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Background

The process of tumorigenesis has long been recognized to
depend upon complex interactions of a tumor with its
non-transformed tissue environment [1]. Beyond trans-

Abstract

Background: Since the early stages of tumorigenesis involve adhesion, escape from immune
surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles
of all publicly known and putative secreted and cell surface genes. We designed a custom
oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5
diverse human transformed cell lines and their derivative xenograft tumors. The origins of these
human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-I16), ovarian (SK-OV-3)
and prostate (PC3) carcinomas.

Results: Three different analyses were performed: (1) A PCA-based linear discriminant analysis
identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05)
to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was
performed on data from individual tumors, a comparison of differential genes amongst all tumor
types revealed 12 common differential genes. Seven of the 12 genes were identified by all three
analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes
such as ANGPTL4, COLIAI, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression
of ANGPTL4 and COLIA| and other genes was confirmed by quantitative PCR.

Conclusion: Overall, a comparison of the three analyses revealed an expression pattern indicative
of late angiogenic processes. These results show that a xenograft model using multiple cell lines of
diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may
be important biomarker and therapeutic discoveries.
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formation and increased proliferation, many pathways
are activated both in the growing tumor and its environ-
ment to culminate in an established solid tumor. For
example, adhesive pathways are activated to enable
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transformed cells to aggregate and form a microtumor.
Subsequently, microtumors must avoid destruction by the
immune system and elicit vasculature formation for con-
tinued growth [2,3]. In support of these events, cell-matrix
adhesion proteins, cell surface antigens, angiogenic fac-
tors and modulatory agents have been found differentially
expressed in several experimental models of tumorigene-
sis [4-6] and in tumor biopsy samples relative to control
tissues [7,8]. Experimental models with established tum-
origenic human cell lines have compared the gene expres-
sion profiles between the cultured parental cells and after
implantation into immune-deficient murine hosts [6]. In
this study, we examined this problem with a more focused
approach with respect to the transcripts as well as a
broader survey by examining multiple tumor sources in
order to identify differential genes common to multiple
solid tumors in a xenograft model of tumorigenesis.

To recapitulate the attachment and growth of a micro- or
metastatic tumor, our experimental tumorigenesis model
examined human xenograft tumors in nude mice. It is
believed that primary or metastatic microtumors about 1
mm?3 in size are metastable; they are either (i) resolved by
the immune system, (ii) remain in a steady-state with bal-
anced proliferation and apoptosis or (iii) undergo aggres-
sive growth as long as a vasculature is developed to
provide nutrients to the growing mass [9]. Since the end-
point of the xenograft assay is the formation of a solid
tumor, genes supporting vasculogenesis and angiogenesis
are likely differentially expressed relative to the parental
cell lines that were adapted to culture in vitro. However,
the extent of vascularization to support an established
tumor will vary according to the tumor type and tissue
environment as a result of variable levels of proteases,
receptors or regulators of pericyte and/or endothelial
migration, proliferation, and differentiation [3,10]. Addi-
tionally, some tumors such as early grade astrocytomas
can leverage existing normal brain blood vessels without
substantial vasculogenesis for subsequent angiogenic
sprouting of new vessels from preexisting vessels [11].
Further, vascularization depends upon a tuned interaction
in the tissue microenvironment between endothelial cells
and pericytes [12,13]. Vascularization of solid tumors
may also be heterogeneous with a rapidly growing margin
surrounding a hypoxic core following regression of co-
opted vessels that supported early tumor growth [10].
Complicating this picture is the potential for Vascular
mimicry’ where breast tumor derived cells express
endothelial markers and may serve as rudimentary chan-
nels [14].

Many angiogenesis studies have used cultured primary
vascular endothelial cells and shown the significant roles
of VEGF, FGF, PDGF, chemokines and cell-matrix adhe-
sion proteins [3,15,16]. These assays for endothelial cell
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migration include the chorioallantoic membrane [17],
matrigel migration assays [18] or 3D-collagen assays [19].
However, the limits of studying the angiogenic process
with established endothelial cells in vitro have been rec-
ognized. Tumorigenesis involves both heterophilic and
homophilic cellular communication and adhesion
between not only endothelial cells but also pericytes and
smooth muscle cells; hence other cell surface proteins and
secreted factors are absent from such assays [3].

A search for tumorigenic genes common to tumors of
diverse origin should be as broad as possible and hence
should not be limited to a single tumor type or tissue
source. In order to find common tumorigenic genes
regardless of tissue origin, we chose to study a panel of 5
adenocarcinoma cell lines from breast, colon, and lung,
ovarian and prostate tumors. These cell lines reproducibly
yield solid tumors in a standard xenograft assay in
immuno-compromised mice [20-22]. While there may be
individual differences in capillary branching or density
between tumor types, the xenograft assay requires vascular
development to support solid tumor formation in a rela-
tively avascular subcutaneous site.

Since the early tumorigenic events largely rely upon
secreted factors, cell surface receptors or integral mem-
brane proteins, we devised a strategy to employ a custom
microarray to focus on the expression of genes chosen on
the basis of their cellular localization. Hence, we imple-
mented an experimental microarray strategy with high
replication and coverage of all possible secreted and cell
surface proteins. Also, focusing on all known and pre-
dicted cell surface and secreted genes allowed us to design
more intra-chip replicates for improved data reliability.
While prioritizing on the 'Function' category of the Gene
Ontology [23], the range of 'Biological Processes' covered
by the gene selection remained broad. In contrast to early
concerns that a sub-selection of genes might result in a
systemic bias, relatively small numbers of genes were
found to be common to all xenograft tumors due to the
robust experimental design and statistical analysis.

Results

We developed a custom 60-mer oligonucleotide microar-
ray to focus on an ontologically restricted set of secreted
and cell surface genes for higher data reliability using a
matrix design with intra-chip replicates in addition to rep-
licate chips. Due to the limits of the Gene Ontology clas-
sification, multiple strategies had to be used to derive a
relatively complete collection of secreted and cell surface
genes. For example, some proteins have multiple localiza-
tion sites on the basis of newer experimental evidence
absent from curated databases; e.g. SORCS3, HDGF. For
proteins with multiple cellular localizations, the literature
(PubMed, NCBI) was the annotation source for finding
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Gene ontology of custom chip probes. The ontological classification of 3531 cell surface or secreted genes was extracted
from the Gene Ontology at the third level. Genes lacking GO annotations at this level were derived from level 2.

other secreted and cell surface proteins. Finally, other
putative secreted and transmembrane-encoding genes and
exons were analyzed from hypothetical predictions from
the UCSC Human Genome. Redundant genes were
removed by a combination of blastn/blastp comparisons
and manual curation, but many putative membrane-
encoding exons of potential proteins were included. A
final tally of 3531 genes was composed of 1057 secreted
genes, 1338 G-protein coupled receptor (GPCR) genes
with the remainder classified as various integral mem-
brane proteins and cell surface proteins. An ontological
view of the custom chip's content is shown in Fig. 1.
Finally, in consideration of potential global changes of a

selected set of genes, numerous positive and negative con-
trols were included in the array design; including genes
characteristic of some tumors (e.g. the estrogen receptor
for a subset of breast tumors) and many 'housekeeping'
transcripts (e.g. B-actin) commonly used to normalize
quantitative PCR studies. However, co-hybridizing all
samples with a reference cDNA derived from a mixture of
10 human cell lines enabled 'normalization' with respect
to feature, chip, and dye for the MANOVA analysis. This
strategy minimizes the potential concern for a skewed
normalization by a sub-selected gene population or pos-
sible differential behavior of the included 'housekeeping'
genes in the xenograft tumors.
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Identification of characteristic tumor-specific genes by all
tumor data or individual tumor types by multivariate
analysis of variation

We performed several multivariate analyses of the micro-
array data to find characteristic tumorigenic genes. The
MAANOVA tools [24] were chosen for their sensitivity
and robustness in measuring differential expression ver-
sus previous T-test and log-ratio methods using thresholds
for induction or suppression. This was particularly impor-
tant in these studies that used a relatively complex design
with on-chip and inter-chip probe replication, multiple
tumor samples and tumor types, dye-swap and a common
reference RNA sample for all hybridizations. Thus, this
strategy helps avoid any systematic bias from using a chip
containing probes for only secreted and cell surface genes.
We developed a custom database [25] to allow dynamic
re-grouping of data to facilitate multiple analytical mod-
els such as all tumor data or individual tumor types and
their parental cell lines.

Initially, we identified the differentially expressed genes in
all tumors relative to all parental cells regardless of tissue
origin. Hence compared all the xenograft tumor data to all
the parental cell line data without regard to tumor type.
Similarly, both the tumor and parental cell line data were
compared to the all reference cDNA hybridization data.
These data were analyzed by both principal components
analysis (PCA) and multivariate analysis of variance
(MANOVA).

Principal components analysis

To visualize all tumor and parental cell data and assess
overall quality, we subjected the entire dataset to principal
components analysis. As shown in Fig. 2, a discrete seg-
mentation of the data into 3 major aggregates correspond-
ing to xenografts (circles), parental cell lines ("X's") and
the universal reference cDNA (solid dots) can be identi-
fied. The third principal component shown by the vertical
Y-axis provided the best separation between parental cell
data and the xenograft tumor data, Fig. 2.

Linear discriminant analysis

In order to identify a profile characteristic of xenograft
tumors where the combination of multiple genes might
be more predictive than any single gene, we performed a
linear discriminant analysis. Hence, we iteratively
'trimmed' versions of the third principal component since
it had the highest correlation to sample type. The
'trimmed' list of coefficients were tested to determine their
accuracy in assigning samples to either the tumor or cell
line categories. This analysis retained 70 of the largest
coefficients of the third principal component and repre-
sents a simple linear discriminant (LD) of 70 probes that
corresponds to 54 genes. The profile of 70 probes fairly
accurately distinguishes between the two sample types of
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parental cell lines and xenograft tumors, Fig. 3A. In 'leave-
one-out' testing where each of the 99 samples was
removed in separate analyses, this method generated a
profile that was 79.8% accurate in predicting a xenograft
tumor. The same method applied to 1000 label-permuted
datasets never exceeded 65% accuracy with a median and
minimum accuracy of 49% and 39.3% respectively. This
suggests that the gene profile generated by our analysis
can distinguish between the xenograft data and the cell
line data in a verifiable manner.

Ontological classification of genes identified by a linear
discriminant

The 54-gene profile derived from the linear discriminant
(LD-p54) was distributed amongst numerous biological
processes using the Gene Ontology classification terms,
Table 1. Many genes were classified in multiple biological
process categories as a result of their biological complex-
ity; e.g. fibronectin (FNT1) is classified into 8 biological
processes including cell motility, response to stress, cell
communication, response to external stimuli, extracellu-
lar matrix structural constituent, protein binding and gly-
cosaminoglycan binding. Other genes are involved with
cell adhesion or extracellular matrix, cellular growth or
the regulation of cellular proliferation, various membrane
proteins with known or inferred functions, transporters or
channels, and proteases or protease inhibitors. A non-
redundant ontological classification of the genes identi-
fied by the linear discriminant is shown with a graphical
representation of their behavior across all tumor types, Fig
3B. Since the linear discriminant analysis uses a weighted
sum, not all of the identified genes behaved consistently
across all xenograft tumors; e.g. CD164 or COL4A1, Fig
3B.

Analysis of variation of all xenograft data

The expression data was also subjected to ANOVA using
all xenograft and parental cell line data. In this analysis,
the type of tumor or parental line was ignored. This anal-
ysis identified 156 probes representing 149 differentially
regulated genes at the 99.9% confidence level, Table 2.
The range of induction or suppression of this set of genes
(ANOVA-p149) was 6-fold induction and 5-fold suppres-
sion. Twenty-nine of the 54 genes found by the above lin-
ear discriminant analysis were found in the list of 149
ANOVA-qualified probes. An ontological clustering of the
ANOVA-p149 genes revealed patterns of proteases and
protease inhibitors, cell-matrix adhesion genes, receptors,
ion channels, various ligands including chemokines and
interleukins, additional angiogenic genes and several
genes of unknown function, Tables 3 and 4 show the
major ontological groups.
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Principal components analysis of array data. The mean expression values of all samples from all arrays were analyzed by
principal components analysis. The first 3 principal components of the analysis are shown from the best vantage point to show
separation of the three classes. Open circles represent the parental cell lines, "X" denotes the various xenograft tumors, and
the small solid dots are the reference cDNA sample (derived from the Universal RNA) co-hybridized with all experimental
samples. The cell lines corresponding to the various tissue sources of the parental cell lines were: Ovary, SKOV3; Prostate,

PC3; Breast, MDA MB-231; Colon, HCT 1 16; and Lung, A549.

Verification of selected genes by quantitative PCR analysis
The differential expression of selected genes was con-
firmed by quantitative real-time PCR using the same RNA
samples subjected to microarray hybridization. The vast
majority of the genes tested by PCR validated the array
analysis, Fig. 5. In some instances, discrepancies in fold-
induction can be explained by methodological differences
since the array data were all normalized to the co-hybrid-
ized universal-RNA sample, while the PCR data were nor-

malized to a B-actin probe (data not shown). Differential
expression of ANGPTL4, GP2, GNAO1, CCR4, FGF23,
SPP1 and COL1A1 were qualitatively consistent in both
the PCR and array analyses. However, two of the down-
regulated genes identified by the array analysis, both G-
protein coupled receptors, were found by PCR to be ele-
vated, albeit with large variability; GPR10 was induced
281-fold SD = 469 and GPR110 induced 50-fold SD =
105. Of the two down-regulated genes examined by
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I cxcL2 chemokine (C-X-C motif) ligand 2
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NN FN1 fibronectin 1
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[ 0 B GPR23 G protein-coupled receptor 23
I GPR44 G protein-coupled receptor 44
[ I GPR4B G protein-coupled receptor 48
= GPRST putative GPCR
BN HAS1 hyaluronan synthase 1
BB L8 interleukin 8
I LTBP1 latent transforming growth factor beta binding protein 1
N MAGP2 Microfibril-associated glycoprotein-2
I NPYIR neuropeptide ¥ receptor
[N O N W PRSS11 protease, serine, 11 (IGF binding)
PTGER3 prostaglandin E receptor 3 (subtype EP3)
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[ ESR1 estrogen receptor 1
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I IGFBPY insulin-like growth factor binding protein 3
[ IGFBPT insulin-like growth factor binding protein 7
MGC2376 hypothetical protein MGC2376
I M NOV nephroblastoma overexpressed gene
B PLEC1 plectin 1, intermediate filament binding protein 500kDa
I RBP4 retinol binding protein 4, plasma
N SLC11A3 ferroportin 1
BB SLC16AB solute carrier 16 (monocarboxylic acid transporters)
BN TFPIZ tissue factor pathway inhibitor 2
ANGPTLA angiopoietin-like 4
BN KITLG KIT ligand
B KLK13 kallikrein 13
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LAMB3 laminin, beta 3
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SPP1 secreted phosphoprotein 1 (osteopontin)
TLLY tolloidike 1
TSPAN-3 tetraspan 3
SEPP1 selenoprotein P, plasma, 1
I AB0GS858 not known
CD63 not known
FLJ20559 hypothetical protein FLJ20559
GP2 glycoprotein 2
KTN1 kinectin 1 (kinesin recaptor)
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Genes identified by linear discriminant analysis. The top 70 PCA coefficients along the third principal component were
selected. Panel A: Plot of linear discriminant profile of 70 probes that distinguish xenograft tumors from parental cell lines.
Positive values in orange indicate "Xenograft tumor" while negative values in blue indicate "Parental Cell line". The y-axis shows
either numbered tumor (left) or parental cell (right) samples and the x-axis is an arbitrarily scaled output reflecting the accu-
racy in assigning a sample as a xenograft tumor or parental cell line. The numbered tumors were grouped according to tissue
type as indicated by C for colon (HCT116), B for breast (MDA MB-231), L for lung (A549), P for prostate (PC3) and O for
ovary (SKOV-3). Panel B: Graphical representation of the LD-p54 genes expression profiles. For genes with multiple probes,
the highest value is shown. Classified by a non-redundant filtering of the Gene Ontology biological process terms, the genes are
shown with a color scale representing relative fold induction to all parental cell line data. The left-most color column desig-
nated by 'X' is the average ratio, while the remaining five columns correspond to Colon (HCT I 16), Breast (MDA MB-231),
Lung (A549), Prostate (PC3) and Ovarian (SKOV-3) carcinoma xenografts respectively.

quantitative PCR, CD81 was consistent in both assays,
while CD44 was measured by PCR as unchanged or min-
imally induced yet array analysis indicated CD44 was sup-
pressed. However, the aggregate 2-fold CD44 induction as
measured by quantitative PCR is the threshold of what is
considered significantly distinguishable from unchanged.
Finally, while we did not perform PCR with species-spe-
cific probes for every gene present in the ANOVA-p149
list, we were able to confirm differential expression of sev-
eral human genes from mouse genes such as the oste-
opontin genes, Fig. 5. While this analysis does not rule out
the possibility of partial contamination of the array results
by some weak cross-hybridization, to guard against this
possibility we carefully designed probes to be species-spe-

cific under the stringent hybridization conditions used in
this study.

ANOVA analysis of individual tumor types

To accommodate the possibility that tumor type was an
important contributor to differential gene behavior, we
performed a third analysis by examining the intersection
between the differential genes of each individual tumor
type. For this restrictive analysis, we simply examined
each tumor type relative to its parental cell line by
ANOVA. Approximately 91-312 genes were differentially
expressed at 99.9% confidence for each cell line: SKOV-3,
125 differential genes; MDA, 312 differential genes;
HCT116, 124 differential genes; A549, 159 differential
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Table I: Gene ontology classification of 54 genes identified by a linear discriminant.

GO Process Genes

GO:0006928  cell motility HASI TSPAN-3 FNI IL8

GO:0006950 response to stress CXCL2 CXCLI SEPPI FNI SPPI IL8

GO:0007154  cell communication MAGP2 LTBP| PTGER3 COL4A| COLI2AI IGFBP3 GPR48 CXCL2 PCDHB9 COL5AI TNC
FZD| CD164 CHODL CXCLI HASI LAMB3 GPR57 EFNAI FNI LAMBI SPPI GPR23 GPR44
PRSSI| RAP2B INHBB NPY IR ESRI IL8 KITLG

GO:0007397 histogenesis and organogenesis  KITLG

GO:0007599 hemostasis TFPI2

GO:0007631 feeding behavior NPYIR

GO:0008151 cell growth and/or maintenance FSTLI NOV IGFBP3 RBP4 MGC2376 CD164 CXCLI TSPAN-3 SLCI1A3 SLCI16A8 PLECI
KTNI SPPI COL5A2 PRSSI | INHBB IGFBP7 ESR1 IL8 KITLG

GO:0008152 metabolism PTGER3 KLK 13 HASI SEPPI TLLI PRSSI1 MMP7 INHBB RNASE4 ESR|

GO:0008219 cell death PTGER3 SPPI

GO:0009605 response to external stimulus RBP4 CXCL2 CDI164 CXCLI SEPPI FNI SPP1 GPR44 INHBB IL8

GO:0009653 morphogenesis ANGPTL4 COLI2A1 PCDHB9 CXCLI| LAMB3 TSPAN-3 SPPI COLIAI TLLI INHBB IL8

GO:0009791 post-embryonic development INHBB

GO:0016265 death PTGER3 SPPI

GO:0019058 viral infectious cycle IL8

GO:0030154 cell differentiation SPPI INHBB

GO:0042698 menstrual cycle INHBB

GO:0046849 bone remodeling SPPI

GO:0046903 secretion INHBB

NA not known CDé63 FLJ20559 GP2 AB065858

A level 3 annotation of the biological process Gene Ontology terms was applied to the list. Due to biological complexity, a gene can occur in more
than one category.

genes; and PC3, 91 differential genes (data not shown).
Twelve genes were found in common amongst these sep-
arately analyzed tumor types, ANGPLT4, COL1A1, epithe-
lial membrane protein 3 (EMP3), GNAO1, glycoprotein 2
(GP2), GPR57, HAS1, HLAA, laminin beta 3 (LAMB3),
PCDHB9, protease inhibitor 3 (PI3), and PTGER3, Table
2.

Comparison of multiple analyses

In a typical analysis of multivariate data, a particular
method is often chosen as a filter for subsequent analyses.
In this study, due to the high statistical reliability
imparted by the high replicate probe count (n = 18 to 30)
enabled by the custom array design, we chose to compare
the results of 3 different approaches to the intact dataset
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Table 2: Differentially expressed genes from three analyses. ANOVA of xenograft data vs parental cell lines found 149 differential
genes (designated ' Ap'), Linear discriminant analysis found 54 genes (designated 'LD') and ANOVA of individual xenograft tumors
yielded a consensus of 12 genes (designated 'Ai'). For each gene, its presence is denoted by 'l' and its absence noted by '0'. The
maximum MANOVA Pvalue is reported along with the aggregate ratio (designated by 'R'). For genes with multiple independent
probes, the probe reporting the maximum Pvalue is shown. Seven genes common to all three lists are in bold text.

Ap LD Ai Gene Pval R

| | | LAMB3 0.001 1.9
1 | | ANGPTL4 0.001 2.1
1 1 1 COLIAI 0.001 3.6
| | 1 PCDHB9 0.001 4.0
1 | | GPR57 0.001 5.7
1 1 1 GP2 0.001 5.7
| | 1 PTGER3 0.001 6.4
I | 0 KITLG 0.001 0.4
I | 0 RAP2B 0.001 0.4
I | 0 COL5AI 0.237 1.0
I | 0 SEPPI 0.054 1.0
| | 0 CXCLI 0.3 1.1
I | 0 TNC 0.001 1.3
I | 0 LTBPI 0.009 1.3
I | 0 PRSSI | 0.001 1.3
| | 0 FNI 0.008 1.4
I | 0 FZDI 0.019 1.4
I | 0 SPPI | 1.5
| | 0 IGFBP7 0.001 1.7
I | 0 RNASE4 0.008 1.9
I | 0 CHODL 0.003 2.1
I | 0 NOVv 0.003 22
| | 0 COLI2AI 0.001 22
I | 0 MAGP2 0.001 2.6
I | 0 GPR23 0.574 3.0
I | 0 TLLI 0.001 32
I | 0 GPR44 0.069 3.6
I | 0 MGC2376 0.001 4.7
I | 0 NPYIR 0.183 52
I 0 | EMP3 0.004 0.5
I 0 | HLA-A 0.001 0.6
I 0 | GNAOI 0.001 25
I 0 0 CCR5 0.001 0.2
I 0 0 C200rf52 0.001 0.4
I 0 0 SORCS3 0.001 0.4
| 0 0 PF4 0.005 0.4
I 0 0 SPINK2 0.001 0.4
I 0 0 IGSF6 0.008 0.4
I 0 0 GPRI10 0.001 0.5
| 0 0 ORI1J5 0.001 0.5
I 0 0 BGLAP 0.001 0.5
I 0 0 GALR2 0.001 0.5
| 0 0 HCN2 0.001 0.5
I 0 0 CDs8l 0.001 0.5
I 0 0 OGFR 0.001 0.5
I 0 0 GPR6 0.001 0.5
| 0 0 OMP 0.001 0.5
I 0 0 CMAI 0.001 0.5
I 0 0 DKFZP564DO 0.001 0.6
| 0 0 CHRMI 0.001 0.6
I 0 0 PYY 0.001 0.6
I 0 0 FGFI9 0.004 0.6
I 0 0 AGTR2 0.047 0.6
| 0 0 SSTR3 0.001 0.6
I 0 0 TMPO 0.001 0.6
I 0 0 TAS2RI16 0.003 0.6
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Table 2: Differentially expressed genes from three analyses. ANOVA of xenograft data vs parental cell lines found 149 differential
genes (designated ' Ap'), Linear discriminant analysis found 54 genes (designated 'LD') and ANOVA of individual xenograft tumors
yielded a consensus of 12 genes (designated 'Ai'). For each gene, its presence is denoted by 'l' and its absence noted by '0'. The
maximum MANOVA Pvalue is reported along with the aggregate ratio (designated by 'R'). For genes with multiple independent
probes, the probe reporting the maximum Pvalue is shown. Seven genes common to all three lists are in bold text. (Continued)

| 0 0 ADORA2B 0.003 0.6
| 0 0 GPRI10 0.001 0.6
| 0 0 ADCYAPIRI 0.001 0.6
| 0 0 ORIFIO 0.001 0.6
| 0 0 HDGF 0.001 0.6
| 0 0 CDI51 0.001 0.6
| 0 0 PDAPI 0.001 0.7
| 0 0 AIBG 0.001 0.7
| 0 0 LIPF 0.001 0.7
| 0 0 PBEF 0.001 0.7
| 0 0 ART-4 0.034 0.7
| 0 0 CIQTNF3 0.029 0.7
| 0 0 SLC39A4 0.022 0.7
| 0 0 IFNGR2 0.001 0.8
| 0 0 ENT3 0.001 0.8
| 0 0 SERPINCI 0.001 0.8
| 0 0 NRPI 0.006 0.8
| 0 0 CACNAIH 0.011 0.8
| 0 0 CD44 0.001 0.8
| 0 0 STC2 0.018 0.8
| 0 0 DLKI 0.064 0.8
| 0 0 F2R 0.388 0.8
| 0 0 EMP2 0.001 0.8
| 0 0 HBEI 0.003 0.8
| 0 0 BSG 0.003 0.8
| 0 0 GPR80 0.001 0.8
| 0 0 APOB48R 0.016 0.8
| 0 0 AMELY 0.001 0.8
| 0 0 IL26 0.006 0.8
| 0 0 TRPM5 0.001 0.8
| 0 0 ENSA 0.001 0.8
| 0 0 ORIFI 0.001 0.8
| 0 0 GP3ST 0.001 0.8
| 0 0 BDNF 0.001 0.9
| 0 0 PLXN3 0.005 0.9
| 0 0 APMCEFI 0.134 0.9
| 0 0 SCAMPI 0.001 0.9
| 0 0 PALMD 0.001 0.9
| 0 0 MMP8 0.02 0.9
| 0 0 MFAP3 0.004 0.9
| 0 0 SPAGI | 0.001 0.9
| 0 0 A2M 0.031 0.9
| 0 0 NET-2 0.092 0.9
| 0 0 CXCLII 0.001 1.0
| 0 0 KLRBI 0.003 1.0
| 0 0 TF 0.988 1.0
| 0 0 COLI4AI 0.001 1.0
| 0 0 IL7 0.002 1.1
| 0 0 COL9AI 0.001 1.1
| 0 0 CCR4 0.001 1.1
| 0 0 FPRI 0.034 1.1
| 0 0 FAP 0.001 1.2
| 0 0 OPCML 0.001 1.2
| 0 0 GPR145 0.001 12
| 0 0 GFRA3 0.001 1.2
| 0 0 EDN3 0.001 1.2
| 0 0 ILI2B 0.043 1.3
| 0 0 CXCR4 0.026 1.3
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Table 2: Differentially expressed genes from three analyses. ANOVA of xenograft data vs parental cell lines found 149 differential
genes (designated ' Ap'), Linear discriminant analysis found 54 genes (designated 'LD') and ANOVA of individual xenograft tumors
yielded a consensus of 12 genes (designated 'Ai'). For each gene, its presence is denoted by 'l' and its absence noted by '0'. The
maximum MANOVA Pvalue is reported along with the aggregate ratio (designated by 'R'). For genes with multiple independent
probes, the probe reporting the maximum Pvalue is shown. Seven genes common to all three lists are in bold text. (Continued)
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PCSK5
NID2
ITGA4
KIAA1870
FBLN5
TRPV2
FGF23
TEMS
CRI
GPA33
CLCA4
TIMP3
MMPI10
FUT8
FIBL-6
VIRLI
EBI2
ADAM28
GPLDI
cP
EPHA3
KLK 11
OR7AI17
IFI27
RNASE6
SELPLG
csT7
LEC3
TSHR
MC2R
sV2
SERPINA4
ANGPT2
LOC84664
RNASEI
HASI
SLCI6A8
CDl64
FSTLI

IL8
KTNI
RBP4
COL5A2
TSPAN-3
CDé3
IGFBP3
PLECI
CXCL2
GPR48
FLJ20559
LAMBI
COL4AI

0.427
0.168
0.73

0.016
0.001
0.001
0.119
0.001
0.008
0.001
0.001
0.006
0.001
0.197
0.001
0.001
0.003
0.001
0.008
0.003
0.003
0.001
0.001
0.001
0.003
0.001
0.092
0.001
0.001
0.001
0.001
0.001
0.003
0.008
0.001

.994

1.3
1.3
1.3
1.3
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.5
1.5
1.5
1.5
1.5
1.5
1.6
1.6
1.7
1.7
1.7
1.7
1.7
2.1
2.1
2.1
2.1
22
23
2.9
0.3
0.4
1.0
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Table 2: Differentially expressed genes from three analyses. ANOVA of xenograft data vs parental cell lines found 149 differential
genes (designated ' Ap'), Linear discriminant analysis found 54 genes (designated 'LD') and ANOVA of individual xenograft tumors
yielded a consensus of 12 genes (designated 'Ai'). For each gene, its presence is denoted by 'l' and its absence noted by '0'. The
maximum MANOVA Pvalue is reported along with the aggregate ratio (designated by 'R'). For genes with multiple independent
probes, the probe reporting the maximum Pvalue is shown. Seven genes common to all three lists are in bold text. (Continued)
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TFPI2 | 1.4
ESRI 0.996 1.5
SLCI1A3 0.999 1.6
EFNAI | 1.6
KLK13 | 25
AB065858 | 3.1
MMP7 0.987 34
INHBB | 35
PI3 | 0.4

but modeled as either all data or individual tumor types.
An estimate of the statistical significance of the overlap in
differentially expressed genes common to the three ana-
lytical methods gave a Pvalue of < 1 x 10-¢ as described in
the legend to Fig. 6. As shown in Fig. 6, seven of the twelve
differential genes found amongst individual tumor
ANOVA analyses were common to the linear discriminant
gene profile (LD-p54): ANGPLT4, COL1A1, GP2, GPR57,
LAMB3, PCDHB)Y, and PTGER3.

Real-time PCR analysis generally confirmed either induc-
tion or suppression in multiple tumor samples but with
higher induction ratios; e.g. from Fig. 5, the level of
ANGPTL4 was measured by PCR as induced 19 to 453
fold with a average fold induction of 185 SD = 170 for 10
tumors (2 of each type). The aggregate induction of
ANGPTL4 in the array analysis was 2.09 fold (Pcorr < 2e-
9). Similarly, COL1A1 was measured by PCR as induced
in most tumors with an average 9.8-fold (SD = 9.1) versus
a 3.64-fold induction found by microarray analysis.
Finally, in ovarian and prostate tumors, angiopoietin 2
(ANGPT2) measured by PCR was elevated 6-fold (data
not shown) versus the 2.2-fold induction found by micro-
array analysis.

Discussion

Overall, the pathways represented by the differential
genes in xenograft tumors support a model for late ang-
iogenic expression patterns. In light of the collection of
xenografts after 28-29 days post-implantation, is not
surprising to find patterns of differential gene expression
that reflect a portion of the tumorigenic process rather
than a preponderance of early transforming events. This
premise is largely supported by the abundance of extracel-
lular matrix, cell adhesion and angiopoetic genes com-
mon to the three analyses.

Ten of the 12 induced genes identified by the ANOVA of
xenografts were either well-characterized functions or bio-
logical roles, particularly angiogenesis (ANGPTL4), mor-
phogenesis (LAMB3, COL1A1, PCDHB9, or cellular
mobility or communication (HAS1, PTGER3, PCDHB9,
and LAMB3). The role of extracellular matrix genes in
tumor growth has been previously noted [7,8]. Interest-
ingly, five of the extracellular matrix genes from the linear
discriminant analysis were collagens (COL1A1, COL4A1,
COL5A1, COL5A2 and COL12A1) and four of these colla-
gens (COL1A1, COL4A1, COL5A1, and COL5A2) have
been previously found induced in primary renal cell carci-
nomas (4.8, 5.0, 3.25 and 3.6 fold respectively [26].
COL1A1 has also been found induced in most breast car-
cinomas [27,28], and a subset of ovarian and colon carci-
nomas [28].

Consistent with an overall pattern of late-stage angiogen-
esis in xenograft tumors, ANGPTL4 was found consist-
ently induced relative to the parental cell lines by all
analyses. ANGPTL4 originally was described as an
induced target of peroxisome proliferator-activated recep-
tor gamma that is involved in glucose homeostasis and
differentiation of adipose tissue [29]. Subsequently
ANGPTL4 was shown to possess angiogenic activity in the
chick allochorionic migration assay [30]. More recently,
ANGPTL4 was shown to bind and inhibit lipoprotein
lipase [31], a function consistent with the cachexia
induced by tumors, where a reduction of fatty acid
incorporation into fat cells serves the energy needs of the
tumor rather than the host. ANGPTL4's angiogenic action
has been reported to be independent of VEGF in a renal
carcinoma model [30]. Similarly to previous observations
of induced angiopoietins in primary renal cell carcinomas
(ANGPT2 8.18-fold induced and ANGPTL4 18-32-fold
induced [26], we found both ANGPTL4 induction (2.09
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Table 3: Biological process classification of 175 genes derived from three analyses. The 149 genes derived from the ANOVA analysis of
xenograft versus parental cell line data, the 54 genes identified by the linear discriminant analysis and the 12 genes derived from the
intersect of ANOVA of individual tumors are shown. Gene Ontology terms were extracted at level 3 for the Unigene gene names. Not
shown are genes multiply annotated into additional singular categories or genes absent from the Gene Ontology. Percentages were
calculated from a total of 317 classifications into 31 Biological Process terms.

GO Process % Genes

GO:0007154 cell communication 26.8% HDGF PTGER3 CD44 TAS2R16 GALR2 IGFBP3 COL5AI| ORIFI
SORCS3 FZD| LAMB3 SELPLG GFRA3 IL26 CXCR4 PDAP| SSTR3
ENSA CDI51 COL9A| OPCML GPR145 GPR44 EPHA3 TNC GPR80
HAS| BGLAP EFNAI EBI2 EDN3 TSHR F2R PRSSI1 NRPI OMP
MC2R INHBB OR7A|7 IL8 AGTR2 GPR48 CHODL CXCLI ORIFI0
CHRMI GPR10 GPR57 NID2 GPRé6 LAMBI CCR5 SPPI ADCYAPIRI
CXCLI| PCSK5 GPR23 RAP2B IFNGR2 IL7 COLI2A1 PYY CXCL2
PCDHB9 GPRI10 CD164 PBEF KLRBI FNI BSG IGSF6 FBLN5 STC2
ANGPT2 ADORA2B PF4 IL12B FPRI GPLD| CCR4 NPYIR ESRI
GNAOI ITGA4 KITLG
GO:0008151 cell growth and/or maintenance I.55% HDGF IGFBP3 SORCS3 TSPAN-3 CXCR4 PDAP| SSTR3 ENSA
TRPV2 SLC39A4 TF EMP3 HBEI CACNAIH TSHR F2R COL5A2
PRSSI| NRPI INHBB CLCA4 IGFBP7 IL8 RBP4 MGC2376 CXCLI
CHRMI A2M CP CD81 CCR5 KTNI SPPI SCAMPI OGFR IL7 TRPM5
NOV PYY CD164 PBEF SLC16A8 PLECI ANGPT2 HCN2 IL12B EMP2
ESRI KITLG
GO:0009605 response to external stimulus 12.6%  TAS2R16 ORIFI IL26 CXCR4 ENSA TRPV2 GPR44 EBI2 EDN3 F2R
OMP RNASE6 INHBB OR7A17 IL8 HLA-A RBP4 CXCLI TIMP3 SEPP|
CD8I| CCR5 SPPI CXCLI|I IFNGR2 IL7 CST7 CXCL2 CD164 CRI
KLRBI FN1 IGSF6 STC2 ADORA2B PF4 IL12B FPRI CCR4 IFI27
GO:0008152 metabolism 7.9% PTGER3 LIPF MMP7 EPHA3 KLK11 HASI CMAI F2R MMP10 FAP
PRSS11 RNASE6 INHBB MMP8 CHRMI SEPPI CD8I| PCSK5 RNASE4
KLK I3 ADAM?28 FIBL-6 TLLI IL12B ESRI
GO:0009653 morphogenesis 7.9% BDNF LAMB3 TSPAN-3 GFRA3 CXCR4 CACNAIH BGLAP F2R
NRPI INHBB IL8 AMELY CXCLI CHRMI CCR5 SPPI COLIAI
COLI2A| PCDHB9 FGFI9 ANGPT2 TLLI PF4 ILI2B GNAOI

GO:0006950 response to stress 6.0%  IL26 CXCR4 F2R IL8 CXCLI SEPPI CCR5 SPPI CXCLI | IFNGR2 IL7
CXCL2 CRI KLRBI FNI ADORA2B IL12B FPRI CCR4

GO:0006928  cell motility 3.5% GALR2 TSPAN-3 HAS| CACNAIH F2R NRPI IL8 PYY FNI FPRI

GNAOI

GO:0008219 cell death 2.5% PTGER3 CXCR4 SSTR3 EMP3 F2R AGTR2 SPPI EMP2

GO:0016265 death 2.5% PTGER3 CXCR4 SSTR3 EMP3 F2R AGTR2 SPP| EMP2

GO:0030154 cell differentiation 1.9% BGLAP INHBB SPP| FGF23 PF4 IL12B

GO:0007397 histogenesis and organogenesis 1.6% CXCR4 COL9AI NRPI IL7 KITLG

GO:0007599 hemostasis 1.3% SERPINCI TFPI2 F2R PF4

GO:0000003 reproduction 0.9% SPAGI| ADCYAPIRI ADAM28

GO:0007631 feeding behavior 0.9% GALR2 PYY NPYIR

GO:0009405 pathogenesis 0.9% CXCR4 EDN3 TSHR

GO:0008015 circulation 0.9% CACNAIH EDN3 AGTR2

GO:0046849 bone remodeling 0.9% BGLAP AMELY SPPI

GO:0007586 digestion 0.6% GALR2 PYY

GO:0019098 reproductive behavior 0.3% PI3

GO:0030198 extracellular matrix organization and biogenesis ~ 0.3% COLI4AlI

fold, Pcorr < 2e-9), and ANGPT2 induction (2.23-fold  dent with these observations, IGFBP7 which was

Pcorr < .005). differential by ANOVA and linear discriminant analysis,
modulates IGF mitogenic activity [35]. IGFBP7 also stim-
Other post-VEGF angiogenic pathways ulates prostacyclin synthesis [36] perhaps to take

The role of other elevated angiogenic genes downstream  advantage of our observed 6-fold increased PTGER3
of VEGF bears discussion. The induction of the prostag-  expression. Similarly, a human-specific probe for TEM5, a
landin E receptor 3 (PTGER3- 6.4-fold, Pcorr < .001) is of ~ marker of tumor endothelial angiogenesis [37], was also
interest since prostaglandins can induce VEGFA produc-  found mildly increased (1.37-fold Pcorr < .001) possibly
tion [32,33] via a hypoxia-induced pathway [34]. Coinci-  as a result of vasculogenic mimicry [14,38].
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Table 4: Molecular function classification of 175 genes derived from three analyses. As in Table 3, the gene names from three analyses
were annotated according to the Gene Ontology Molecular Function categories. Not shown are genes multiply annotated into
additional singular categories or genes absent from the Gene Ontology. Percentages were calculated from a total of 251 gene
classifications into 52 Molecular Function terms.

GO Function % Genes

GO:0004872 receptor activity 20.3% PTGER3 CD44 TAS2R16 GALR2 ORIFI SORCS3 FZD| GFRA3 CXCR4
APOBA48R SSTR3 OPCML TRPV2 GPR145 GPR44 EPHA3 GPA33 TNC
GPR80 EBI2 TSHR F2R NRPI MC2R OR7A17 AGTR2 HLA-A GPR48
ORIFI0 CHRMI GPR10 GPR57 GPR6 CCR5 ADCYAPIRI GPR23 IFNGR2
OGFR APMCFI GPRI10 CRI KLRBI IGSF6 ADORA2B IL12B GPLD| FPRI
CCR4 NPYIR ESRI ITGA4

GO:0005102 receptor binding 10.8% HDGF BDNF SELPLG GFRA3 IL26 ENSA EFNA| EDN3 F2R INHBB IL8
CXCLI SPPI CXCLI | IL7 NOV PYY CXCL2 FGF23 PBEF FBLN5 FGFI9
STC2 ANGPT2 PF4 IL12B KITLG

GO:0016787 hydrolase activity 7.6% RNASEI LIPF MMP7 KLK11 CMAI MMPI0 FAP PRSSI | RNASE6 MMP8
PCSKS5 RAP2B RNASE4 KLK 13 ADAM28 FIBL-6 TLLI GPLD| GNAOI

GO:0005515  protein binding 7.6% CD44 TMPO IGFBP3 CXCR4 LTBPI PRSSI | INHBB IGFBP7 PI3 MGC2376
A2M NID2 CCR5 IFNGR2 SERPINA4 NOV PLECI| FNI CCR4

GO:0046872 metal ion binding 6.0% FSTLI MMP7 TF CACNAIH BGLAP MMPI0 LTBPI MMP8 CP NID2
PCDHB9 ADAM28 FIBL-6 FBLNS TLLI

GO:0042277 peptide binding 6.0% GALR2 SORCS3 CXCR4 SSTR3 OPCML GPR44 F2R MC2R AGTR2 GPR10
CCRS5 OGFR FPRI CCR4 NPYIR

GO:0005201 extracellular matrix structural constituent 4.8% COL5A| COL4A| COL9A| COLI4Al MAGP2 TFPI2 COL5A2 AMELY
COLIAI COLI2A1 FNI MFAP3

GO:0004857 enzyme inhibitor activity 3.6% SPINK2 SERPINCI TFPI2 PI3 AGTR2 A2M TIMP3 SERPINA4 CST7

GO:0015267 channel/pore class transporter activity 2.8% TRPV2 CACNAIH CLCA4 MGC2376 CHRMI TRPM5 HCN2

GO:0005539 glycosaminoglycan binding 2.8% HDGF FSTLI CD44 COL5AI SERPINCI FNI PF4

GO:0003676 nucleic acid binding 2.4% TMPO RNASEI APOB48R RNASE6 RNASE4 ESR |

GO:0000166 nucleotide binding 2.4% EPHA3 FLJ20559 RAP2B APMCFI HCN2 GNAOI

GO:0016740 transferase activity 2.4% EPHA3 HASI GP3ST FLJ20559 NRPI FUT8

GO:0004895 cell adhesion receptor activity 1.6% CD44 TNC GPLDI ITGA4

GO:0015075 ion transporter activity 1.6% TRPV2 SLC39A4 CP SLCI6A8

GO:0016301 kinase activity 1.2% EPHA3 FLJ20559 NRPI

GO:0030246 carbohydrate binding 0.8% CHODL KLRBI

GO:0005386 carrier activity 0.8% A2M SLCI6A8

GO:0005180 peptide hormone 0.8% PYY STC2

GO:0008565 protein transporter activity 0.8% SORCS3 SCAMPI

GO:0008147 structural constituent of bone 0.8% BGLAP COLIAI

GO:0003800 antiviral response protein activity 0.4% IFNGR2

GO:0008189 apoptosis inhibitor activity 0.4% SPPI

GO:0015457 auxiliary transport protein activity 0.4% ENSA

Other factors such as FGF can play an angiogenic role.
One FGF isoform was found significantly differential in
some tumor combinations; FGF7 was elevated in colon
and prostate xenograft tumors (1.5-fold, Pcorr < 8.7e-6
and 3.7-fold, Pcorr < 7.5e-7) respectively but 2-fold sup-
pressed in ovarian tumors (Pcorr <.006), Fig. 4. FGF7 was
previously shown to stimulate the growth of endothelial
cells of small but not large vessels in the rat cornea [39]
and hence supports the notion of vascular remodeling
versus vasculogenesis. That differential expression of this
gene was found only in some tumor combinations is con-
sistent with the concept that each type of tumor will
display individual differences in the balance angiogenic
activators and inhibitors, yet the end physiological result,

increased tumor vascularization, is the same [3]. Finally,
as noted above, genes that help destabilize or remodel
vessels such as ANGPT2 and ANGPTL4 were induced, con-
sistent with an overall pattern of late-stage angiogenesis.

Linking angiogenic pathways to neuropeptide signaling
pathways

Additional support for the late, post-VEGF angiogenic pat-
tern of gene expression in xenografts froms from the
observed 5-fold induction of NPY1R by both ANOVA and
linear discriminant analyses. NPY1R has been reported to
play a role downstream of VEGF in vasoconstriction [40]
and capillary sprouting and differentiation [41]. Consist-
ent with the observation of NPY1R induction, the potent
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GO:0006950
GO:0007154

chemokine (C-X-C motif) ligand 1
chemkine receptor 5

GO0:0019098 WAP four-disulfide core domain protein 14
GO:0007154 laminin, beta 3 (nicein (125kD)

NA serine protease inhibitor, Kazal type, 2
G0:0007397
GO:0009653

neuropilin
fibroblast growth factor 7 (keratinocyte growth factor)

GO:0007154
GO:0007154

GO:0008151
GO:0007154
GO:0007154
GO:0006928

inhibin, beta B (activin AB beta polypeptide)
v-erb-b2 oncogene homolog 2

v-kit Hardy-Zuckerman 4 viral oncogene homolog
Coagulation factor VIII VWF (von Willebrand factor)
L1 cell adhesion molecule

Vascular endothelial growth factor related protein

Comparison of differential expression of genes in parental cells versus reference cDNA synthesized from uni-
versal RNA (left) and all tumors versus parental cell lines (right). Genes differentially expressed in the parental cells
relative to the reference cDNA were analyzed by a 2-way ANOVA (Pcorr < .001). A subset of the differentially expressed

genes is shown. The corresponding cognate tumors with differential expression at a 99.9% confidence level by ANOVA analysis
of tumors vs parental cell line data are shown. The heat maps indicate relative fold-induction or suppression in a linear color-
encoded scale shown at the bottom. Mean ratios are indicated by X, C = colon, B = breast, L = lung, P = prostate, O = ovary.

effect of ligand neuropeptide (NPY) upon angiogenesis
was shown to yield branching vasodilated structures dis-
tinct from those generated by VEGF [17]. Similarly, neu-
ropeptide Y has been reported to trigger angiogenesis via
the NPY2 receptor in ischemic muscle of mice [41]. Inter-
estingly, neuropilin 1 (NRP1) which can act as a co-recep-
tor with VEGFR2 [42] was found suppressed (1.31-fold,
Pcorr < .006) while other VEGF receptor levels were not
significantly altered. Finally, previous expression profile
studies have found NPYIR to be substantially induced in
many breast, prostate and pancreatic carcinomas [28].

Additionally, two other differential genes involved in neu-
ropeptide signaling were observed: melanocortin-2 recep-
tor (MC2R)and SORCS3/neurotensin receptor gene. Both
MC2R and the SORCS3 were found differentially
expressed by ANOVA. MC2R is a GPCR that binds the
ACTH peptide while SORCS3 is a homolog of the rat sor-
tilin gene with VPS10 domains characteristic to
neuropeptide-binding proteins [43-45]. ACTH has been

found to increase angiogenesis of cultured endothelial
cells in a 3D-collagen assay [19] and other neuropeptides
have been implicated in stimulating VEGF in prostate can-
cer cells [46].

Conclusion

In this study we compared the expression profiles of
secreted and cell surface genes from five different tissue
sources. Multiple tumors were derived from each parental
cell line to examine the potential for tumor heterogeneity
arising from the primary isolate, but we found relatively
consistent behavior within any tumor group. However,
we also found tumor-specific genes for each tumor type
while identifying a profile of genes shared amongst all
tumor types by multiple analytical approaches. Overall,
our results comprise a foundation of commonly regulated
tumorigenic genes across tissues such as fundamental ang-
iogenic inducers and regulators. Given the diverse and
complex expression behavior of primary human tumors
from any single tissue source [27,28], in the future it will

Page 14 of 20

(page number not for citation purposes)



BMC Genomics 2005, 6:55

100000

http://www.biomedcentral.com/1471-2164/6/55

10000

1000

100 -

10

1.000 A

hSPP mSpp ANGPTL4 CCR4 FGF23

GNAO1 GP2

GPR10 GPIR110 CD44

0.100

0.010

0.001 +—

oC1 mC2 001 002 =mL1

oL2 mB1

0B2 =mP1 @pP2

0.000

Flgure 5

Figure 5

Quantitative PCR analysis of selected genes. Two tumors of each tumor type were analyzed by quantitative PCR. The
measured fold change relative to cell line was determined. RNA amounts per well being normalized by betaactin signal. In gen-
eral <2-fold changes are not significant. Hence a call of 1.5 fold down may not actually differ from 1.5 up. Specific tumor types
are indicated by the first initial followed by the tumor number: i.e. Cl = colon tumor #I, Ol = ovary tumor #1, LI = lung

tumor #1, Bl = breast tumor #I, Pl = prostate tumor #]l.

be necessary to examine several established lines from
many histologically similar primary tumors as well as dif-
ferent tumor types from the same tissue. Similarly, it will
be important to compare the effect of orthotopic implan-
tation sites to the subcutaneous injection site in these pre-
liminary studies. To resolve xenograft micro-
heterogeneity, microarray analysis of micro-dissected
xenograft or primary tumors can be used. Micro-dissec-
tion will also allow the assessment of potential vasculo-
genic mimicry by aggressive tumor cells that can express
endothelial genes [38]. Additionally, the xenograft model
can be more readily extended to monitor time-dependent
expression profile changes in the development of tumors.

Such results can be used in combination or as a filter with
other biomarker technologies such as tissue arrays [47] or
mass spectroscopy [48] to fully characterize clinical
specimens for diagnostic or prognostic purposes. By iden-
tifying genes known to participate in angiogenesis and
tumorigenesis, our work establishes a baseline to evaluate
and compare the full spectrum of gene profile changes in
xenografts and clinical specimens. Hence, time and tissue-
specific gene and protein profiles may be useful for the
discovery of both biomarkers and new therapeutic
strategies.
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Figure 6

Overlap of differentially expressed genes identified by three analyses: ANOVA-p149 = 149 genes derived from the
ANOVA analysis of all data, LD-p54 = linear discriminant list of 54 genes from all data, and ANOVA-il2 = twelve genes result-
ing from a comparison of differentially expressed genes from the ANOVA analysis of individual tumors compared to parental
cell lines. An estimate for the statistical significance for the overlap of differentially expressed genes by the 3 analytical methods
was estimated by calculating the product of individual probabilities for the results of each analytical method applied to 3531
genes. The null hypothesis in this case is that each method's "call" as to a given gene's differential expression is independent of
the call made by the other two methods. Thus if pl, p2, and p3 represent the chance that each method calls a given gene as dif-
ferentially expressed (easily estimated as number of genes called/ number of total genes), the chance that all three methods do
so is simply pAll = p1*p2*p3 = (54/3531)*(149/3531)*(12/3531) = 2.193e-5. Under our null hypothesis, the total number of
genes called by all three methods k will follow a binomial distribution with parameters p = pAll, n = 3531 where P(k = L) ~
Bin(pAll, N). Standard calculation techniques allow us to calculate a p-value for this; i.e. p = P(k > = K) — the chance under the
null hypothesis we see as much or more overlap than was actually observed. For our data, we thus have p = P(k> = 7) < | E-6.
Thus, if the methods identified random noise as differential expression, they would be very unlikely to produce the overlap
observed, thus supporting the statistical significance of the results. The heat maps indicate relative fold-induction or suppres-
sion in a linear color-encoded scale shown at the bottom. Mean ratios are indicated by X, C = colon, B = breast, L = lung, P =
prostate, O = ovary.
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Methods

Custom array design

A two-stage strategy was employed to design the custom
oligonucleotide microarray chip. First, for the known
secreted and cell surface proteins, we performed keyword
filtering of the gene descriptions and annotations of
curated public databases such as SwissProt/Trembl [49],
the Gene Ontology tables [23], the UCSC Human
Genome assembly (hg13, NCBI Build 31 [50]), the GPCR
database [51] and public gene tables from technical sup-
ply vendors (Affymetrix, Agilent and Illumina). Some of
the keywords used were "secreted", "trans-membrane”,
"glycosylated" and "olfactory". Redundancies and false
positives were removed by manual curation.

In order to accommodate continued optimization of a
custom chip design, we chose a chip platform that met
several criteria: it must allow rapid changes to the master
template even for small production batches, possess rela-
tive high density, exhibit strong signal-to-noise properties
and have high reproducibility (CV < 10%). Hence, a cus-
tom oligonucleotide microarray chip (Agilent, Palo Alto,
CA) was designed using the curated collection of secreted
and cell surface proteins with human-specific 60-mer
probes derived from the 3' 1500 nt region of each mRNA
sequence. The custom chip was designed with a matrix of
technical probe replicates and multiple probes for some
genes; e.g. 2 or 3 probes with 1, 3 or 5 copies each per
array represented some genes. All probes were curated by
elimination of sequences with unfavorable Tm properties,
predicted secondary structure or homo-polymer regions.
Finally, Blastn [52] analysis was used to confirm human
specificity by comparison to mouse sequences.

Cell lines and mice

All cell lines (A549, MDA MB-231, HCT-116, SK-OV3,
and PC3) were obtained from the ATCC (Manassas, VA).
Xenograft tumors were generated from each parental cell
line by either implantation of cells or passage of a frag-
ment from a primary tumor (Piedmont Research Center,
Morrisville, NC). For the A549, MDA MB-231 and SKOV-
3 lines, le-7 cells grown with 10% fetal calf serum in Dul-
becco's modified Eagle's medium at 37°C in 5% C0, were
implanted subcutaneously into the flank of between 8
and 10 BalbC (Harlan Labs, Indianapolis, IN) mice.
Between 50 and 75% of the mice yielded a palpable pri-
mary xenograft tumor. For the HCT116 and PC3 xenograft
tumors, 1 mm3 tumor fragments between 103-110 mg
were excised from a primary xenograft tumor and pas-
saged into secondary mice for the HCT-116 and PC3
xenograft tumors. For PC3 tumors, 8 male mice were
implanted with fragments; otherwise recipient mice were
female. The number of tumors processed for hybridiza-
tion were 5 for SK-OV-3, 5 for PC3, 4 for MDA MB-231, 3
for HCT-116 and 5 for A549.

http://www.biomedcentral.com/1471-2164/6/55

RNA preparation

For the parental cell lines, total RNA was harvested from 4
x 106 cells using a High Pure RNA isolation kit (Roche
Applied Science, Indianapolis, IN) according to manufac-
turer's instructions. Tumors were excised 22-29 days post-
implantation under accredited procedures (Piedmont
Research Center, Morrisville, NC), snap-frozen in liquid
nitrogen and stored at -80° C until use. Total RNA was pre-
pared from frozen specimens by 24 hr immersion at -
80°C in RNAlater-ICE (Ambion, Austin, TX) to 'transi-
tion' solid tumors for subsequent homogenization by
grinding with a liquid nitrogen-chilled mortar/pestle, fol-
lowed by resuspension in Trizol (Sigma-Aldrich, E. St.
Louis, Mo) and sonication to complete the tissue disrup-
tion. Total RNA was extracted using Phase-lock gels
(Brinkmann, Westbury, NY), ethanol precipitated, resus-
pended in RNase-free water, and aliquoted prior to use.
Quality control of the total RNA was facilitated by the use
of a microcapillary electrophoresis system (Agilent 2100
Bioanlyzer; Agilent Technologies, Palo Alto, CA).

Experimental design and array hybridization

To identify cell surface genes that are consistently differen-
tially regulated amongst the derivative tumors, multiple
tumor specimens and their parental source cell lines were
hybridized to the custom chips. All biological specimens
were co-hybridized with a reference cDNA synthesized
from mRNA that is mixture of 10 human established cell
lines (Universal RNA; Stratagene, Carlsbad, CA). For each
array, amino-allyl labeled single-stranded cDNA was syn-
thesized from 10 (g of sample total RNA and from 10 ug
universal RNA using the Agilent Fluorescent Direct Label
Kit according to manufacturer's instructions, except that a
dNTP mix containing 5-[3-Aminoallyl]-2'-deoxyuridine
5'-triphosphate (AA-dUTP; Sigma-Aldrich) was used
(final concentration: 100 (M dATP, dCTP, dGTP; 50 (M
dITP, AA-dUTP). Amino-allyl labeled cDNA was purified
using QIAquick PCR columns (Qiagen, Valencia CA) and
coupled to either N-hydroxysuccinimidyl-esterified Cy3
or Cy5 dyes (Cy-Dye mono-functional NHS ester; Amer-
sham, Piscataway NJ). Dye-conjugated cDNAs were puri-
fied from free dye using the CyScribe GFX purification kit
(Amersham). Targets were hybridized to the microarray
for 16 hrs at 60°C using an Agilent In Situ Hybridization
Kit per manufacture's instructions, washed 10 min in 6x
SSC, 0.005% Triton X-102 at 22°C, 0.1x SSC, 0.005% Tri-
ton X-102 for 10 min at 4°C, dried under a stream of
nitrogen, and scanned with an Agilent Microarray Scan-
ner. Hybridization signals were extracted with Agilent Fea-
ture Extraction Software version 7.1, which yielded the
median of all pixel intensities for each feature. Since two
identical arrays of 8500 features were printed on each
chip, a complete dye-swap comparison could be per-
formed per chip. For example, on the left array, a Cy3-
labeled biological specimen was co-hybridized with Cy5-
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labeled cDNA made from universal RNA. For the cognate
dye-swap experiment on the right array, a Cy-5 labeled
biological specimen was co-hybridized with Cy3-labeled
¢DNA made from universal RNA. No tumor samples were
mixed with any other tumors.

To enable identification of differentially expressed genes
with higher statistical reliability, we performed a matrix of
hybridizations. The hybridization matrix follows: for the
5 SK-OV-3, A549 and PC3 tumor specimens, 3 of the
tumor samples were hybridized to 2 chips each (hence 4
arrays per tumor sample) while 2 tumor samples were
hybridized to a 1 chip each (hence 2 arrays for each of
these tumors). For the 4 MDA MB-231 tumor specimens,
3 of the tumor samples were hybridized to 2 chips each
and 1 tumor was hybridized to a single chip of 2 arrays.
For the 3 HCT-116 tumor specimens, all 3 tumors were
hybridized to 2 chips each (4 arrays each). For the paren-
tal cell lines, HCT-116 cells were hybridized to 6 chips (12
arrays) while the other cell lines were hybridized to 2
chips each (4 arrays). Since most probes were present
minimally in triplicate on each array, whenever a tumor
sample was hybridized to 2 chips n = (3*4) = 12 per
probe. However, since dye-swap hybridizations were rou-
tinely performed, n = 6 for the Cy3 and Cy5 signals
respectively.

Quantitative PCR

Real-time (RT-) PCR analysis of selected RNA transcripts
was performed using either a GeneAmp 5700 Sequence
Detection System or an ABI PRISM 7900HT Sequence
Detection System with SyBr green chemistry (Applied Bio-
systems, Foster City, CA). The cDNA produced by reverse
transcribing the equivalent of 10 ng of total RNA was
loaded per RT-PCR reaction. The following primers pairs
were used: beta actin (ACTB) CCTGGCACCCAGCACAAT,
GCCGATCCACACGGAGTACT; Human osteopontin
(HSPP) AGCAAAATGAAAGAGAACATGAAATG,
TTCAACCAATAAACTGAGAAAGAAGC; murine
osteopontin (mSpp) ATTTTGGGCTCITAGCITAGTCT-
GTT, GGTTACAACGGTGTITGCATGA; angiopoietin-like
4 (ANGPTL4)ATGTGGCCGTTCCCTGC, TCTTCTCTGTC-
CACAAGTTTCCAG,; chemokine (C-C motif) receptor 4
(CCR4)ATTCCTGAGCCAGTGTCAGGAG, CTGTCTITC-
CACTGTGGGTGTAAG; fibroblast growth factor 23
(FGF23)GGCAAAGCCAAAATAGCTCC, CTGCCACAT-
GACGAGGGATAT; G protein, alpha activating activity
polypeptide O (GNAO1) CTAGTCTITGGGAAACG-
GGTTGT, AAATCCAACACGGCAAAGGA; glycoprotein 2
(GP2) GCITTCCACTCCAATTCACACA, CCTGGCCTT-

GATTCTGTITAATACC; collagen, type I, alpha 1
(COL1A1)TCCCCAGCTGTCTTATGGCT, CAGCACG-
GAAATTCCTCC; G protein-coupled receptor 10
(GPR10)CATGCTCGAGTCATCAGCCA, TTTCACT-

GCCCCCTITGTGT; G protein-coupled receptor 110

http://www.biomedcentral.com/1471-2164/6/55

(GPR110)AAGCTCTGGAGGCCGACTG, GGCCITGT-
CATCCCGACTC; (CD44)TACAGCATCTCTCGGACG-
GAG, GGTGCTATTGAAAGCCITGCA;
(CD81)CCCTAAGTGACCCGGACACTIT,  CGTTATATA-
CACAGGCGGTGATG. The identity of each amplicon was
confirmed by melting curve analysis at the end of the RT-
PCR run.

Array analysis

While the array vendor's feature extraction software 'proc-
essed' the hybridization signal to correct for image inten-
sity, background and minor spatial artifacts, chip-to-chip
comparisons such as 'reference' versus 'experimental’ sam-
ple were handled by a custom database [25] built in
MySQL [53] with a web interface served by Apache [54].
The database allows the control of experimental design
and specification of comparisons and analyses to be per-
formed. Some calculations, like T-Tests and ratios, can be
performed in the database or its interface layer, but MAT-
LAB (Mathworks, Natick, MA) was used for ANOVA and
principal components analysis (PCA).

For identification of differentially expressed genes, we
used the MAANOVA package [55] an implementation of
ANOVA for microarray analysis [24]. Array data were
loaded into the database and minimally pre-processed for
use with this package: where replicate features of the same
probe existed in the array design, an arithmetic mean was
calculated to yield a single expression level for each probe
for each chip. Each tumor or cell line sample was hybrid-
ized to 3 separate chips. All signals were Log2 transformed
prior to subsequent analyses. These data were used to fit a
linear model with factors Gene, Array, Array x Gene, Dye,
Dye x Gene, and Sample x Gene. This last attribute is the
quantity used for analysis, representing the differential
expression of a given gene under a given experimental
condition, with the other factors serving to normalize the
data. In order to identify differential expression these
residuals were analyzed with three statistical tests: a
standard ANOVA F-test and two minor variations. A probe
had to pass these three tests, generally at 99.9% signifi-
cance, in order to be called as differentially expressed. A
permutation analysis and one-step multiple comparisons
correction were applied in conjunction with these tests. It
should be noted that since three tests are applied, three P-
values result, and when single P-values are listed; the max-
imum of the three P-values is reported. Finally, since all
samples were co-hybridized with cDNAs made from a
universal RNA sample, for comparisons of differential
gene behavior, approximate 'ratios' were calculated by
dividing the paired individual tumor/universal RNA ratio
by the paired parental cell/universal RNA ratio.
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Ontology annotation

Unigene Gene names were classified by the consistent
terms of the Gene Ontology(tm) consortium [23] and the
fatiGO interface to the Gene Ontology [56].
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