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Abstract

Background: The moss Physcomitrella patens is an emerging plant model system due to its high rate of
homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic
position. Available EST data was clustered and assembled, and provided the basis for a genome-wide

analysis of protein encoding genes.

Results: We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent
the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent
prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately

30% have a homolog in both rice and Arabidopsis transcriptome.

More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These
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potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these

genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as

cytotoxicity and nucleic acid repair.

Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and
amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average
44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis
genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias
is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes

being unbiased.

Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a
dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is

better than those achieved with tools trained on Arabidopsis data.

Conclusion: Analysis of the moss transcriptome displays differences in gene structure, codon and splice
site usage in comparison with the seed plant Arabidopsis. Putative retained genes exhibit possible functions

that might explain the peculiar physiological properties of mosses.

Both the transcriptome representation (including a BLAST and retrieval service) and splice site prediction
have been made available on http://www.cosmoss.org, setting the basis for assembly and annotation of the

Physcomitrella genome, of which draft shotgun sequences will become available in 2005.
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Background

Flowering plants have developed from a common ances-
tor with mosses, liverworts, ferns, and ggmnosperms over
the last 450 million years [1]. Most recent angiosperms do
not closely resemble their ancestors, as known from the
fossil record. Quite a few gymnosperms (like Ginkgo or
Cycas) still resemble the plants known from the fossil
record, and this is even more true for "lower" land plants,
namely mosses, liverworts and ferns [2,3]. In addition,
mosses seem to evolve with a slow molecular clock [4].
So, if these plants appear to be more ancient than modern
flowering plants as measured by morphological means
and mutation rate, does this also hold true for how they
employ their genetic system?

A lot of comparative studies on protein encoding genes
have already been carried out within and between the two
major groups of flowering plants, mono- and dicotyle-
dons, with rice (Oryza sativa) and Arabidopsis thaliana as
the most prominent examples. Currently more than two
million Liliopsida (monocotyledons) EST are publicly
available, the corresponding number for the Magnolio-
phyta (dicotyledons) even exceeds four million sequences.
However, sequence information for other plant phyla is
still scarce. There are only about 160,000 EST sequences
available of both Coniferophyta (part of the ggmnosperms)
and Chlorophyta (green algae), 130,000 from Bryophyta
(mosses) and 3,700 from Filicophyta (ferns) (all numbers
from Genbank). For the moss Physcomitrella patens, more
than 102,000 nucleic acid sequences (mainly EST) are
publicly available to date. This "ancient" land plant there-
fore is an ideal candidate to unravel some details about
how simple plants encode proteins and whether they do
so in a different manner from "modern" plants, as repre-
sented by the monocotyledon rice and the dicotyledon
Arabidopsis in this study.

Physcomitrella is increasingly being used as a model plant
because of its unrivalled capability among plants to
include ectopic DNA into its genome by means of homol-
ogous recombination (see e.g. [5-7]), thus enabling gene
replacement in a straight forward manner. As in all
mosses, the haploid gametophyte is the dominant gener-
ation in the heteromorphic life cycle. In this respect the
moss is different from seed plants (gymnosperms and
flowering plants), in which the polyploid sporophyte
dominates the life cycle. It has been argued before [8,9]
that the set of genes of the respective dominant generation
is equivalent, while a large proportion of moss transcripts
cannot currently be assigned a putative function. These
"orphan" genes might encode functions that are specific
to mosses and are not present in other taxonomic groups.
Besides species-specific orphan genes, mosses might also
possess retained genes, that have been lost in seed plants
during evolution. Both types of genes are candidates to
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Comparative BLAST searches between Arabidopsis,
rice and moss. Comparative BLAST searches of the Arabi-
dopsis (At, yellow), rice (Os, cyan) and Physcomitrella (Pp,
green) transcriptomes. Each search was done with the
respective sets once as query and once as search space (sub-
ject). The area of the circles represents the percentage of the
query/subject sequence space that yielded filtered hits.

encode functions that make mosses unique in terms of
physiology and metabolism. For example, Physcomitrella
exhibits increased tolerance towards abiotic stresses
[10,11], uses proteins derived from the same gene in dif-
ferent cellular compartments by dual targeting [12,13]
and displays secondary metabolite pathways not known
in seed plants [14-16]. In this study, following up on the
initial analyses by Nishiyama et al. [8], we aimed to
increase our knowledge of the moss transcriptome.

Results and discussion

Comparative BLAST searches

Around 30% of the Physcomitrella ORF have homologs in
both rice and Arabidopsis transcriptome whereas 80% of
the Arabidopsis genes have a homolog in rice and 40% of
the rice genes in Arabidopsis (Fig. 1). Although these num-
bers are lower than the actual amount of sequence
homologs because of filtering (see below), they demon-
strate that Physcomitrella contains a lot of as yet unknown
protein encoding genes that might be specific for mosses.
A homology search against the taxprot dataset (Table 1,
Fig. 2) reveals that 45.8% of the predicted moss ORF find
a query in plants (E-value threshold 1E-4), after rigorous
filtering 28.1% remain and 21.7% are non-redundant, i.e.
do not match multiple subject sequences. The rigorous fil-
tering (see methods for details) for true homologs thus
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Table I: Taxonomic constitution of the taxprot dataset

taxonomic group txid # of

sequences!
Metazoa 33208 862,420
Fungi 4751 184,282
Viridiplantae (plants and green algae) 33090 293,156
Non-green algae? 21,889
Other Eukaryotes3 49,732
Eubacteria (without Cyanobacteria) 2 1,386,089
Cyanobacteria 1117 94,920
Archaea 2157 122,394
Viruses 10239 331,246
Total 3,346,128

IGenbank amino acid sequences as of 2004-04-07, NCBI taxon ids
are shown under "txid", all taxonomic crown groups with at least 100
sequence members were used; 2Cercozoa [136419], Cryptophyta
[3027], Euglenozoa [33682], Glaucocystophyceae [38254],
Haptophyceae [2830], Rhodophyta [2763], Stramenopiles [33634];
3Acanthamoebidae [33677], Alveolata [33630], Diplomonadida
[207245], Entamoebidae [33084], Heterolobosea [5752], Jakobidae
[143015], Mycetozoa [142796], Parabasalidea [5719]

necessarily decreases the set of available sequences, so that
false conclusions are not made based on comparison of
non-homologous sequences.

Full-length transcripts

The total number of clusters after EST clustering do not
equal the number of protein encoding genes. This is
mainly due to partial (as opposed to full-length) tran-
scripts, i.e. a single gene is represented by more than one
sequence because they do not overlap. How many of the
clustered public (PPP) transcripts represent full-length
coding sequences? Of those sequences that yield a filtered
hit against plant mRNAs, 7.9% are putatively full-length.
Of those, 53.9% start with Methionine, of the latter,
32.4% contain no X (X represents an indeterminable
codon, which can be included by the ORF prediction).

Orthologs, paralogs and mapping

The filtered hits against the Arabidopsis transcriptome
(1,994 in total) were divided into non-redundant
orthologs (722) and paralogs (1,015). As Arabidopsis
orthologs, we defined all those sequences for which the
initial subject matches the query in the reverse search
(reciprocal hit). Paralogs were defined as those sequences
for which this rule does not apply. This method of detect-
ing potential orthologs has been used previously for cross-
species comparisons (e.g. [17,18]). The three sequence
sets were mapped against the Arabidopsis chromosomes
using BLAST (Fig. 3). The distribution pattern clearly
reveals the centromeric regions but otherwise does not
display significant differences. Although there are some
chromosome and sequence set-specific differences in the
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rate of hits per Mbp, these are not significant as measured
by absolute average deviation.

Taxonomic distribution and retained genes

The highest total number of non-redundant, filtered
BLAST hits is (as expected) derived from the plant subset
of the taxprot dataset (Table 1, Fig. 2a), followed by the
animal and fungi subsets. When looking at the hits as per-
centage of the search space size (Fig. 2b), it becomes evi-
dent that quite a proportion of the sequence space of
lower eukaryotes (including non-green algae) is covered.
The comparatively high coverage of this "ancient" gene
space suggests that mosses share many specialized genes
with unicellular organisms.

134 Physcomitrella ORF have their best BLAST hit not
among plants (Fig. 4a). Consequently, these are candi-
dates for horizontal gene transfer or, more likely, retained
genes that were lost in seed plants during evolution. We
had a closer look at those 57 transcripts which are specific
to a single taxonomic group, namely bacteria, cyanobacte-
ria, animals or fungi (unique hits). For 25 of those, a puta-
tive function could be assigned manually (Fig. 4b, Table
2). The broad functional categories of these taxon-specific
retained genes are to some extent unevenly distributed.
Whereas transport associated proteins are found solely
among fungi, signal transduction gene products are found
in both bacteria and animals. Transport and metabolism
associated gene products support the wealth of secondary
pathways found in moss (e.g., [14,15,19-22]), whereas
the signal transduction genes also separate the moss from
seed plants in this regard. Of special interest are two other
functional categories among these candidate retained
genes: cytotoxicity and nucleic acid modification. A broad
range of cytotoxic abilities might explain why mosses can
survive in moist environments mainly unplagued by
microbial parasites, without the protection of a cuticula.
Furthermore, it is, up until now, puzzling why Phys-
comitrella is able to integrate ectopic DNA into the genome
by homologous recombination with an extraordinarily
high rate [23,24] so far only found in bacteria and yeast,
but in no other plant or any animal. Hints to unravel this
mystery might be found in the presence of genes involved
in DNA repair, binding and modification, as we discov-
ered during this research.

Gene structure and splice sites

The average rate of introns per gene (~5) is the same in
Physcomitrella, Arabidopsis and human [25]. The average
Physcomitrella intron (252 bp) is longer than those of Ara-
bidopsis (146 bp) and shorter than the typical human
intron (740 bp). Furthermore, the Physcomitrella intron is
longer than the exon, whereas in Arabidopsis it is the other
way round. While the size distribution of Arabidopsis
introns is centered around 70 bp, the longer moss introns
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Figure 2
BLAST hits of Physcomitrella protein genes against the taxprot dataset. a) Absolute number of hits against different
taxonomic groups. b) Amount of non-redundant hits as percentage of the respective sequence space.
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Figure 3

Mapping of Physcomitrella transcripts to the Arabidopsis chromosomes. Mapping of filtered BLAST hits (grey), para-
logs (red) and orthologs (green) against the five Arabidopsis chromosomes (left to right / top to bottom). a) Hits per Mbp; error
bars: average absolute deviation (AAD); column 6: mean values. b) Graphical representation using a finer granularity (100 kbp),
each vertical step represents one hit.
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Figure 4

Retained genes in moss: taxonomic distribution and functional categories. a) Physcomitrella transcripts which have
their best BLAST hit not among plants, divided by taxonomic category, further subdivided into specific hits (unique to a single
taxonomic group — yellow) and those that could be assigned a putative function by means of homology searches (green). b)

Distribution of functional categories among those taxonomic groups that yielded unique hits.

Page 6 of 13

(page number not for citation purposes)



BMC Genomics 2005, 6:43 http://www.biomedcentral.com/1471-2164/6/43

Table 2: Functional annotation of retained genes into broad functional categories, assembled transcripts can be retrieved via http://
WWW.CcOosmoss.org.

Pp transcript  taxonomic homolog broad functional functional details
(putative group category category
retained gene) (potential)
PPP_2925_ClI bacteria Membrane-bound lytic cytotoxicity murein degradation murein-degrading enzyme,
murein transglycosylase B may play a role in recycling of
muropeptides during cell
BJ203770 bacteria putative protease cytotoxicity protease
PPP_4234_CI metazoa cytolysin | cytotoxicity cytotoxicity involved in pore-formation
PPP_3510_ClI cyano RTX toxins and related cytotoxicity cytotoxicity
Ca2+-binding proteins
PPP_1172_ClI bacteria Enoyl-CoA hydratase/ metabolism fatty acid metabolism
carnithine racemase
PPP_6629_CI bacteria mannosylglycerate synthase metabolism sugar metabolism
PPP_5746_ClI metazoa L-kynurenine 3- metabolism amino acid
monooxygenase Fpk metabolism
PPP_8479_CI metazoa COMMD2 metabolism copper metabolism COMM (copper metabolism
MURRI) domain containing 2
BJ173412 metazoa ubiquitin metabolism protein metabolism ribosomal protein in C.
elegans dehydrogenases
PPP_3987_ClI fungi MNN9 metabolism N-glycosylation
PPP_6514_CI cyano oxidoreductase metabolism energy metabolism related to aryl-alcohol
dehydrogenases
PPP_11394_CI bacteria homolog of eukaryotic DNA  nucleic acid binding / DNA repair
ligase Il modification
BJ191550 bacteria formamidopyrimidine-DNA  nucleic acid binding / DNA repair
glycosylase modification
BJ 160862 metazoa Osal nuclear protein nucleic acid binding / DNA binding chromatin regulation
modification
BJ582496 cyano SAM-dependent nucleic acid binding / nucleic acid
methyltransferase modification modification
PPP_2586_ClI bacteria CarD protein signal transduction DNA binding leucine zipper transcription
factor, light- and starvation-
induced response
PPP_3689_ClI bacteria serine/threonine protein signal transduction signal transduction
kinase
BJ172132 bacteria serine/threonine protein signal transduction signal transduction
kinase
PPP_460_ClI metazoa HLA-B-associated transcript signal transduction signal transduction
PPP_1041_CI metazoa calcium/calmodulin- signal transduction signal transduction
dependent protein kinase Il
delta
PPP_6326_ClI metazoa tumor suppressor tout-velu signal transduction signal transduction involved in diffusion of
hedgehog
PPP_11399_ClI metazoa dual-specificity tyrosine signal transduction signal transduction Non-receptor class dual
phosphatase YVHI specificity subfamily
PPP_I84_CI fungi high-affinity iron permease transport transport high affinity iron uptake
PPP_7115_C2 fungi uric acid-xanthine permease transport transport belongs to the Xanthine/Uracil
oermeases family
PPP_11191_ClI fungi inorganic phosphate transport transport probable inorganic phosphate

transporter; yeast pho99
homologue

transporter

The Physcomitrella G/C content of 40% in the intron and
50% in the exon differs significantly from that of Arabidop-
sis; 33% and 44%, respectively. Generally, Physcomitrella
introns contain more thymine (T) than the exons. In
terms of mononucleotide composition, T s

are mainly clustered around 180 bp (data not shown).
This fits the weak correlation of intron length and genome
size generally found in eukaryotic organisms [26]. Intron
positions of close homologs between Physcomitrella and
Arabidopsis are generally conserved (e.g., [27]).
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Figure 5

Splice site sequence logos and efficiency of splice site prediction. a) Sequence logos of Physcomitrella donor and accep-
tor sites. b) Prediction performance of Netplantgene and svmsplice for Physcomitrella splice sites. TP = true positive, FN = false
negative, FP = false positive, measured on the lefthand (%) axis. Recall (sensitivity) = tp/(tp+fn), precision = tp/(tp+fp), meas-

ured on the righthand axis.

overrepresented in the intron and C is underrepresented
in the exon. In terms of dinucleotides, there is a significant
overrepresentation of TT in the introns. Outstanding tri-
nucleotide usage are the overrepresented TTT in the intron
and the stop codon TGA in the exon, while the other two
stop codons TAA and TAG are underrepresented in the
moss.

A visualisation of the Physcomitrella donor and acceptor
sites is shown in figure 5a. Comparison of the Arabidopsis-
trained Netplantgene [25] and the Physcomitrella-trained
svmsplice (Fig. 5b) reveals a better overall performance of
the support vector machine. Although Netplantgene
exhibits a high recall, precision is low, which is due to the

large amount of false positive predictions. Svmsplice pre-
dicts a lower rate of true positives (thus lower recall), how-
ever, precision is much better. The mean values of recall
and precision for both donor and acceptor site are higher
for svmsplice and thus make it the method of choice for
accurate prediction of Physcomitrella splice sites.

Composition of coding sequences and codon usage

Significant differences in codon fraction usage for the
three above mentioned sequence subsets (Arabidopsis
orthologs and paralogs, retained genes) when compared
with the averaged codon usage in Physcomitrella and Ara-
bidopsis are shown in Fig. 6a. The Average G/C content of
the Arabidopsis CDS is ~43%, whereas it is ~50% for Phys-
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Figure 6

Trinucleotide frequencies and codon usage. a) The averaged Physcomitrella codon fraction usage measured as percentage
of the total amount of counted codons is shown as grey diamonds, including a margin of 2% average absolute deviation (AAD,
error bars), in comparison with Arabidopsis (yellow circles). Significantly deviating codons of the sequence subsets are pre-
sented as colored circles, namely retained genes (blue), paralogs (red) and orthologs (green). b) The effective number of
codons (enc) for Physcomitrella (green) and Arabidopsis (yellow) as a range distribution scatter plot (y axis: % of analysed genes)
and as averaged values (horizontal bar chart; error bars: standard deviation).
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Table 3: Codon usage of Physcomitrella retained genes, orthologs and paralogs

sequence set # bases mean # of G/C content  # s significant codon usage codon usage codon over codon under significant
each triplet codon usage towards At away from At represented represented changes per
changes aa
At mRNAs 10,755,859 56,020 43.32 na. na. na. na. na. na.
Pp ORFs 7,638,122 39,782 49.94 na. na. na. na. na. na.
retained genes 77,998 406 50.30 7 | 6 2 5 Phe under
represented
paralogs 1,115,937 5812 50.07 3 | 2 | 2 none
orthologs 953,293 4,965 49.04 10 8 2 4 6 Pro under
reprensented
sum 10 10 7 13

The predicted Physcomitrella ORF were used as background to check for significant changes in percentage codon fraction usage in the orthologs,
paralogs and retained genes (best BLAST hit not among plants). In case of significant deviation (two times average absolute deviation — AAD) from
the total set, the direction of the change relative to the Arabidopsis codon usage was checked. Significant deviations are shown enlarged, At =

Arabidopsis thaliana, Pp = Physcomitrella patens.

comitrella (Table 3). It might be argued that the EST-based
estimation of G/C content in Physcomitrella is too high
because of potential decay of AT-rich sequences [28].
However, when calculating the G/C content for all availa-
ble 399 full-length CDS from Genbank, the percentage
value is also ~50% (50.67%). This rate is also found in the
retained genes and the Arabidopsis paralogs (Table 3),
whereas the ortholog fraction has a significantly lower G/
C content of ~49%, i.e. towards the Arabidopsis nucleotide
composition. Codon bias in Physcomitrella is positively
correlated with gene expression level and G/C content of
the CDS [29]. It was argued that weak natural selection for
translational efficiency is the driving force behind codon
bias in the moss rather than mutational bias. Given the G/
C rate of 50% in the CDS, a mutational bias indeed seems
unlikely.

In retained genes, Phenylalanine codons are underrepre-
sented, in the orthologs this is the case for Proline codons.
As can also be seen from the G/C content drift mentioned
above, the majority of deviating codons in the orthologs
changed in the direction of the Arabidopsis percentage
usage. For retained genes, it is the direct opposite: the sig-
nificantly deviating codons in these genes point away
from the Arabidopsis codon fraction usage. Orthologs are
thought to be functionally equivalent across taxonomic
groups. The common ancestor of land plants might have
had a G/C content similar to mosses, i.e. around 50%. In
order to preserve efficient functioning of orthologs it
might have been necessary to evolve a slightly different
codon usage for these genes in mosses, as is e.g. the case
in Arabidopsis. The retained genes, on the other hand, are
not found in seed plants and do not reflect the codon
usage found there.

The average number of synonymous codons that is used
in Physcomitrella and Arabidopsis CDS is not significantly
different (Fig. 6b, bar chart). However, the percentage

distribution of synonymous codon usage, as measured by
the effective number of codons (enc), is surprisingly dis-
similar (Fig. 6b, scatter plot). Most Arabidopsis coding
sequences use a lot of synonymous codons (enc 45-59),
whereas Physcomitrella displays a linear percentage
increase from low to high values. Interestingly, around
15% of the moss genes contain no codon bias at all (enc
=61).

Conclusion

The genome of the ancient land plant Physcomitrella pat-
ens, a moss, harbours genes of which at least 30% have a
detectable homolog in seed plants. EST clustering yielded
a database that covers a large proportion of the
transcriptome, approximately 8% of the virtual transcripts
contain full-length CDS.

Transcripts that are clear homologs of Arabidopsis genes
were mapped against the Arabidopsis chromosomes, along
with the set of paralogs and orthologs between the two
organisms. All three sequence sets could be mapped
evenly across the chromosomes, revealing neither hot nor
cold spots (despite centromeric regions) nor differences in
gene density.

While moss genes resemble those of Arabidopsis, there are
significant differences. Introns are larger than those of the
seed plant and are also longer than exons within moss,
which is not the case in Arabidopsis. The G/C content of
exons equals the A/T content. This might reflect a certain
tenacity of the mosses' genetic system and its slow muta-
tional rate. These might be necessary characteristics, as
due to haploidy in the dominant gametophyte, the chance
for the propagation of a disadvantageous change is higher
than in a polyploid organism.

Whereas orthologs display a codon fraction usage drift

towards Arabidopsis, the contrary is the case for retained
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genes. Thus, evolution of codon usage seems to be
correlated with evolutionary history of protein genes.
Mutational bias does not seem to play a role in the evolu-
tion of moss coding sequences. While the majority of
Physcomitrella CDS displays codon bias, there is a signifi-
cant fraction (~15%) of genes that is not biased at all,
possibly representing a more ancient nucleotide composi-
tion than oberved in Arabidopsis. Splice sites in the moss
resemble those in Arabidopsis, however, species-specific
prediction models, like the one presented here, are neces-
sary in order to avoid false positives. The same is true for
the prediction of ORF based on EST data.

A high proportion of the sequence space of unicellular
eukaryotes is covered by moss homologs, which appar-
ently have not been lost since the days of the last common
ancestor. The majority of moss genes find their best scor-
ing homolog in plants. However, there are 134 putative
retained genes that have their best BLAST hit among other
taxonomic groups. Of those, 57 genes are specific to a sin-
gle taxonomic group, putative functional annotation
could be carried out for 25 of these proteins. The
functional annotation revealed deviations in the taxo-
nomic distributions: certain sets of genes seem to be
shared with specific taxonomic groups, for example, trans-
port proteins with fungi or signal transduction genes with
bacteria and animals. Of special interest are genes that are
possibly involved in cytotoxicity, metabolism and nucleic
acid repair. These genes might be the reasons for some of
the extraordinary capabilities of mosses, namely resist-
ance against microbial pathogens, additional secondary
pathways (as compared with seed plants) and a high rate
of homologous recombination.

Methods

Clustering of EST data

All publicly available protein encoding DNA sequences of
Physcomitrella were retrieved using Entrez [30] and divided
into 399 "seeds" (full length mRNA sequences) as well as
102,535 EST and other sequences. This dataset is called
the Physcomitrella patens public set, or PPP.

A set of 17 moss-specific repetitive elements, detected
mainly in the untranslated regions of Physcomitrella genes
[31] and used for filtering (see below) is available via
cosmoss.org [32]. Filtering, clustering and assembly of
EST data were done using the Paracel transcript assembler,
PTA [33]. A species-specific parameter set has been devel-
oped and is available upon request.

For sequences where electropherograms were available,
base-calling was carried out using phred [34]. Base quality
values of EST sequences without available sequencer raw
data was set arbitrarily to a low value, 10%, and in the case
of seed sequences to a higher confidence value of 50%.

http://www.biomedcentral.com/1471-2164/6/43

Filtering included steps for removal of synthetic (vector/
linker) and low quality sequences as well as of contami-
nants (homologs of E. coli as well as Physcomitrella mito-
chondrial, rRNA and chloroplast genes). Low-complexity
regions were annotated together with poly-A tails,
untranslated regions (UTR, UTRdb see [35]) and repeti-
tive elements (repeats, repbase see [36]), in order not to
disturb clustering and assembly. In a final step, sequences
containing less than 150 bases of sense characters were
removed. For PPP, a total of 100,079 sequences went into
the clustering.

Prior to clustering, homologs of the seed sequences were
pulled out of the sequence pool and assembled independ-
ently. Where possible, sequences were placed into 5' and
3" partitions based on detected poly-A tails and inherent
annotated information. Both during clustering and
assembly, putative chimeras (cloning artefacts) were
detected and tagged. During assembly, contigs were built
within clusters and putative splice variants detected. After
clustering and assembly, the PPP set contained a total of
26,131 sequences. By using only the longest sequence in
each cluster, a non-redundant set of 22,218 sequences was
produced. The PP dataset contained 63,685 sequences in
the complete and 48,961 sequences in the non-redundant
set.

Splice site prediction

For the splice site prediction, all publicly available pairs of
genomic and cDNA/mRNA sequences were retrieved (40
genes). Together with 29 unpublished sequences, these
sequences were aligned using MGAlign 1.3.6 [37] in order
to determine the splice sites. The procedure yielded a total
of 438 exons and 368 introns. The complete dataset is
available via cosmoss.org [32].

The sequence logos (Fig. 5a) were created via the web
interface at [38] using 10 nucleotides up- and down-
stream of the donor / acceptor sites.

Suppor vector machine: The software used for training
and classification was SVMlight [39], libsvm [40] and
svmsplice [41]. The complete set of splice sites was
divided into training/testing sets of sizes 10-90%, for
each set three samples were drawn. The set containing
90% of the sites for training proved to yield the best
results. Optimization of parameters was done by 10-fold
cross-validation, plotting precision vs. recall and chosing
the best curve. The best performing model could be
constructed using 50 nucleotides up- and downstream of
the splice sites as context with the basepairing feature set
of svmsplice and a polynomial kernel function of 4th
order.
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BLAST searches and filtering

BLAST searches were carried out using Paracel BLAST [33],
a parallelized version of BLAST 2 [42], on amino acid level
whenever applicable. In order to exclude random hits
which are not based on true sequence homology, align-
ments had to contain at least 30% identical positions and
a minimum length of 100 amino acid characters. This rig-
orous filtering excludes some true positive hits but
removes almost all false positives [43]. Putative full-
length CDS had to pass the same filtering. In addition, in
this case only those hits were counted that covered at least
90% of the subjects length. For the determination of iden-
tical sequences, BLASTN was performed and hits were fil-
tered to be at least 95% identical and 300 nucleotides
long. Non-redundant hits were counted by removing all
subjects that were present more than once in the search
result.

Additional sequence datasets

The predicted coding sequences of rice (56,056
sequences) and Arabidopsis (28,581 sequences) genes were
taken from release 1.0 and 4.0 of the TIGR database [44],
respectively. The taxprot dataset (3,346,100 sequences,
see Table 1 for details) was created by downloading the
respective sequences from Genbank [30] using appropri-
ate Entrez queries. All three datasets consist of amino acid
sequences. The Arabidopsis thaliana chromosome
sequences were retrieved from Genbank [45].

ORF prediction

ESTScan 2.0 [46] was used to predict open reading frames.
The species-specific model for Physcomitrella was built by
using the 399 public full length seed sequences (complete
mRNAs) mentioned above. ORF were predicted from the
clustered EST data (non-redundant datasets). For the PPP
set, 19,081 ORF were predicted; 34,981 for the PP set. Pre-
dictions were done using both the Arabidopsis and the
Physcomitrella model for comparison. Manual inspection
of several known CDS revealed that the Arabidopsis-based
prediction contained false-positive stretches, which was
not the case for the Physcomitrella-based prediction.
Although the Physcomitrella model predicted a lower
number of ORF, it was used in order to keep false-posi-
tives to a minimum.

Codon usage

Four different sets of coding sequences were used (see
table 3). A set of 7,765 well annotated Arabidopsis mRNAs
was retrieved using Entrez. The Physcomitrella datasets con-
tained the predicted ORF for the complete PPP set
(19,081 sequences), the Arabidopsis paralogs (1,659) and
orthologs (1,476) described above as well as the puta-
tively retained genes not found in higher plants (134).
The smallest set contained 77,998 nucleotides and thus a
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theoretical average of 406 instances of each triplet, which
allows significant analyses.

Nucleotide frequencies were calculated with the GCG
10.3 [47] software composition. Codon usage fractions
for individual datasets were calculated as percentage of
the respective total amount of counted codons. Absolute
deviations in comparison to the full Physcomitrella ORF set
were calculated for the three subsets (retained genes, Ara-
bidopsis orthologs and paralogs). The computed mean
value over all sets (average absolute deviation) was 0.069.
Codon fraction usage deviation was counted as significant
only if it differed at least twice as much (+/- 0.138%) from
the full set.

The effective number of codons (enc) was calculated using
CodonW (J. Peden, [48]). The enc values range from 20
(maximum bias, i.e. only one synonymous codon is used
per amino acid) to 61 (no bias, all synonymous codons
are being used).

Abbreviations
CDS = coding sequence(s), EST = expressed sequence
tag(s), ORF = open reading frame(s)
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