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Abstract
Background: The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a
number of important human and animal pathogens. Their complex life cycles and unique
cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-
based motility for cell invasion, yet the regulation of this system remains largely unknown.
Consequently, we focused our efforts on identifying actin-related proteins in the recently
completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp.

Results: Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that
most contain only a single conventional actin and yet they each have 8–10 additional actin-related
proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin
complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In
contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin
polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these
actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to
the known Arp groups and likely serve functions specific to this important group of intracellular
parasites.

Conclusion: The large diversity of actin-like proteins in apicomplexans suggests that the actin
protein family has diverged to fulfill various roles in the unique biology of intracellular parasites.
Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-
specific ALPs may control unique biological traits such as actin-based gliding motility.

Background
The phylum Apicomplexa contains several protozoan
pathogens that cause severe disease in mammals, includ-
ing humans. Members such as Plasmodium falciparum, and
P. vivax, which cause severe human malaria, and Theileria
parva and T. annulata, which are responsible for economic
losses in cattle in Africa, result in profound medical,
social, and economic effects [1,2]. Others such as Toxo-
plasma gondii, Cryptosporidium parvum and C. hominis are

primarily health threats in HIV+/AIDS and immunosup-
pressed populations [3].

Apicomplexans are primarily obligate intracellular para-
sites that rely on actin-based motility for cell invasion [4].
Invasion occurs by active parasite motility that is coupled
to timed secretion of proteins from specialized apical
secretory organelles, which are a hallmark feature of this
phylum [5,6]. The apical secretory organelles (called
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Table 1: Actin-Like Protein (ALP) Family Members in Toxoplasma gondii and other Apicomplexans

Toxoplasma gondii (Tg) Plasmodium falciparum (Pf) Cryptosporidium parvum (Cp) Theileria parva (Tp)

ALP 
Protein

Gene ID a % ID to 
TgACT1 *

E -value Pfam 
score b

Gene ID a % ID to Tg 
ALP *

E -value Pfam 
score b

Gene ID a % ID to Tg 
ALP1 *

E -value pfam 
score b

Gene ID a % ID to Tg 
ALP1 *

E -value pfam 
score b

Arp1 TgTwinScan_4250 53% 1.00 × 10 -116 492 CAD48998 63% 1.00 × 10 -145 464 EAK87959 57% 1.00 × 10 -134 437 - - - -

ALP1 AAW23163 39% 4.00 × 10 -73 295 AAN35700 49% 1.00 × 10 -104 257 EAK88581 45% 3.00 × 10 -94 292 EAN34027 39% 3.00 × 10 -84 246

ALP2a TgTwinScan_4277 27% 4.00 × 10 -05 53.4 AAN35636 20% 4.00 × 10 -22 78.4 EAL37900 c 27% 2.00 × 10 -13 85.4 EAN34250 24% 2.00 × 10 -24 67.7

ALP2b - - - - CAD51417 d 98.1 - - - - - - - -

ALP3 TgTwinScan_2515 23% 2.00 × 10 -16 80.8 CAD51025 36% 1.00 × 10 -6 - EAK89329 20% 1.00 × 10 -3 73.1 - - - -

ARP4a TgTwinScan_2909 34% 6.00 × 10 -19 114 AAN36831 36% 1.00 × 10 -24 131 EAK89417 38% 1.00 × 10 -22 250 EAN32990 27% 2.00 × 10 -38 160

ARP4b TgTwinScan_6634 27% 1.00 × 10 -33 115 - - - - - - - - EAN33438 22% 5.00 × 10 -15 61.9

ALP5a - - - - CAD51790 e 44.9 - - - - - - - -

ALP5b - - - - CAD49164 e 68.4 - - - - - - - -

ARP6 TgTwinScan_6605 20% 4.00 × 10 -08 71.1 CAD50940 40% 3.00 × 10 -23 68 EAL35517 c, d 30% 5.00 × 10 -22 91.9 EAN33600 31% 1.00 × 10 -37 84.6

ALP7a - - - - - - - - EAK88375 e 47.6 - - - -

ALP7b - - - - - - - - EAK88162 e 110 - - - -

ALP8 TgTwinScan_0463 f 25% 3.00 × 10 -25 106 - - - - - - - - - - - -

ALP9a TgTwinScan_2686 24% 0.008 46.5 - - - - - - - - - - - -

ALP9b TgTwinScan_7210 - - - - - - - - - - - - -

* = BLAST2 pairwise comparison
(-) = no significant match
E -value from Pairwise Blast (BLAST 2 sequences)
a = Gene ID obtained from http://www.ToxoDB.org, http://www.PlasmoDB.org, http://www.CryptoDB.org, and the NCBI database
b = Pfam score to Pfam domain pfam00022 as determined by BLASTP comparison to the CDD NCBI database
c = Cryptosporidium hominis
d = Cp ortholog encoded on contig_AEE01000007 nt# 293712–294650 frame1. Translated using GENESCAN webserver
e = primary family member
f = entire Tg ortholog encoded by TGG_994550 nt# 296106–297827. Translated using GENESCAN webserver

http://www.ToxoDB.org
http://www.PlasmoDB.org
http://www.CryptoDB.org
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Phylogenetic comparisons of actin and actin-related proteins in apicomplexans and model organismsFigure 1
Phylogenetic comparisons of actin and actin-related proteins in apicomplexans and model organisms. In addi-
tion to conventional actins, apicomplexans contain conserved Arp1, Arp4, and Arp6 proteins; however, they do not encode 
Arp2 or Arp3 orthologues. Many apicomplexan proteins do not group with any of the known Arp clades. These have been 
divided further into proteins that are highly conserved among all the apicomplexans (i.e. ALP1, ALP2, ALP3) and those that are 
organism-specific (i.e. ALP5, ALP7, ALP8). Phylogenetic analysis was performed using PAUP*4.0b10 and the BioNeighbor-Join-
ing algorithm (BioNJ) to determine the divergence distances among taxa. Consensus trees were bootstrapped for 1000 repli-
cates and drawn according to the 50% majority-rule. Conventional actin was defined as the out-group. Subgroups of Arps and 
ALPs have been highlighted to define the boundaries between groups. Taxa are as follows: At = Arabidopsis thaliana, Bs = Bacil-
lus subtilis, Ce = Caenorhabditis elegans, Cp = Cryptosporidium parvum, Dd = Dictyostelium discodium, Dm = Drosophila mela-
nogaster, Hs = Homo sapiens, Pf = Plasmodium falciparum, Sc = Saccharomyces cerevisiae, Tg = Toxoplasma gondii, Tp = Theileria 
parva, Tt = Tetrahymena thermophila. Bootstrap values ≥90% are represented by the black nodes ● , values ≥ 75% are repre-
sented by the gray nodes , and values ≥50% are denoted by the white nodes ❍.
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Parsimony analysis of actin and actin-related proteins from apicomplexans and other taxaFigure 2
Parsimony analysis of actin and actin-related proteins from apicomplexans and other taxa. Phylogenetic analysis 
performed using parsimony resulted in groupings that mirrored distance analysis. All major classes of Arp and ALP groups are 
maintained except for the Arp4 group, which differs slightly from the BioNJ consensus tree in other eukaryotic taxa as well as 
in the apicomplexans. Relationships were calculated in PAUP*4.01b using the heuristic algorithm and verified by bootstrapping 
(>100 replicates). Consensus trees were drawn according to the bootstrap 50% majority-rule. Conventional actins were 
defined as the out-group. Subgroups of Arps and ALPs have been highlighted to define the boundaries between groups. Taxa 
are defined in Figure 1. Bootstrap values ≥90% are represented by the black nodes ● , values ≥ 75% are represented by the 
gray nodes , and values ≥50% are denoted by the white nodes ❍.
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micronemes, rhoptries, and dense granules) release their
contents in a highly regulated fashion upon host cell
interactions [7]. Microneme proteins provide adhesion to
the host cells and supply the traction needed for invasion.
Rhoptry and dense granule proteins function in the estab-
lishment and maintenance of a protective, intracellular
niche called the parasitophorous vacuole (reviewed in
[8]). Understanding how motility and invasion are regu-
lated is crucial to elucidating the pathobiology of these
organisms, yet we know relatively little about how these
functions are controlled at the cellular level.

Apicomplexans are characterized by a unique cytoskele-
ton that is distinct from that of other eukaryotes [9]. At
their apical end is a specialized microtubule-organizing
center called the polar ring complex, which coordinates a
series of singlet microtubules called the subpellicular
microtubules [10,11]. The remarkable stability of these
microtubules provides a defined shape and polarity to the
cells that is necessary for motility and invasion [12]. The
subpellicular microtubules encompass the apical secre-
tory organelles and may play a role in trafficking to the
apical end of the cell. Apicomplexans also regulate their
actin cytoskeleton differently, maintaining a large pool of
soluble actin, both globular and in short, unstable fila-
ments [13-15]. During motility, actin filaments must rap-
idly assemble to support gliding and then turnover
rapidly to prevent unwanted movement. Actin regulation
is thus crucial to the control of motility. In other eukaryo-
tes, a large family of actin-related proteins helps control
many cytoskeletal functions including vesicle transport
and actin-based motility.

Actin-related proteins (Arps) are conserved across all
eukaryotes and some prokaryotes. Although all members
share a common actin-fold and an overall sequence simi-
larity to actin [16-18], individual Arps carry out a variety
of biochemical and structural roles in the cell [19]. These
include roles in cell division [20], translocation of cargo
along microtubules via dynein [21,22], actin polymeriza-
tion [23], and transcriptional regulation via chromatin/
heterochromatin remodeling [24-26]. Currently, more
than 11 classes of Arps have been reported from a broad
range of eukaryotes including plants, animals, fungi, and
protozoans (i.e. Dictyostelium, Acanthamoeba, and Tetrahy-
mena). In each case, the Arp groups link the separate king-
doms both by protein similarity and common
biochemical functions. Despite their apparent conserva-
tion among the majority of eukaryotes, no Arps have been
previously described in the Apicomplexa.

Complete genome sequences have recently been provided
for a variety of apicomplexan parasites. A cursory exami-
nation of these genomes reveals multiple actins and actin
related proteins; however, these have been inconsistently

identified and annotated. The complex biology of these
parasites led us to examine actin-related proteins in this
phylum relative to other eukaryotes using a combination
of phylogenetic and reciprocal BLAST analyses. Our find-
ings reveal a complexity of actin-related proteins not pre-
viously appreciated and define both conserved and
unique members of this protein family within the Api-
complexa.

Results and discussion
Phylogenetic comparisons of actin-like proteins in 
apicomplexans
We searched the recently completed genomes of Toxo-
plasma gondii, Plasmodium spp., Cryptosporidium spp., and
Theileria spp. for actin-related proteins using conventional
actins and conserved Arp proteins from organisms span-
ning several phyla including mammals, plants, flies,
worms, yeast, and protozoa [see Additional File 1]. BLAST
analysis identified over 60 candidate actin-related pro-
teins in total among the apicomplexan genomes exam-
ined in this study (Table 1). Reciprocal BLASTP searches
using each of these apicomplexan actin-like proteins
against the NCBI CDD database revealed that the majority
of them contain a conserved actin domain (pfam00022)
(Table 1). However, at present individual actin-related
protein groups have not been defined by distinct domains
or motifs common to members of only one group. Con-
sequently, we sought to establish relationships between
the apicomplexan actin-like proteins and conventional
Arps using sequence alignment and phylogenetic analy-
ses. Candidate actin-related proteins were aligned with a
broader spectrum of Arps from a variety of eukaryotic taxa
and bacterial actin-like proteins using CLUSTALX [27].
The relative divergence of actin-like proteins was deter-
mined by Neighbor-Joining distance analysis using the
phylogenetic analysis program PAUP*4.01b [28]. The
resulting bootstrapped phylogram is shown in Fig. 1. Par-
simony analysis revealed a similar branching pattern for
the major Arp groups, but was less able to resolve deep
branching groups (i.e. Arp4 and various apicomplexan
specific ALPs), likely due to the divergence of these
sequences (Fig. 2). We have focused primarily on the rela-
tionships supported by distance analysis, since this meth-
odology is more appropriate for highly divergent
sequences.

Our analysis reveals that the apicomplexans all encode a
single conventional actin (with the exception of Plasmo-
dium which has two conventional actins), and the
remaining proteins form a total of 10 distinct actin-related
protein groups (Fig. 1). Three of these groups were shown
to belong to well-characterized Arps including Arp1, Arp4,
and Arp6 (Fig. 1). In contrast, we discovered that several
other apicomplexan actin-like proteins (ALPs) were
unique to this phylum, as they did not group with any of
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Table 2: Conserved Cytoplasmic Dynein Subunits in Apicomplexans

Toxoplasma gondll (Tg) Plasmodium falciparum (Pf) Cryptosporidium parvum (Cp) Thelleria parva (Tp)

Dynein 
Subunit

Pfam ID Tg 
Candidate a

Top 
Match b

E -value c Pfam 
Score d

Pf 
Candidate a

Top 
Match b

E -value c Pfam 
Score d

Cp 
Candidate a

Top Match 
b

E -value c Pfam 
Score d

Tp 
Candidate a

Top 
Match b

E -value c Pfam 
Score d

Heavy Chain pfam03028 TgTwinScan_
0436

Rn heavy 
chain

0 402 CAD51040 Rn heavy 
chain

0 297 EAK88498 Dm heavy 
chain

0 274 CAI73268 e, f Ce heavy 
chain

2.00 × 10 -76 76.1

Light Chain pfam01221 TgTwinScan_
2634

Mm light 
chain2

6.00 × 10 -24 148 AAN36221 Rn light 
chain

1.00 × 10 -38 130 EAL37552 g, h Dm light 
chain 1

4.00 × 10 -41 142 EAN33478 Rn light 
chain

2.00 × 10 -27 111

Intermediate 
Chain

nd TgTwinScan_
1768

Xt 
intermediate 

chain

7.00 × 10 -80 AAN35394 Dd 
intermediate 

chain

1.00 × 10 -82 EAK88439 Xt 
intermediate 

chain

1.00 × 10 -48 - - - -

Intermediate 
Light Chain

pfam05783 TgTwinScan_
4175

Hs 
intermediate 
light chain

8.00 × 10 -07 63.9 CAD51749 Gg 
intermediate 
light chain

3.00 × 10 -10 72 EAK88297 Gg 
intermediate 
light chain

0.023 43.5 - - - -

Dynein Light 
Chain 

TcTex1

pfam03645 TgTwinScan_
1459

Hs TcTex1 2.00 × 10 -12 81 CAD51956 Hs TcTex1 1.00 × 10-12 70.3 EAK87898 Mm TcTex1 9.00 × 10 -17 83.4 - - - -

Roadblock pfam03259 TgTwinScan_
6940

Ci roadblock 6.00 × 10 -34 81.8 AAN35393 Ci 
roadbloack

1.00 × 10 -24 85.3 EAK88245 Ci roadblock 0.24 - - - - -

nd = not defined
(-) = no significant match
a = gene candidates identified by text and BLASTP searches of http://www.ToxoDB.org, http://www.PlasmoDB.org, http://www.CryptoDB.org, and the NCBI nr database
b = identifying protein found in reciprocal BLASTP search of the NCBI nr database using apicomplexan candidates as query
c = E -value of reciprocal BLASTP search
d = Pfam score as determined by BLASTP comparison to the CDD NCBI database
e = Theileria annulata
f = Tp ortholog EAN34073
g = Cryptosporidium hominis
h = Cp ortholog encoded on contig_AAEE01000005 nt#75605–75871frame1. Translated using GENESCAN webserver
Ce = Caenorhabditis elegans, Ci = Ciona intestinalis, Dd = Dictyostelium discoideum, Dm = Drosophila melanogaster, Hs = Homo sapien, Gg = Gallus gallus, Mm = Mus musculus, Rn = Rattus norvegicus, Xt = 
Xenopus tropicalis

http://www.ToxoDB.org
http://www.PlasmoDB.org
http://www.CryptoDB.org
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the conventional Arps (i.e. ALP1 and ALP2)(Fig.1); there-
fore, we have used the designation actin-like protein
(ALP) to differentiate the apicomplexan-specific protein
groups. A comparison of actin-like proteins within the
Apicomplexa is summarized in Table 1. The remaining
ALPs were specific to a subset of apicomplexans such as
Toxoplasma (i.e. ALPs 8, and 9), Cryptosporidium (i.e.
ALP7) and Plasmodium (i.e. ALP5). Several of these
groups also contain paralogues, for example ALP5a and
ALP5b in Plasmodium (Fig.1). While some ALPs appear
as deep branches (i.e. TpALP4b, PfALP2b, CpALP7a and
CpALP7b, TgALP2a, TgALP3) they were grouped and
hence named in part based on BLAST results (Table 1) and
phylogenetic analysis of apicomplexan ALPs compared in
the absence of other organisms (data not shown). Our
findings suggest that some actin-like proteins play roles
that are conserved across all eukaryotes while other mem-
bers of this group have diverged to fulfill specific roles
within the Apicomplexa.

The two key features most prominent about the apicom-
plexan actin-like proteins are their strong conservation of
the Arp1 protein (a major component of the dynactin
complex) and their remarkable lack of both Arp2 and
Arp3 homologues (subunits of the Arp2/3 actin polymer-
ization complex) (Fig. 1). The presence of a highly con-
served Arp1 and the absence of Arp2 and Arp3
orthologues have important biochemical implications for
these parasites regarding vesicular trafficking and actin
regulation, respectively. Arp1 is an essential component of
the dynactin complex involved in vesicular trafficking
[29,30] while Arp2/3 forms a multi-subunit complex that
is the primary means of regulating actin polymerization in
eukaryotic cells [31,32]. For these reasons, we conducted
a more comprehensive study of the protein components
that constitute these complexes.

The dynactin complex
Dynactin is a microtubule-associated complex that is crit-
ical for tethering cellular cargo to the cytoplasmic motor
protein dynein [30]. Cytoplasmic dynein consists of
heavy, light, intermediate, and intermediate light chains
in addition to several regulatory subunits [33]. We
searched the P. falciparum and C. parvum genomes to iden-
tify components of this complex using text word searches.
Convincing orthologues for all of the subunits were found
in both parasites as shown by reciprocal BLASTP and the
presence of conserved pfam domains (Table 2). These hits
were then used to identify orthologues in other apicompl-
exan genomes by BLASTP as verified by both significant
BLAST E-values and the presence of conserved pfam
domains (Table 2). Somewhat surprisingly, a complete
complex was not readily identified in Theileria, with the
exception of subunits for heavy and light chains (Table 2).

Based on the presence of a conserved dynein complex in a
majority of apicomplexans, we thought it reasonable to
search for evidence of a dynactin complex. The dynactin
complex consists of several protein subunits that are
grouped into two domains: the Arp1 rod and a flexible
arm region. The protein subunits of the Arp1 rod are more
highly conserved between eukaryotes than the remaining
dynactin subunits [30]; therefore, we focused our efforts
on defining homologues to these proteins in the apicom-
plexans. The subunits comprising the Arp1 rod include
Arp1, Arp11, capping protein (CapZ), p62, p25, p27, and
actin (see [30] for a complete review of the dynactin com-
plex).

We used database searches to identify the dynactin subu-
nits within apicomplexans. Sequences from mammals,
flies, worms, and protozoa were compared against the
NBCI nr database and the respective genomic databases of
Toxoplasma, Plasmodium, and Cryptosporidium (Table 3)
[see Additional file 1]. Arp1 was readily identified in Plas-
modium, Cryptosporidium, and Toxoplasma, although it is
apparently absent in Theileria (Table 1). Highly conserved
orthologues of the p25, p27, and p62 subunits were
found in Toxoplasma, Plasmodium, and Cryptosporidium as
shown by both significant BLASTP E-values and the pres-
ence of conserved pfam domains (Table 3).

The Arp1 rod contains a short filament of Arp1 subunits
[34] that is capped at both ends. The (+) or barbed end is
terminated by capping protein [35] and the (-) or pointed
end by the actin-related protein Arp11 [36]. Toxoplasma
and Plasmodium both contain β subunits of capping pro-
tein, and the α subunit in Plasmodium showed a signifi-
cant BLASTP E-value and conserved pfam motif (Table 3).
The α subunit reported for Toxoplasma is highly divergent
(NCBI AAU93918) and does not have significant
matches, although BLASTP searches turn up a number of
α subunit orthologues (Table 3). Additionally only the β
subunit was identified in Cryptosporidium (Table 3). Cap-
ping protein always exists as an α/β dimer [37] and it is
possible the α subunit is divergent in Toxoplasma and
Cryptosporidium and hence difficult to recognize at present.
Our phylogenetic analysis of the Arps did not show strong
affinities between any of the ALP proteins and the Arp11
group (Fig. 1). However, we have included TgALP3,
PfALP3, and CpALP3 as possible Arp11 orthologues based
on their sequence similarity to the Arp11 proteins in
BLASTP searches (Table 3).

Dynamitin is a component of the flexible arm region of
the dynactin complex [30]. We identified proteins with
recognizable dynamitin domains in Toxoplasma and Plas-
modium, but not Cryptosporidium (Table 3). The remaining
subunits of the dynactin complex were not detected by
BLAST or protein domain searches in these organisms.
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Table 3: Conserved Dynactin Subunits in Apicomplexans

Toxoplasma gondii (Tg) plasmodium falciparum (Pf) Crytosporidium parvam (Cp)

Dynactin 
Subunit

Pfam ID Tg Candidate a Top Match b E -value c Pfam score d Pf Candidate a Top Match b E -value c Pfam score d Cp Candidate a Top Match b E -value c Pfam score d

Arp1 * pfam00022 TgArp1 TgTwinScan_4250 GgArp1 1.00 × 10 -147 492 PfArp1 CAD48998 Gg Arp1 1.00 × 10-141 464 CpArp1 EAK87959 GgArp1 1.00 × 10 -131 437

Arp10/11 * pfam00022 TgALP3 TgTwinScan_2515 Gg Arp10 8.00 × 10 -28 80.8 PfALP3 CAD51025 Dr Arp10 8.00 × 10 -05 - CpALP3 EAK89329 GgArp10 9.00 × 10 -21 73.1

p62 e pfam05502 TgTwinScan_5099 Hs p62 3.00 × 10 -09 62.8 AAN37118 Hs p62 5.00 × 10 -05 56.7 EAK88826 Hs p62 9.00 × 10 -21 101

p25 f nd TgTwinScan_4906 Gg p25 4.00 × 10 -29 CAD50982 Dd p25 2.00 × 10 -21 EAK87596 Dd p25 9.00 × 10 -18

p27 g nd TgTwinScan_1451 Sp p27 8.00 × 10 -05 CAD51191 Bt p27 0.009 EAK90307 Am p27 9.00 × 10 -08

CapZ α pfam01267 AAU93918 At CapZ α 1.3 - CAD51646 Dd CapZ α 4.00 × 10 -17 102 - - -

CapZ β pfam01115 AAU93916 Dm CapZ β 2.00 × 10 -45 197 CAD51540 Dm CapZ β 4.00 × 10 -29 140 EAK88546 Dd CapZ β 2.00 × 10 -07 53.9

Dynamitin/
p5O h

pfam04912 TgTwinScan_4110 Dr p5O 4.00 × 10 -10 62 CAD52583 XI p5O 1.00 × 10 -04 52.8 - - - -

* = see phylogenetic analysis for definition of apicomplexan candidates
nd = not defined
(-) = no significant match
a = protein ID of candidate apicomplexan protein
b = identifying protein found in reciprocal search of the NCBI database using the apicomplexan candidate as query
c = E -value of the top match identifying protein in comparison to the apicomplexan candidate
d = Pfam score as determined by BLASTP comparison to the CDD NCBI database
e = protein sequences used to identify apicomplexan candidates : Hs AAH26323, Dm AAF59211, Ce AAC24257, Dd XP_641285
f = protein sequences used to identify apicomplexan candidates: Hs Q9BTE1, Dm AAF34709, Sp XP_782293, Dd EAL68462
g = protein sequences used to identify apicomplexan candidates : Hs AAH13175, Dm NP_609949, Ce NP_491116
h = protein sequences used to identify apicomplexan candidates : Hs AAC50423, Dm AAF59034, Ce NP_498286, Dd XP_638093
Am = Apis melliferous, At = Arabidopsis thaliana, Bt = Bos taurus, Ce = Caenorhabditis elegans, Dd = Dictyostelium discoideum, Dm = Drosophila melanogaster, Dr = Danio rerio, Hs = Homo sapiens, Gg 
= Gallus gallus, Sp = Strongylocentrotus purpuratus, XI = Xenopus laevis
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However since these other subunits are less well
conserved, failure to detect them by BLAST is not
surprising.

The identification of apicomplexan orthologues
to all the subunits of the Arp1 rod, and the pres-
ence of dynamitin in Toxoplasma and Plasmodium,
provides strongly supportive evidence that a func-
tional complex exists in these parasites. Theileria
appears to be an exception to this pattern as nei-
ther Arp1 or the other subunits were recognized.
The conserved complex in parasites likely carries
out duties analogous to the dynactin in other
eukaryotes. One possible role for this complex
would be the directed delivery of secretory protein vesicles
as has been described in other systems [29]. Secretory pro-
tein trafficking occurs via an ER-Golgi mediated pathway
[38] and dynactin could provide the transportation by
which cargo vesicles reach their specialized secretory
organelles at the apical pole. Apical secretion is an impor-
tant component of cellular invasion and maintenance of
this polarization is thus vital to the survival of the parasite.

The Arp2/3 actin polymerization complex
The Arp2/3 complex consists of 7 subunits that
regulate actin polymerization at the leading edge
in motile cells [23], as well as providing a propulsive force
to move endosomes throughout the cytoplasm [39,40].
Arp2/3 is a major nucleator of actin polymerization in
most eukaryotic cells; however, our phylogenetic analyses
of the apicomplexan actin-related proteins did not show
homologues to either Arp2 or Arp3 (Fig. 1). Notably, Arp2
and Arp3 homologues have been previously annotated in
both the Plasmodium and Cryptosporidium genome data-
bases (PfArp3: CAD51790, PfArp2: CAD49164, CpArp3:
EAK88375, and CpArp2, EAK88162). These proteins cor-
respond to our annotations PfALP5a, PfALP5b, CpALP7a,
and CpALP7b, respectively. Phylogenetic comparisons do
not support these previously proposed annotations, but
rather indicate that these actin-like proteins are part of
other ALP groups (Fig. 1).

A recent analysis of the actin family from model organ-
isms was utilized to derive predictive models for grouping
Arp groups in a variety of taxa [41]. Importantly, this anal-
ysis also found Arp1, Arp4, and Arp6 homologues among
the Apicomplexa (Plasmodium and Cryptosporidium
genomes) but failed to identify orthologues of Arp2, Arp3
or other Arp groups [41]. Collectively, these findings indi-
cate apicomplexans do not encode a conserved Arp2/3
complex.

We also searched for the other 5 subunits of the Arp2/3
complex that are known as actin-related protein complex
1 (ARPC1)/p41, ARPC2/p34, ARPC3/p21, ARPC4/p20,

and ARPC5/p16. A separately recognized domain is only
described for ARPC4/p20 (pfam05856), perhaps reflect-
ing the divergence of the remaining subunits across the
many taxa where they are readily identified by BLAST. We
conducted genome-wide BLAST searches of apicomplex-
ans as described above using ARPC proteins from mam-
mals, flies, yeast, plants, and protozoa (see Table 4) [see
Additional file 1]. No proteins with similarity to subunits
ARPC2, 3, and 5 were found in any of the four apicompl-
exan genomes.

Potential orthologues to the ARPC1/p41 were found in
Plasmodium and Cryptosporidium (Table 3): both of these
proteins contain WD40 repeats, which are a distinguish-
ing feature of the ARPC1/p41 proteins in other eukaryotes
[42]. This analysis was supported by BLAST and also by
protein domain searches using Prosite, which identified
WD40 repeat domains in both proteins (Pfam PF00400,
SMART domain SM00320). WD40 repeats mediate pro-
tein-protein interactions and are involved in regulating
numerous biological functions in addition to their role in
actin nucleation [43,44]. Since ARPC1/p41 is not neces-
sary for the overall cohesiveness of the Arp2/3 subunits
[45], we can hypothesize this protein may serve an alter-
native function outside of the Arp2/3 complex in Plasmo-
dium and Cryptosporidium.

Surprisingly, Cryptosporidium encodes a conserved ARPC4/
p20 subunit as shown by BLAST analysis and by Prosite
domain similarity (pfam PF05856) (Table 4). In other
eukaryotes, ARPC4 forms a stable heterodimeric complex
with ARPC2/p34 that comprises the structural core of the
Arp2/3 complex [45]. In the absence of ARPC4/p20,
Arp2/3 complexes are not formed [45], underscoring its
importance to the protein scaffold. It is therefore unusual
that Cryptosporidium would retain a close orthologue to
one subunit and completely lack the other (Table 4).
Additionally, the ARPC2/ARPC4 heterodimer binds actin
filaments and is thought to be necessary for branching of
daughter filaments from existing mother filaments [45].
Actin in Toxoplasma does not appear to be branched [46],
thus it is unclear why Cryptosporidium maintains an
ARPC4 homologue (Table 4).

The presence of remnant ARPC1/p41 homologues in Plas-
modium and Cryptosporidium, and ARPC4/p20 in Crypt-
osporidium indicates that the complex may have been
functional at one time in these parasites; however, they
either have since lost the complex completely or the sub-
units have diverged to the extent that they are no longer
recognizable. Support for this hypothesis comes from
other alveolates, such as the closely-related but deeper
branching ciliate lineages [47]. The ciliate Tetrahymena
thermophilia encodes a canonical Arp2/3 complex with
easily recognizable Arp2 (AAN73249), Arp3
Page 9 of 13
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Table 4: Conserved Arp2/3 Complex Subunits in Apicomplexans

Toxoplasma gondii (Tg) Plasmodium falciparum (Pf) Cryptosporidium parvum (Cp) Theileria parva (Tp)

Arp2/3 
complex 
subunit

Tg 
candidate a

Top 
Match b

E -value c Pf 
candidate a

Top 
Match b

E -value c Cp 
candidate a

Top 
Match b

E -value c Tp 
candidate a

Top 
Match b

E -value c

Arp2 - - - - - - - - - - - -

Arp3 - - - - - - - - - - - -

ARPC1/ p41 d - - - AAN35779 SpARPC1 0.002 EAK89688 MmARPC1 1.00 × 10 -11 - - -

ARPC2/p34 e - - - - - - - - - - - -

ARPC3/ p21 f - - - - - - - - - - - -

ARPC4/ p20 g - - - - - - EAK89016 OsARPC4 4.00 × 10 -11 - - -

ARPC5/ p16 h - - - - - - - - - - - -

(-) = no significant match
a = protein ID of candidate apicomplexan protein
b = identifying protein found in reciprocal BLASTP search of the NCBI database using the apicomplexan candidate as query
c = E -value of the top match identifying protein in comparison to the apicomplexan candidate
d = protein sequences used to identify apicomplexan candidates : Hs Q92747, Dm CAB38634, Sc P38328, At AAO42862, Dd AAC99777, Tc EAN83660
e = protein sequences used to identify apicomplexan candidates : Hs NP_690601, Dm Q9VIM5, Sc NP_014433, At AAM60850, Dd AAC99778, Tc EAN93128
f = protein sequences used to identify apicomplexan candidates : Hs AAH67747, Dm NP_013474, Sc NP_013474, At AAM61177, Dd AAC99779, Tc EAN89964
g = proteins used to obtain apicomplexan candidates : Hs AAB64192, Dm AAF52346, Sc NP_012912, Dd AAC99780, Tc XP_810627
h = protein sequences used to identify apicomplexan candidates : Hs NP_005708, Dm NP_608693, Sc P40518, Dd AAC99781, Tc EAN80710
At = Arabidopsis thaliana, Dd = Dictyostelium discoideum, Dm = Drosophila melanogaster, Hs = Homo sapiens, Mm = Mus musculus, Os = Oryza sativa, Sc = Saccharomyces cerevisiae, Sp = 
Strongylocentrotus purpuratus, Tc = Trypanosoma cruzi
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(AAN73250), ARPC2 (4.m00362), ARPC3 (43.m00326)
and ARPC4 (152.m00065) subunits. Loss of a functional
complex in the apicomplexans may have resulted from
their highly specialized, intracellular lifestyles. Decipher-
ing how apicomplexans control actinfilament turnover is
thus an intriguing and unanswered question. We postu-
late that evolution of alternative proteins, such as the
ALP1 proteins (Fig. 1), could enable parasites to regulate
actin polymerization in a more streamlined mechanism,
yet maintain the overall function of the complex.

The ALP1 group of apicomplexan-specific proteins is phy-
logenetically similar to both the Arp2 and Arp3. ALP1 in
Toxoplasma is the second closest paralogue to conven-
tional actin with which it shares 37% identity and 57%
similarity (Table 1). Moreover, TgALP1 is 49% identical to
PfALP1 and 45% identical to CpALP1, indicating the
ALP1 proteins are highly conserved within this phylum
(Table 1). These phylogenetic properties, in conjunction
with the lack of any obvious Arp2 or Arp3 homologues,
lead us to hypothesize that the ALP1 proteins may play a
corresponding or complementary role to these two pro-
teins in the apicomplexans.

Arps and chromatin remodeling
In addition to their cytoskeletal roles, actin and Arps func-
tion in the nucleus as components of chromatin-modify-
ing and chromatin-remodeling protein complexes [48].
These Arps include Arp4, Arp5, Arp6 and Arp8 [26,49-51].
Arps 7 and 9 are yeast-specific and do not have homo-
logues in other eukaryotes [48]. Our studies show the api-
complexans encode conventional Arp4 and Arp6
orthologues (Fig. 1).

Chromatin-modifying and -remodeling machinery are
involved in DNA replication, DNA repair mechanisms
and transcriptional regulation [52]. Arp4 is present in sev-
eral complexes including the NuA4 histone acetyltrans-
ferase and several members of the ATP-dependent SWI2-
SNF2 family of chromatin-remodeling complexes
[51,53]. In yeast, Arp6 is also a member of SWR1, a sub-
group of the SWI2/SNF2 chromatin-remodeling com-
plexes [50]. Other roles for Arp6 include transcriptional
deactivation via heterochromatin-remodeling in Dro-
sophila and vertebrates [24].

Changes in gene expression are important means of regu-
lating function and such changes have been shown to play
a role in parasite stage-differentiation [54-56]. The Plasmo-
dium and Cryptosporidium genomes appear to lack many
common transcription factors leading to the hypothesis
that these parasites rely heavily on chromatin-remodeling
for transcriptional control [57,58]. This is supported by
the fact that apicomplexans appear to contain several
components of the SWI2/SNF2 ATPase chromatin-remod-

eling machinery [57,58]. Recently, Saksouk et. al. showed
the first direct correlation of histone acetylation and
methylation to stage-specific gene expression in Toxo-
plasma [59], supporting the importance of chromatin
modification and remodeling in these parasites. The pres-
ence of conserved Arp4 and Arp6 orthologues suggests
that actin-related proteins participate in chromatin
remodeling in apicomplexans similar to other eukaryotes.

Conclusion
Comprehensive analysis of the genome content of these
parasites combined with phylogenetic groupings has
allowed us to propose potential functions for many of
these Arp/ALP groups. Our findings indicate that apicom-
plexans encode a variety of actin-like proteins (ALPs) that
likely participate in actin-based motility, vesicle transport,
and transcriptional regulation through chromatin remod-
eling. Delineating their respective functions will ulti-
mately enrich our understanding of these parasites, and
also the evolution of the actin family as a whole.

Methods
Assembly of actin-like proteins from apicomplexans and 
other alveolates
Comprehensive BLAST searches were performed against
the T. gondii genome database (ToxoDB Release v3.0)
using 27 protein sequences from Arp1 through Arp4 that
represented major taxa including mammals, plants, flies,
worms, yeast, and protozoa. Actin-like proteins were iden-
tified in Plasmodium spp. (PlasmoDB Release v4.3) and C.
parvum (NCBI nr database and CryptoDB Release v3.0) by
combination of tBLASTn and BLASTP searches using the
above conserved Arps or Toxoplasma candidate actin-like
sequences. BLAST searches were restricted to only high
quality "hits" (e-value of ≤ .0001). In the case where only
nucleotide data was available, the matching nucleotide
sequence was translated using the GENESCAN webserver
[60] using Arabidopsis thaliana to predict exon-intron
structures. In these cases, the resulting amino acid
sequence predictions were used in all subsequent analy-
ses. Once identified, candidate sequences were entered
into a "reverse" BLAST search of the NCBI database [61] to
determine if there was a reciprocal best match to the pro-
tein used to identify it.

Protein candidates from Tetrahymena thermophila were
obtained via BLASTP searches of the NCBI nr database
comparing Arps from model organisms and by searching
the Tetrahymena genome database [62]. Searches of the
Tetrahymena genome database were done using tBLASTn
and restricted to TIGR predicted proteins.

Preliminary sequence data was obtained from The Insti-
tute for Genomic Research website [63], ToxoDB [64],
PlasmoDB [65], CryptoDB [66].
Page 11 of 13
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A complete list of all taxa and accession/contig numbers
used in these studies is provided [see Additional file 1].

CLUSTALX alignments
The above candidate actin-like protein sequences were
compared with a larger repertoire of Arp proteins from a
variety of eukaryotes [67] and bacterial actin-like proteins
retrieved from NCBI. All sequences were entered into the
alignment program CLUSTALX [27] using pairwise
parameters set as: gap opening penalty = 15.0, gap exten-
sion penalty = 0.10; and multiple alignment parameters
set as: gap opening penalty = 15.0, gap extension penalty
= 0.30, delay divergent sequences (%) = 25. All other
parameters were set to the default settings. Clustal align-
ments used in this analysis are posted at [68].

Phylogenetic analysis
CLUSTAL alignments were entered into the phylogenetic
analysis program PAUP4.0b10 for Macintosh [28]. Only
regions of the alignments with conservation across all taxa
were included in the analyses. The optimality criterion
was set to distance (mean character difference, minimal
evolution, negative branches = 0) and 1000 bootstrap rep-
licates were performed using the BioNeighbor-Joining
(BioNJ) algorithm. Alternatively, a full heuristic algorithm
was used for parsimony analysis, supported by bootstrap-
ping for > 100 replicates. Consensus trees were drawn
according to the Bootstrap 50% majority-rule and conven-
tional actins were defined as the out-group.

Dynactin and Arp2/3 complex subunits
Highly conserved subunits of both the dynactin and Arp2/
3 complexes were retrieved from NCBI nr for model
organisms [see Additional file 1]. These proteins were
used in BLASTP searches of the Toxoplasma [64], Plasmo-
dium [65], Cryptosporidium [61,66], Theileria [61], and Tet-
rahymena [61,62] databases for candidate orthologues, as
described above. Candidate proteins were used in a
"reverse" BLAST of the NCBI database [61] to determine
their relatedness to the proteins used to identify them.

List of abbreviations
ALP, Actin-like protein; Arp, actin-related protein; ARPC,
actin related protein complex; capZ, capping protein;
CDD conserved domain database, NCBI, National Center
for Biotechnology Information, pfam, protein family
database.
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