- O
B Mc Genom |CS BioM\éd Central

Research article

Molecular signature of clinical severity in recovering patients with
severe acute respiratory syndrome coronavirus (SARS-CoV)
Yun-Shien Leel-2, Chun-Houh Chen3, Angel Chao#>, En-Shih Chen!, Min-
Li Weil, Lung-Kun Chen!, Kuender D Yang®, Meng-Chih Lin?, Yi-Hsi Wang?,
Jien-Wei Liu8, Hock-Liew Eng®, Ping-Cherng Chiang!?, Ting-Shu Wu!9, Kuo-
Chein Tsao!!, Chung-Guei Huang!!, Yin-Jing Tien!2, Tzu-Hao Wang* 14,
Hsing-Shih Wang*> and Ying-Shiung Lee>

Address: 'Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital (CGMH), Tao-Yuan, Taiwan, 2Department of
Biotechnology, Ming Chuan University, Tao-Yuan, Taiwan, 3Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, *Department of
Obstetrics and Gynecology, Lin-Kou Medical Center, CGMH, Tao-Yuan, Taiwan, 5Graduate Institute of Clinical Medical Sciences, College of
Medicine, Chang Gung University, Tao-Yuan, Taiwan, °Department of Pediatrics, Kaohsiung Medical Center, CGMH, Kaohsiung, Taiwan,
7Department of Internal Medicine, Division of Pulmonary and Ciritical Care Medicine, Kaohsiung Medical Center, CGMH, Kaohsiung, Taiwan,
8Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Medical Center, CGMH, Kaohsiung, Taiwan, >Department of
Pathology, Kaohsiung Medical Center, CGMH, Kaohsiung, Taiwan, 1°Department of Internal Medicine, Division of Infectious Diseases, Lin-Kou
Medical Center, CGMH, Tao-Yuan, Taiwan, 'Clinical Virology Laboratory, Department of Clinical Pathology, CGMH, Tao-Yuan, Taiwan and
RInstitute of Statistics, National Central University, Tao-Yuan, Taiwan

Email: Yun-Shien Lee - bojack@mcu.edu.tw; Chun-Houh Chen - cchen@stat.sinica.edu.tw; Angel Chao - angel945@adm.cgmh.org.tw; En-
Shih Chen - chenenshih@adm.cgmh.org.tw; Min-Li Wei - ricewei@pchome.com.tw; Lung-Kun Chen - kervin@adm.cgmh.org.tw;

Kuender D Yang - yangkd @adm.cgmh.org.tw; Meng-Chih Lin - mengchih@adm.cgmh.org.tw; Yi-Hsi Wang - yhwang@cgmbh.org.tw; Jien-
Wei Liu - jwliu@adm.cgmh.org.tw; Hock-Liew Eng - eng6166@adm.cgmh.org.tw; Ping-Cherng Chiang - pcchiang@adm.cgmh.org.tw; Ting-
Shu Wu - tswu@adm.cgmh.org.tw; Kuo-Chein Tsao - kctsao@adm.cgmh.org.tw; Chung-Guei Huang - cghung@adm.cgmh.org.tw; Yin-

Jing Tien - gary@stat.sinica.edu.tw; Tzu-Hao Wang* - knoxtn@cgmbh.org.tw; Hsing-Shih Wang - hswang@cgmbh.org.tw; Ying-

Shiung Lee - ysln@adm.cgmb.org.tw

* Corresponding author

Published: 21 September 2005 Received: || March 2005
BMC Genomics 2005, 6:132  doi:10.1186/1471-2164-6-132 Accepted: 21 September 2005
This article is available from: http://www.biomedcentral.com/1471-2164/6/132

© 2005 Lee et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Severe acute respiratory syndrome (SARS), a recent epidemic human disease, is
caused by a novel coronavirus (SARS-CoV). First reported in Asia, SARS quickly spread worldwide
through international travelling. As of July 2003, the World Health Organization reported a total
of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological
damages may account for the severity of respiratory distress, little is known about how the
genome-wide gene expression of the host changes under the attack of SARS-CoV.

Results: Based on changes in gene expression of peripheral blood, we identified 52 signature genes
that accurately discriminated acute SARS patients from non-SARS controls. While a general
suppression of gene expression predominated in SARS-infected blood, several genes including
those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were
upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS
patients by generalized associate plots (GAP) according to the expression profiles of 52 signature
genes. Through this method, we discovered a smooth transition pattern of severity from normal
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controls to acute SARS patients. The rank of SARS severity was significantly correlated with the
recovery period (in days) and with the clinical pulmonary infection score.

Conclusion: The use of the GAP approach has proved useful in analyzing the complexity and
continuity of biological systems. The severity rank derived from the global expression profile of
significantly regulated genes in patients may be useful for further elucidating the pathophysiology of

their disease.

Background

SARS-CoV is a single-stranded, plus-sense RNA virus with
a genome of ~30 kb. Its sequence does not closely resem-
ble any of the previously characterized coronaviruses [1-
4]. Before SARS-CoV was recognized as the cause of the
deadly SARS [1-3,5-7], other human coronaviruses had
only been known to account for 15-30% of colds [8].
SARS-CoV appears to be new to humans, as supported by
the finding that human sera collected before the SARS
outbreak did not contain antibodies against this virus
[3,9]. After an incubation period from 2 to 10 days, SARS
patients might develop fever (>38°C), headache, dry
cough, and pneumonia [3,5,9-14]. Most patients gradu-
ally recovered while some progressed to respiratory dis-
tress syndrome with ~10% mortality rate. The genome-
wide changes in human gene expression when challenged
by this novel pathogen are essentially unknown.

Profiles of gene expression patterns help define the com-
plex biological processes associated with both health and
disease in vivo. Investigation of host responses to infection
with in vitro models have offered insights into mecha-
nisms of pathogenesis, and have highlighted the potential
for applications of microarray technology to diagnose
infection in vivo [15]. Whitney et al. observed that the var-
iation in gene expression patterns in the blood of healthy
subjects was strikingly smaller than the significant
changes induced by diseases either in patients with cancer
or with bacterial infections [15]. It was conceivable that
microarray profiling of gene expression in whole bloods
exhibits the potential in monitoring the patients'
responses to a disease, especially a novel infection such as
SARS.

Many discriminative methods have been developed for
analysis of microarray gene expression data in cancer
patients and the resulting classifications have been corre-
lated closely with clinical parameters [16-19]. For
instance, the discovery of signature genes for breast can-
cers through microarray analysis of gene expression has
provided us with a more precise clinical staging that will
improve the outcome of treatment [20,21]. However,
clinical parameters are not always in a discrete pattern but
more likely in a continuous fashion, where an absolute
classification may not be achievable. Herein we present
the use of cDNA microarray analysis of gene expression in

whole blood from a cohort of recovering SARS patients, of
whom the disease severity appeared to be a continuum.
After we had identified the molecular signature of 52
genes that accurately discriminated acute SARS patients
from non-SARS controls, we ranked the disease severity of
these patients using a generalized association plot (GAP)
elliptical seriation algorithm [22] based on the expression
profiles of the 52 genes. The derived severity rank of the
patients proved to be closely correlated with their clinical
parameters, namely, the recovery period (in days) and the
clinical pulmonary infection score.

Results

Patient information

Using the c¢cDNA microarrays spotted with duplicated
7,334 cDNA clone, we analyzed RNA specimens success-
fully amplified in 44 peripheral blood collected from 25
confirmed SARS patients (age ranged from 23 to 80 years
old, mean = 41.8, SD = 17.2, median = 34), of whom 24
survived. Except for one patient who died on the 4th day,
duration of hospitalization in this cohort ranged from 12
to 51 days (n = 24, mean = 24.5, SD = 10.1, median = 21)
(Additional file 1). We defined 11 specimens as acute
SARS (AS) using the following criteria: (i) the whole
blood RNA from a hospitalized patient was PCR positive
for SARS-CoV, or (ii) the specimen was collected within
10 days after the disease onset in patients whose blood
was later diagnosed ELISA-positive for anti-SARS IgG. The
rest of 33 RNA specimens from SARS patients were
labelled as recovering SARS (RS). Our study included 11
normal control (NC) volunteers and 11 patients with bac-
terial infections (IN) as healthy and non-SARS infection
controls, respectively (Additional files 2 and 3).

cDNA microarray analysis

When we compared the gene expression profiles among
acute SARS (AS), recovering SARS (RS), bacterial infection
(IN), and normal control (NC) groups, we observed the
variances of gene expression in both SARS (AS, AS+RS)
and bacterial (IN) groups to be equally higher than that in
healthy controls (NC) (Fig. 1a). This result indicates that
gene expression profiles of either SARS or bacterial groups
differed significantly from that of normal controls.

A probe set of 885 genes with standard deviations greater
than 0.5 across 66 arrays was selected for further analyses.
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Significant differences in gene expression profiles in patients with SARS or bacterial infection. Using a probe set
with 6,525 annotated genes, global gene expression was analyzed by (A) variation distribution in peripheral blood specimens
from patients with acute SARS (AS), recovering SARS (RS), bacterial infections (IN), and normal controls (NC). (B) In the hier-
archical clustering of relative change in gene expression using a probe set of 885 filtered genes (gene vector >0.5 SD), red indi-
cates upregulation and green indicates downregulation in gene expression relative to a common reference that was the pooled
amplified RNA from || normal controls. (C) Using the 885-gene set, singular value decomposition (SVD) analysis by two
eigenvectors showed three distinguished clusters of AS (red @), IN (green A), and NC (blue []) groups, with the RS (red O)

specimens scattering among AS and IN.

Page 3 of 10

(page number not for citation purposes)



BMC Genomics 2005, 6:132

An average linkage hierarchical clustering tree with Pear-
son correlation proximity was built on the 33 arrays (11
NC, 11 IN, and 11AS) using these 885 genes (Fig. 1b). The
AS and NC groups were well separated into two opposite
coherent clusters. Singular value decomposition (SVD)
analysis, a dimension reduction method to project gene
expression profiles to fewer representative eigenvectors
[23], also successfully separated AS, IN, and NC speci-
mens into three clusters with first two eigenvectors (Fig.
1c). Interestingly, the recovering SARS (RS) samples are
interspersed among the AS and IN samples.

To identify which genes were specifically regulated by
SARS-CoV, we performed two sets of two-sample Student
t-test for means with an unequal-variance assumption. In
the first set, we contrasted 11 AS versus 22 non-AS (NC
and IN) specimens on all 885 genes. The genes with sig-
nificant testing results were considered to be specifically
induced by SARS-CoV (Fig. 2a,b). For the second set of t-
tests, we compared 11 NC with 22 non-NC (IN and AS)
specimens. We considered that the change in significant
genes identified by the second t-test was induced by both
bacterial and viral infections (Fig. 2c,d). Genes identified
from these two sets of test were then ranked separately
according to the corresponding sets of P-values. Gene
expression profiles for the top 20 and the bottom 20 genes
from both sets are displayed as Figure 2.

Unexpectedly, most of the genes specifically upreguated
by SARS-CoV are ESTs (13/20 genes) that were not anno-
tated previously (Fig. 2a). On the other hand, SARS-CoV
stimulated the host innate immunity by upregulating
genes including defensins [24,25] and eosinophil derived
neurotoxin [26,27], similar to that of bacterial infections
(Fig. 2¢).

Signature genes and GAP algorithms

A simple k-nearest-neighbour method was used to obtain
a near optimal number of 30 genes from the 885 filtered
gene set for discriminating specimens between acute SARS
(AS) and non-SARS (NC and IN) (Additional file 4). The
selected top 30 upregulated (P < 6 x 10¢) and the top 30
downregulated genes (P < 4 x 107) from the AS versus
non-AS (IN and NC) Student's t-test were used as the spe-
cific probe set to assess the status of SARS infection. Eight
genes that were also significant in the NC versus non-NC
(AS and IN) t-test were excluded, resulting in a specific AS
probe set of 52 genes. For the GAP analysis, we calculated
pair-wise Euclidean distances among 55 samples (11 AS,
33 RS, 11 NC) using these 52 genes, aiming to identify a
one-dimensional order that could reflect the severity
structure of the disease (Fig. 3a). Using this GAP elliptical
arrangement of 55 specimens (columns), we observed a
transition of gene expression patterns of 52 genes (rows)
from the left side where NC clustered to the right side
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where AS accumulated (Fig. 3b). Hierarchical clustering
trees guided by self-organized map (SOM) and other clus-
tering methods were also performed to sort the SARS
patient samples using the same 52 genes. The Robinson
criterion [22,28,29] is often employed to assess the per-
formances of different seriation algorithms. Table 1 (and
Additional file 5) shows that the GAP algorithm derived a
smoother transition pattern than other methods in the
Robinson sense. Thereby, we have derived the SARS sever-
ity rank according to the expression profile of 52 signature
genes as a whole in each patient, as demonstrated by the
smooth transition of expression levels in each (row) of
these genes from NC to RS to AS (Fig. 3b).

For validation purposes, we further tested the stability of
the rank (order) derived from GAP analysis on the 52
genes for the 55 specimens. The same GAP procedure was
repeatedly applied to the top 20 to 200 genes (among the
filtered 885 genes) with significant p-values (Student's t-
test) between the AS versus non-AS (IN and NC). While
the ranks for the 55 specimens obtained from the most
significant 20 to 200 genes are highly correlated to each
other, they are significantly different from the ranks
derived from the 52-gene sets that were randomly selected
from the 885 genes (data not shown).

We scrutinized the clinical courses of patients who
donated the 10 RS specimens that were scattered among
AS (Fig. 3a) and found evidence of underlying severity of
the disease in the majority of patients. For example, sam-
ple RS43 from a patient who had been discharged from
hospital for 2 weeks was still PCR-positive for SARS-CoV;
RS54, a PCR-positive sample was not grouped as AS
because of the negative ELISA result. RS38, RS40, and
RS42 still represented acute SARS infections because they
were collected only 1, 2, and 3 days after AS37, AS39, and
AS41, respectively. Patients with RS78 and RS91 who had
severe SARS courses were hospitalized for 41 and 51 days,
respectively. The patient for RS8 was in the second week
of disease. The only two unexplained specimens, RS18
and RS71 from the same patient, may represent a unique
biological variability, accounting for the misclassification
using this 52-gene molecular signature.

Molecular signature for severity and clinical correlations

To test the efficacy of using these 52 genes as the molecu-
lar signature for the severity of SARS patients, we identi-
fied a significant correlation (P < 1 x 10¢) between the
derived rank of SARS severity and the number of days after
the onset of disease (Fig. 4a). We further used this rank of
SARS severity to examine the recovery trend in 17 recover-
ing patients who had donated multiple specimens (Fig.
4b). Except for the one patient (5.3 % = 1/19, shown as
the red line in Fig. 4b), similar trends existed in 18 out of
19 lines (94.7 %). Pugin et al. combined body
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Symbol
EST
CYPI7A1
MEIS3
EST

EST (3890)

EST (1603)
EST (2704)

Gene names
Homo sapiens cDNA FLJ11027
cytochrome P450, family 17, subfamily A, polypeptide 1
Meis1, myeloid ecotropic viral integration site 1 homolog 3
Homo sapiens cDNA FLJ38272
ESTs, Weakly similar to Hypothetical protein KIAA1223
thiopurine S-methyltransferase
hypothetical protein MGC2752
glucosaminyl (N-acetyl) transferase 2
acid sphingomyelinase-like phosphodiesterase
EST
Homo sapiens cDNA FLJ38995
ST

js3f
%]

hypothetical protein LOC202347

EST (1598) EST

AGER
EST
CALM3
EST (3438)
EST (5161)
EST (3872)
HELOL
CCNG1
ZFP36L2
CENTB2
BZW1
SPEC2
BACHI

PNN
FLJ23790
OSBPL3
FLI1
CSF2RB
ESTs
FLJ10420

DEFA3
PRSS15
EST
MLCISA
KIAAL128

A4
EST (0137)
TCEB2
GPX1
SLC35A1
CORO2B
MYL6
EDN

EDN
LOC203411

HDACI
SMARCA2

SMAR(,AZ

advanced glycosylation end product-specific receptor
Homo sapiens cDNA FLI39130
calmodulin 3
Homo sapiens cDNA YQS51D06
KIAA0913 protein
ESTs, Weakly similar to hypothetical protein FLLJ20489
homolog of yeast long chain fatty acid elongation enzyme 2
cyclin G1
zinc finger protein 36, C3H type-like 2
centaurin, beta 2
basic leucine zipper and W2 domains 1
non-kinase Cdc42 effector protein SPEC2
BTB and CNC homology 1
pinin
hypothencal protein FLI23790
oxysterol binding protein-like 3
Friend leukemia virus integration 1
colony stimulating factor 2 receptor, beta
Homo sapiens cDNA FLJ33024
hypothetical protein FLJ10420
eukaryotic translation initiation factor 4A, isoform 2
tropomyosin 3
DAZ associated protein 2
progesterone receptor membrane component 1
programmed cell death 4
ras-like protein TC10
Homo sapiens cDNA DKFZp313N1434
defensin, alpha 3
protease, serine, 15
Homo sapiens cDNA: FLJ21869
myosin light chain 1 slow a
KIAAT128 protein
defensin, alpha 3
FK506 binding protein 8
S-phase kinase-associated protein 2
cerebellar degeneration-related protein 1
defensin, alpha 4
EST
transcription elongation factor B, polypeptide 2
glutathione peroxidase 1
solute carrier family 35 member 1
coronin, actin binding protein, 2B
myosin, light polypeptide 6, alkali, muscle and non-muscle
eosinophil-derived neurotoxin
eosinophil-derived neurotoxin
hypothetical protein LOC203411
histone deacetylase 1
SWI/SNF-related, matrix-asso. actin regulator of chromatin
ring finger protein 4
N-myc downstream regulated gene 1
chromobox homolog 7
formin binding protein 1
US snRNP 100 kd protein
pleckstrin homology, Sec7 and coiled/coil domains 1
lysosomal-associated membrane protein 1
v-myc myelocytomatosis viral oncogene homolog
nucleolin
zinc finger protein, subfamily 1A, 1
poly(A) binding protein, cytoplasmic 1
(embryonic lethal, abnormal vision, Drosophila)-like 1
cyclin-dependent kinase 7
isoleucine-tRNA synthetase
homeo box A2
Homo sapiens, clone IMAGE:5301034
inhibitor of growth family, member 1
SWI/SNF-related, matrix-asso. actin regulator of chromatin

The top 40 discriminating genes with the highest distinction values for AS or NC groups. Twenty genes that were
specifically (A) upregulated or (B) downregulated in patients with SARS. Another twenty genes that were non-specifically (C)
upregulated or (D) downregulated by both bacterial infection and SARS. Each column represents an individual sample and each
row represents a gene. The color range reflected relative change according to the scale shown. NC, normal control; IN, bacte-
rial infection; AS, acute SARS. GMRCL clone numbers of some ESTs are also included in the parentheses.
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Generalized associated plots (GAP) analysis of SARS
patients samples. (A) Pair-wise Euclidean distance matrix
that was sorted by a GAP using 52 genes with the highest dis-
criminating power for AS groups revealed the minimum anti-
Robinson events in the matrix, resulting in a smooth transi-
tion order of the AS and RS specimens from severely dis-
eased to healthy states. AS (red @); RS (red O); NC (blue ).
(B) Gene expression profile for the 52 discriminating genes
displayed in the order obtained from the GAP method.

temperature, white blood cell count, volume and appear-
ance of tracheal secretions, oxygenation, chest X-ray, and
tracheal aspirate cultures into a clinical pulmonary infec-
tion score (CPIS) as a diagnostic tool for pneumonia [30].
We observed that the rank of SARS severity was also signif-
icantly (P < 0.001) correlated with the CPIS (Fig. 4c). Col-

http://www.biomedcentral.com/1471-2164/6/132

lectively, these results demonstrate a correlation between
the molecular severity rank and clinical factors, suggesting
the usefulness of the molecular signature as a genome-
wide parameter for gauging the severity of SARS patients.

Discussion

Diverse infections can induce a shared core gene expres-
sion involving the human innate immune system; each
infection may also trigger a pathogen-specific immune
response of the host. The innate immune genes were
upregulated in both acute SARS (AS) and bacteria infec-
tion (IN) patients (Fig. 2c). SARS was a novel viral infec-
tion that had not been encountered by the humans in the
history before 2003. Intriguingly, most of the genes specif-
ically upreguated in SARS patients were ESTs (13/20
genes) (Fig. 2a), suggesting that the first human encounter
with SARS-CoV might provoke a set of human genes that
were poorly annotated due to disuse. Annotation of these
ESTs may lead to the discovery of novel genes.

Given the high cost of microarray analyses, the detection
of a comprehensive gene expression profile may not be
cost-effective for clinical diagnosis and evaluation of
patients with infectious diseases. However, in a complex
system such as the human body where genes interplay
through intricate circuitries, it is inadequate to examine
only a few routine parameters in biochemistry and blood
cell counts for the global physiochemical status of a
patient at the time of blood collection. In this report, we
applied the GAP method to derive a smooth transition
pattern among samples based on the molecular signature
consisting of 52 genes, which in turn were used to moni-
tor the severity of clinical courses of SARS patients. Instead
of clustering samples into discrete groups in a method
similar to commonly-used microarray classifications [31],
GAP focuses more on a global orientation of the sample-
to-sample relationship. For instance, the AS and RS sam-
ples were seriation ranked (Fig. 3), and the rank order
proved to correlate well with clinical parameters (Fig. 4).

The GAP-derived rank of severity also provided us with a
unique way, where expression of most relevant genes were
all considered, to decipher the meaning of the changes in
other genes obtained from the same microarray experi-
ment. For instance, we have identified the correlative
change in matrix metalloproteinase MMP-7 and MMP-9
(Additional file 6): both can stimulate o-defensin [32].
Importantly, these correlations could not be revealed with
other parameters alone, such as number of days after dis-
ease onset or clinical score CPIS (data not shown).

In this study, however, there might be technical limita-
tions during RNA isolation from some clinical specimens
as well as an unavoidable sample-collecting bias. First,
both RNA isolation from SARS specimens and RNA
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Table I: Performance of Robinson structure with different seriation algorithms.

Anti-Robinson Events

Seriation Algorithm Counts Scaled Counts (%)
Random Order (NC-AS-RS) 26,245 100.00
Original Order 23,030 87.75
Self Organizing Map (SOM) Order 11,499 43.81
Average Linkage Tree/Original 10,268 39.12
Average Linkage Tree/SOM 10,738 4091
Average Linkage Tree/GAP 5,940 22.63
GARP Elliptical Order 5,022 19.14

amplification were performed in the Biosafety Level 3
laboratory, where the instrument for RNA quantitation
was not available. This limitation resulted in the failed
generation of aRNA from 10 out of 54 SARS specimens
(Additional file 1). Unfortunately, these 10 specimens
contained 7 specimens from patients at an early (i.e. first
2 weeks) stage [14]. Secondly, 25 SARS patients who
donated blood specimens for this study may belong to the
milder subgroup of a total of 44 SARS patients in Kaohsi-
ung Medical Center of Chang Gung Memorial Hospital.
According to a paper describing the complete cohort of
SARS patients [33], intubation and mechanical ventila-
tion were required in 20 out of these 44 patients. How-
ever, only two in our 25 patients needed intubation
(Additional file 1). The aforementioned two potential
limitations may account for why our microarray results
could not detect a correlation with a possible worsening
clinical course before recovering, which was described by
Peiris et al [14].

In conclusion, we propose the use of a molecular signa-
ture reflecting the severity of SARS in order to interpret the
trends of expression changes in groups of genes within
particular functional categories. The use of GAP method-
ology proved to be instrumental in determining the sever-
ity of SARS. The derived severity ranking of SARS patients
in turn formed a gradual basis for the analysis of the inter-
action patterns, providing us with a useful tool for under-
standing the molecular pathogenesis of this novel viral
infection.

Conclusion

We illuminate the human gene expression profiles, in
terms of gene expression in peripheral blood, to the
unprecedented infection of SARS-CoV. We also discov-
ered a smooth transition pattern of severity from normal
controls to acute SARS patients based on the gene expres-
sion profiles by generalized associate plots (GAP). The

rank of SARS severity was significantly correlated with
other clinical parameters.

Methods

Patient information and specimen preparation

Blood specimens of 25 SARS patients (Additional file 1)
were collected from 10 May to 4 July 2003 at Kaohsiung
Medical Center of Chang Gung Memorial Hospital
(CGMH) in Kaohsiung City of southern Taiwan. Two
additional blood samples (RS94 and RS97) were collected
from apparently healthy individuals who had recovered
from SARS infection 3 months later. Diagnosis of SARS
was based on the guidelines of World Health Organiza-
tion (WHO) [34]. More comprehensive data of the SARS
cohort were previously published [33]. This study was
approved by the Institute Review Board of CGMH. Total
RNA was isolated with the PAXgene Blood RNA System
(Qiagen, USA) and stored at -80°C. After RNAs were fur-
ther purified and concentrated into 15 pl BR5 solution
with RNeasy MinElute kit (Qiagen, USA), 2 ul were used
for linear RNA amplification using RiboAmp RNA Ampli-
fication Kit (Arcturus, California USA). Before the first
Strand Nuclease Mix was added to the RNA samples, all of
the RNA purification and amplification were performed
inside a Biosafety Level 3 laboratory located in Lin-Kou
Medical Center of CGMH. We analyzed the quality and
quantity of amplified RNA with Bioanalyzer 2100 (Agi-
lent, CA, USA).

Anti-SARS-CoV IgG ELISA and real-time quantitative PCR
analysis

The antigen used for the SARS detection ELISA was the
detergent-extracted and gamma irradiated Vero E6 cells
infected with SARS-CoV. Identical preparations from
uninfected Vero E6 cells were used as the control. Patients'
sera were 1:10 diluted and added to the ELISA plates, and
goat anti-human IgG antibody conjugated with horserad-
ish peroxidase (DAKO, Cambridgeshire, UK) was added
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Correlations between the GAP-derived rank for
SARS severity and clinical parameters. (A) The scatter
plot of all SARS specimens with the order obtained from the
GAP method and the days after the onset of disease showed
a significant correlation (P < 5 x 10-7). (B) Sixteen out of 17
SARS patients who submitted multiple blood specimens
showed a similar trend of changes in the GAP-derived sever-
ity rank along with the recovery from the disease. Patients
with 2 (n = 15) and 3 specimens (n = 2) were labeled with
blue and green lines, respectively. (C) The scatter plot of all
AS and RS specimens with the order obtained from the GAP
method and clinical pulmonary infection score (CPIS)
showed a significant correlation (P < 0.001).
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for enzymatic reaction. After adding the substrate, O-phe-
nylenediamine, the optical density (O.D.) was measured
at 450 nm wavelength. The cutoff value of O.D. for SARS-
CoV IgG ELISA was 0.15. Sensitivity of this method was
100% (28/28 in confirmed SARS cases) and specificity
was 98.4% (790/803) in the healthy control group.

Real-time quantitative PCR analysis for SARS-CoV was
performed with Cor-p-F4, Cor-p-R4 and Cor-probe devel-
oped by CDC (GA, USA) with HT 7900 Sequence Detec-
tion System (Applied Biosystems, CA, USA).

Microarray procedures

In this study, we used the GMRCL Human 7K set, Version 2
chips as previously described [35]. Twelve amplified RNA
samples from healthy donors (Additional file 3) were
pooled as the common reference for every array in this
study. A total of 66 aRNA samples including 11 acute
SARS (AS), 33 recovering SARS (RS), 11 non-SARS infec-
tion (IN), and 11 normal controls (NC) were analyzed
with cDNA microarrays as tests against the pooled aRNA
(the common reference). Among 66 aRNA preparations,
28 were analyzed with the dye-swapping microarray
design. We averaged the log ratios of the duplicated spots
on each slide. In the dye swapping experiments, we fur-
ther averaged the log ratios derived from two slides. We
used 400 ng of aRNA for labeling and hybridization using
a 3DNA Array 350RP Detection kit (Genisphere, PA,
USA), and scanned slides with a confocal scanner
ChipReader (Virtek, Canada). We acquired the spot and
background intensities with GenePix Pro 4.1 software
(Axon Instruments, Inc., CA, USA), and carried out
within-slide normalization using programs written with
MATLAB 6.0 software (The MathWorks, Inc., MA, USA).
To assure the reproducibility of our microarray system, we
got the similar gene expression profiles from replicated
samples (RS88) using the hierarchical clustering analysis
and also got the highly correlated results (r2= 0.84) from
two specimens (AS37 and RS38) that were collected from
the same patient at a time interval of only one day. We
consistently obtained identical results in each of 28 pairs
dye-swapping experiments. The complete microarray data
is available in Additional file 7.

Hierarchical clustering and singular value decomposition

We performed hierarchical clustering using Cluster and
TreeView software [36] with the following parameters: (i)
a standard deviation > 0.5 as the filtering cutoff point
(885 genes with marked changes selected among 66
arrays), (ii) mean-centered genes and normalized genes,
(iii) cluster analysis carried out with uncentered correla-
tion of arrays. We also performed a singular value decom-
position (SVD) [23] analysis of the correlation matrix for
all 66 samples. The first two eigenvectors weighted by the
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corresponding singular values (eigenvalues) of the 66
samples were plotted against each other.

Euclidean distance matrix by generalized association plots
Robinson criterion [22,28] is frequently used to assess the
performances of sorting algorithms on symmetric proxim-
ity matrices. A Robinson Matrix, R = [r;], is a symmetric
matrix such that r;; <7, if j<k<i and r;; > 1, if i<j<k. The GAP
elliptical seriation [22] utilizing the ellipse structure from
a singular value decomposition of a converged correlation
coefficient matrix usually identifies permuted matrix with
a near Robinson form. A brief review on GAP and some
details of its applications are available [37].
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