of QRNA-
prediction intensity measurements overlapped with the
negative control probe measurements, presumably due to
the high false-positive rate inherent in generating the pre-
dictions. However, the distribution was skewed to the
right tail of the plot (i.e. higher intensity), and twice as
many of measurements from the predicted ncRNAs were
above the 99% negative control threshold (generated
using random sequence probes) than would be expected
based on a random distribution (Fig. 2). Of the 38 known

http://www.biomedcentral.com/1471-2164/6/104

ncRNAs that were among the QRNA predicted RNAs [see
Additional file 2], we detected 15, including several snoR-
NAs, tRNAs, a Hox antisense transcript, and miRNAs,
using the same intensity cutoff used for selecting novel
candidates (see below). This illustrates that the sensitivity
of this technique is sufficient to detect most known
ncRNA types. We have also used this technique to survey
miRNA expression [24].

Validation by northern blotting

Although our microarray data indicated that many of the
measurements arise from real transcripts, noise (e.g. spu-
rious cross-hybridization) could also account for some
proportion of the high-intensity measurements. Further-
more, microarray results cannot differentiate between a
single RNA species and a heterogeneous population. We
therefore used Northern blotting to validate our candidate
novel ncRNAs. Northern blotting is more quantitative
than RT-PCR, since there is no exponential amplification
step. It is less sensitive for the same reason; however, using
our methods, we have been able to detect all types of tran-
scripts including structural ncRNAs, miRNAs, and mRNAs
([24,30] and data not shown). Importantly, since North-
ern blotting reveals the size of the RNA species detected, it
can distinguish whether there is a single RNA product spe-
cies and a heterogeneous transcript population. We tested
all predicted ncRNAs detected by at least two of three
probes (all in the same orientation) displaying signals
above the 99%-negative control intensity threshold in at
least one tissue. In total, this included 55 novel predicted
ncRNAs, of which most appeared to be ubiquitously
expressed. Northern analysis on this subset confirmed 8
novel transcripts (Fig. 3), all of which were detected
ubiquitously in total RNA isolated from 16 wild-type
mouse tissues. All eight transcripts were between 70 and
140 nt in length, none had tRNA or snoRNA structural or
sequence characteristics, and five were located in intronic
regions. It is possible that additional RNAs are expressed
at low levels that are detectable by microarray and/or RT-
PCR but not by Northern blotting, especially if they are
heterogeneous in length [13]. We did not pursue this pos-
sibility, since it seemed that transcripts undetectable by
Northern blotting are less likely to represent bona fide
ncRNAs.

Expression of novel mouse transcripts is not conserved in
human cells/tissues

Nearly all sequence-conserved coding genes between
human and mouse have a conserved expression pattern
across multiple tissues [31]. Although they have not to our
knowledge been comprehensively analyzed, ncRNAs are
also generally expressed similarly across related species
[32] and since most are required for cell proliferation,
they tend to be expressed in all tissues, as were all eight of
the novel transcripts we observed. However, Northern
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3,478 Predictions
(6 spots/prediction —
3 for each orientation)

All data:

n (rBRNA) = 1,904

n (neg. ctrl) = 3,200

n (intergenic seq.) = 4,880
n (predictions) = 333,872

(n = number of probes)

6,923 prediction
measurements
(1.95%) > 99%
negative control
measurements.

55 strong candidate
QRNA predictions (at
least 2 spots > 99%
neg. ctrl threshold) in
at least one tissue

8 confirmed by
northern analysis.

Screening, selection, and confirmation of novel ncRNA predictions. (a) Total RNA from 16 tissues was hybridized to custom
Agilent microarrays containing probes to the QRNA predictions. (b) Most intensity measurements overlapped negative-con-
trol intensities (both random probe sequences and probes corresponding to randomly sampled intergenic regions), although a
right-tailed distribution overlapping rRNA levels indicated detection of potential abundant novel transcripts. (c) Expanded y-
axis region from (b), axes denote absolute probe intensity counts. (d) Sample schematic of microarray spots corresponding to
a transcript that was tested further by northern analysis. (€) 55 transcripts in total were screened by Northern analysis.
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Abundantly and ubiquitously expressed novel mouse transcripts are not expressed in human tissues or cells. (a) Northern
analysis of mouse transcripts using mouse-specific probes. U5 and U4 probes were used as loading controls as indicated and
were co-hybridized with test probes. (b) No signal was detected in Northern analyses using human-specific probes. Human tis-
sues were analyzed with a longer exposure (right panel) since short RNAs were slightly underrepresented in these commer-
cially-obtained samples. Mouse-, and human-specific probe sequences complementary to the novel ncRNA predictions and
images of all full-scale northern blots are available in Additional files 4 and 5.
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blotting revealed that none of the eight novel mouse tran-
scripts were expressed at detectable levels in HeLa cells or
in human tissues (Fig. 3). Moreover, only five of these
were detected in rat (Fig. 3). Images of all full-scale North-
ern blots shown in Figure 3 and other supporting North-
ern data is available in the supplementary data [see
Additional file 4].

We also compared our 3,478 QRNA predictions and the
RNAs we verified with recently published high-density
human tiling data from Cheng et al. [9]. We subset our
QRNA predictions to regions surveyed by Cheng et al. [9]
(i.e. the non-repetitive regions of human chromosomes 6,
7, 13, 14, 19, 20, 21, 22, X, and Y). We considered the
"transfrags" (i.e. transcribed fragments: any transcribed
genomic region) described by Cheng et al. [9] in poly-A-
minus RNA from HepG2 cells, which should be most
comparable to our data (Fig. 4A). We confirmed that the
Cheng et al. [9] "transfrags" encompassed a larger number
of known noncoding RNAs and mRNA exons than was
obtained from random positioning of sequences of the
same length (Fig. 4B), although the vast majority of
"transfrags" do not overlap any annotated features. We
did not see a marked difference in the overlap between the
Cheng et al. "transfrags" and our QRNA predictions (Fig.
4B). This indicates that the "transfrags" are not enriched
for conserved sequence with conserved secondary struc-
ture, consistent with our data showing a lack of conserved
expression of our northern-confirmed QRNA transcripts
in human tissues and cells. Only one of the eight north-
ern-confirmed novel mouse transcripts we verified
mapped to the regions surveyed by Cheng et al. [9] and it
did not overlap a "transfrag", also consistent with our
results (Fig. 3).

Discussion

Using comparative genomics and an established ncRNA
search method modified for high-throughput screening,
we report eight novel mouse ncRNA transcripts that are all
relatively short, ubiquitously expressed, and abundant.
Despite their sequence and secondary structure conserva-
tion, none of the transcripts were expressed at detectable
levels in human cells and tissues.

Given the large search space incorporated in this analysis,
our results indicate that little intergenic or intronic
sequence is expressed as distinct, stable transcripts at lev-
els comparable to the expression of most known func-
tional RNAs. This deduction contrasts somewhat with the
conclusions of recent studies employing tiling arrays or
large-scale cDNA sequencing [5,7,9,10]. Because results
from other studies were obtained and validated in differ-
ent ways, we cannot confirm or refute the basic observa-
tions of any other study. Numerous explanations exist for
the breadth of the emerging transcriptome [10]. Nonethe-
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less, we propose that claims regarding a dramatically
larger transcriptome than is accounted for by current
annotations should be addressed with scrutiny, particu-
larly with regard to functional potential. Several factors
indicate that a significant proportion of the newly meas-
ured transcripts may either be spurious or non-functional:
1) transcriptionally active regions identified in tiling anal-
yses and potentially noncoding cDNAs are generally
detected in low abundance [4,6]; 2) in yeast, many inter-
genic regions are also transcribed at low levels, apparently
as heterogeneous species, and there is a specific
mechanism for degrading these transcripts [13]; 3) much
of the mammalian data available is from cell lines, includ-
ing a high proportion of tumor-derived cell lines [5,9],
which may lack the same degree of quality-control as
found in normal cells and tissues; 4) most are relatively
short (i.e. sequenced transcripts are shorter than the aver-
age coding gene [7], as are transcripts identified from til-
ing, which are on average less than 200 nt [4]); 5)
potentially noncoding cDNAs correspond to regions not
conserved at the sequence level [6,7]) and have evolved at
a non-selective rate [11]; 6) there is little evidence for
cross-species expression (only 2.6% of noncoding mouse
cDNAs can be mapped to human ESTs [6,7]); 7) 70% of
intergenic "transfrags" corresponding to novel transcribed
regions could not be detected by northern analysis [4]); 8)
the "transfrags" do not appear to be enriched in sequences
with conserved secondary structures (Fig. 4), which is a
hallmark feature of known structural ncRNAs [33].

How can we distinguish bona fide functional transcripts, in
the absence of directed genetic experimentation?
Sequence conservation alone is apparently not sufficient
to distinguish sequences with critical functions, as large-
scale non-genic deletions encompassing highly conserved
regions can be tolerated in mice without detectable fitness
disadvantages [34]. The presence of conserved expression
improves the likelihood that sequence-conserved regions
are functional since most characterized RNA classes,
including coding mRNA, and noncoding rRNA, tRNA,
snRNA, snoRNA, and miRNA, generally exhibit conserved
expression patterns across evolutionarily-related species
[31,32,35,36]. Of the few characterized mRNA-like
ncRNAs, some also have conserved expression patterns
[29,32,37]. The lack of conserved expression of the eight
transcripts identified in our study, despite a high sequence
and structural similarity, suggests that they are not func-
tional, although it is possible that a subset of functional
transcripts have species-or lineage-specific functions
despite their high degree of sequence conservation. For
example, a subset of the ncRNAs detected in mouse in our
study were also detected in rat tissues, suggesting the pos-
sibility of conserved functions restricted to the rodent lin-
eage. However, in reported cases of mouse-specific

Page 7 of 12

(page number not for citation purposes)



BMC Genomics 2005, 6:104

(@)

(b)

QRNA Predictions

http://www.biomedcentral.com/1471-2164/6/104

Mouse Annotated

Ribosomal Protein

ncRNAs Exons
60, 25r - 120,
u "%' 50} 20! 100+
8 “ 15 8y
o * 60
8 10t 0!
& g 5 20
23\\ 3 % 02 04 06 08 i % 02 04 06 08 i
. 151 833 A 2 04 0.
o
34 4 %- 25 120
- 100/
211 o =
& 80|
= 150
g 60
8 0 |
5 -
332,177 : -l-J e o
] 0 02 04 06 08 1 0 02 0.4 0.6 08 1

192

Level of Individual Sequence Overlap

Il Known Genomic Positions Il Randomly Positioned

e (c)

Legend

QRNA Predictions Represented on Array
Detected QRNA Predictions

Sample Overlap of QRNA Prediction

QRNA regions
Genome

Transfrags [9]
Mouse Annotated ncRNAs

em— = Transfrags

50% overlap = 1 count of 0.5 in histogram

Figure 4

Overlap between known and predicted ncRNA types. (a) 3,478 QRNA predictions, 390 mouse annotated ncRNAs, and 716
human ribosomal exons were mapped to the human genome (hgl7) regions surveyed by Cheng et al. [9] using poly-A minus
RNA derived from HepG2 cells. 833 QRNA predictions, 151 mouse ncRNAs, and 260 exons are located in regions surveyed
by Cheng et al. (b) Shown are distributions of the percentage of overlap of each sequence with a transfrag for actual genomic
positions versus randomly positioned sequences in regions surveyed by Cheng et al. [9]. (c) Schematic of how an overlap was
calculated for one QRNA prediction that overlaps a transfrag. This was repeated for all overlaps and the distributions are

shown in (b).

ncRNAs, such as BC1, Tsix, CIOR, and t-ncb [32], the
RNAs were not conserved at the sequence level which is
likely the reason for mouse-specific ncRNA differential
regulation.

More cross-species and non-biased expression data is
required to definitively address the likelihood of function-
ality of emerging transcriptomes. The most comprehen-
sive approach will likely be an extension of whole genome
tiling microarray analyses [38] using RNA derived from
endogenous tissues from a variety of organisms. The
approach of hybridizing covalently labeled total RNA

(applied in this paper), as opposed to cRNA or cDNA
derived from poly-adenylated RNA, presents a potential
improvement to the unbiased nature of tiling analyses,
since there is no amplification bias and strand informa-
tion is retained. An added dimension of conserved expres-
sion will enable focused functional experimentation on
transcripts that are likely to be important, although our
data indicates that these cases will be the exception rather
than the rule.
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Conclusion

With the application of high-throughput transcriptional
analyses it has been reported that more sequence is tran-
scribed than was previously appreciated, with some esti-
mates exceeding twice that of currently annotated
transcripts. In a systematic search for sequence-conserved
transcripts with hallmarks of structural ncRNAs, we iden-
tified only eight novel mouse transcripts with ubiquitous
and abundant expression. This indicates that very little
intergenic sequence is transcribed at high levels. Further-
more, despite meeting the stringent requirements of char-
acterized ncRNAs, none of these eight transcripts were
expressed at detectable levels in human cells or tissues.
This suggests that these transcripts are unlikely to have
conserved functional roles. We propose that newly-identi-
fied transcriptomes should be viewed with scrutiny, par-
ticularly with regard to function, until it is determined
that they are functional or at least display properties of
known functional elements.

Methods

Predicting novel ncRNAs

Whole genome pairwise human-mouse alignments were
downloaded from the UCSC Genome Bioinformatics
website ([18]; build 32, Nov. 2003). Repeat-masked [39]
alignments were subset to segments with a minimum of
85% sequence identity. QRNA v.1.1 [14] was used to
score the alignments for noncoding RNA potential using
settings determined to work optimally on a test set of
ncRNAs embedded in random alignments of equivalent
sequence identity (default settings with -w 100 -x 50). The
processing time was approximately 14 days on a 20-proc-
essor (1 GHz) linux cluster. Overlapping sequences with a
positive logodds RNA score were concatenated into one
sequence which was assigned the highest score of the orig-
inal component sequences.

Selection of candidate ncRNAs

QRNA predictions were filtered by alignment to a variety
of coding sequence databases using BLAT [40] with a
default score cutoff of 30 ([alignment length] - [number
of mismatches]) and a minimum sequence identity of
60% (-minldentity = 60). The databases included: Mouse
RefSeq mRNA [19] (build 29), ENSEMBL coding tran-
scripts [41], RIKEN cDNA [7], ESTs [42] (download date:
Nov. 2003), Unigene [43] (Nov. 2003), Protein NR [20]
(build 29), and Genbank NT Database [21] (Nov. 2003).
Redundant QRNA predictions and predictions that
aligned to annotated coding sequences were removed.
The remaining set was screened for tRNAs and Box C/D
snoRNAs using tRNAScan SE [22] and snoscan [23]
respectively. Sequences were extended by 100 bases in
both directions from the genome to ensure complete cov-
erage of potential tRNAs or snoRNAs.
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QRNA predictions that did not map to annotated coding
genes were sorted on a combination of criteria to maxi-
mize selection of known ncRNAs (as compiled in [24]).
Sorting parameters included the minimum free energy as
predicted by Mfold [44], overlap between mouse-human
and mouse-rat QRNA predictions (blast, e-threshold 10
4), and proximity to adjacent predictions in the genome.
Genomic proximity was scored by adding the number of
QRNA predictions within 1000 bp of each other in the
genome. Mouse-rat alignments [18] were processed iden-
tically to mouse-human alignments. Multiple linear
regression was used to assign weights to these parameters
in addition to the QRNA logodds RNA score and were
subsequently used to calculate an overall score for each
QRNA prediction. The top 3,478 predicted RNAs (limited
by space on the array) were analyzed further by
microarray. These contained 38 known ncRNAs of the
approximately 400 known ncRNAs, representing a 1,700-
fold enrichment. The level of enrichment was calculated
as the ratio of the proportion of nucleotides that are real
ncRNAs in the QRNA predicted set to the proportion of
nucleotides of all known ncRNAs of the mouse genome
(i.e. how much more likely one could select a nucleotide
belonging to a known ncRNA in the QRNA set over the
whole genome).

Microarray design

Six probe sequences were allotted for each ncRNA predic-
tion; three for each orientation. Complementary DNA
probes were designed to maximize spatial coverage of
each predicted sequence and were normalized by length
(i.e. probe lengths were adjusted) to a uniform melting
temperature of 60°C. Probe sequences were on average
26.9 nt and were concatenated to 60 nucleotides. Probe
sequences were submitted to Agilent Technologies for
microarray production (Palo Alto, California). The
designs included 200 60-mer probes containing random
sequences, which were used as negative controls, and 696
positive control probes tiled across U4 and U5 snRNAs
and 18S and 28S rRNAs. Additional file 3 contains a list of
all of the probe sequences.

RNA extraction, labeling, and hybridizations

HeLa nuclear extract (NE) was prepared as described pre-
viously [45]. Total RNA from Hela cells, HeLa NE, and
mouse tissues was extracted using Trizol (Invitrogen)
according to the manufacturer's instructions and was
treated with DNase I (Fermentas). Total RNA derived
from human tissues was purchased from Clontech (BD
Biosciences, Mississauga, ON) and Ambion (Austin, TX).
Integrity of IRNA was confirmed on 1% agarose-formalde-
hyde gels. 7 ug of total RNA was chemically labeled with
Ulysis Alexa Fluor 546 or Ulysis Alexa Fluor 647 (Ulysis)
according to manufacturer's instructions. This protocol
labels G residues [46], and there were no predicted RNAs
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that lacked G residues. Samples were resuspended in 0.5
mL of hybridization buffer (1 M NaCl, 0.5% sodium sar-
cosine, 50 mM N-morpholino ethane sulfonate, pH 6.5,
33% formamide and 40 pg salmon sperm DNA), dena-
tured by heating at 65°C for 5 minutes, and snap-cooled
on ice prior to hybridization. Hybridizations were carried
out for 16-24 h at 42°C in a rotating hyb oven. Slides
were then washed (rocking ~30 seconds in 6x SSPE,
0.005% sarcosine, then rocking ~30 seconds in 0.06x
SSPE) and scanned with a 4000A microarray scanner
(Axon Instruments, Union City, CA).

Microarray data processing and normalization

TIFF images were quantified with GenePix 3.0 (Axon
Instruments, Union City, CA). Individual channels were
spatially detrended (i.e. overall correlations between spot
intensity and position on the slide removed) by high-pass
filtering [47] using 5% outliers. The 16 individual chan-
nels were then normalized using Variance Stabilization
[48,49] and transformed to arcsinh values, which are sim-
ilar to natural log values but are tolerant of negative num-
bers emerging from high-pass filtering.

Northern blotting

7 ug of total RNA from each tissue was separated on 10%
polyacrylamide/TBE/urea gels, and electroblotted to
Hybond N+ or Hybond-XL membranes (Amersham)
using asemi-dry transfer apparatus(Bio-Rad) in 0.5X TBE
according to the manufacturer's instructions. The mem-
branes were UV cross-linked using a Stratalinker (Strata-
gene), hybridized overnight at 42°C in Church buffer
with 5'-32P-end-labeled oligonucleotide probes, and
washed with 2X SSC, 0.1% SDS and 0.1X SSC, 0.1% SDS
for 5 minutes each at 42°C. Results were analyzed using a
Phosphorimager (Bio-Rad Personal FX). Oligonucleotide
probe sequences are listed in Additional file 5.

Calculating overlap with human tiling analyses

The 3,478 QRNA predictions analyzed by microarray were
mapped to the mouse-human UCSC genomic alignments
(mm6-hgl17) and were subset to the same regions ana-
lyzed by Cheng et al. [9] (i.e. not repetitive regions, for
example), which were determined from the probe posi-
tions used in the tiling analysis (coordinates were con-
verted to the hgl7 genome release using the UCSC
LiftOver tool [17]). The tiling dataset we focused on was
generated using nuclear poly-A minus RNA derived from
HepG2 cells. For QRNA predictions that overlapped with
a transfrag, the degree of overlap was calculated as a per-
centage of the length of the QRNA prediction that over-
laps the transfrag. The distribution of QRNA overlaps was
compared to overlaps from randomly positioned QRNA
predictions in the human-surveyed regions. The random
set consisted of a set of sequences identical in length to the
actual QRNA predictions, but with randomized positions
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in the human surveyed regions. The same analysis was
repeated using 390 (151 mapped to human surveyed
regions) mouse annotated miRNAs, snoRNAs, snRNAs,
and tRNAs downloaded from NONCODE [47] and Rfam
[48] databases, and 716 human ribosomal protein exons
(260 mapped to human surveyed regions) annotated in
the Refseq database [18].

Data availability

All supplementary data is available at http://hugh
eslab.med.utoronto.ca/Babak/ncRNA/. The microarray
design has been submitted to NCBI GEO in MIAME for-
mat under accession GSE2366. The 8 novel transcripts
have been submitted to GenBank [Genbank:AY954743 -
Genbank:AY954751].
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