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Abstract
Background: Microarrays for the analysis of gene expression are of three different types: short
oligonucleotide (25–30 base), long oligonucleotide (50–80 base), and cDNA (highly variable in
length). The short oligonucleotide and cDNA arrays have been the mainstay of expression analysis
to date, but long oligonucleotide platforms are gaining in popularity and will probably replace cDNA
arrays. As part of a validation study for the long oligonucleotide arrays, we compared and
contrasted expression profiles from the three formats, testing RNA from six different cell lines
against a universal reference standard.

Results: The three platforms had 6430 genes in common. In general, correlation of gene
expression levels across the platforms was good when defined by concordance in the direction of
expression difference (upregulation or downregulation), scatter plot analysis, principal component
analysis, cell line correlation or quantitative RT-PCR. The overall correlations (r values) between
platforms were in the range 0.7 to 0.8, as determined by analysis of scatter plots. When
concordance was measured for expression ratios significant at p-values of <0.05 and at expression
threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from
93% to 100%.

Conclusion: Our results indicate that the long oligonucleotide platform is highly suitable for
expression analysis and compares favorably with the cDNA and short oligonucleotide varieties. All
three platforms can give similar and reproducible results if the criterion is the direction of change
in gene expression and minimal emphasis is placed on the magnitude of change.
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Background
Completion of the human genome sequence has made it
possible to study expression of the entire complement of
20,000–30,000 genes in a single assay. The two most com-
mon array platforms are based on collections of cDNA
clones [1] or short (25 base) oligonucleotides synthesized
in situ by photolithographic methods (i.e., by Affymetrix,
Inc.) [2]. Partly because they are easy to use, microarrays
are the most extensively used technology for studying
gene expression on a global scale [3,4]. Thousands of
expression studies employ one or the other microarray
platform, but comparison of results between platforms
has been difficult because of inherent differences in the
array technologies. The situation became more complex
as investigators began using long oligonucleotide arrays
for expression profiling [5-9].

Because long oligonucleotide arrays for expression profil-
ing are relatively new, we wished to validate them in rela-
tion to the cDNA and short oligonucleotide platforms,
both of which have been used extensively in our laborato-
ries over a number of years. The three platforms were eval-
uated using RNAs isolated from six cell lines and tested
against a universal reference RNA. Sufficient RNA was iso-
lated in a single harvest to supply labeling template for all
experiments, so variability of RNA isolation was not an
issue. However, no attempt was made to eliminate other
sources of variation such as differences between lots of flu-
orescent dye label, microarray batch, operator, etc. We
conducted these experiments under "normal" laboratory
conditions so that one would not need to go to extreme
lengths to reproduce the results. In almost all cases, results
from the three platforms correlated reasonably well with
each other. The Pearson correlation coefficients (r) ranged
from 0.7 to 0.8. Because of different labeling methods and
analysis algorithms, comparison of the cDNA and long
oligonucleotide platforms with the short oligonucleotide
system was not as straightforward, but in general all of the
platforms were in reasonable agreement.

Results
This study was carried out to compare cDNA (Incyte),
long oligonucleotide (Operon 70-mer), and short 25-mer

(Affymetrix) array platforms, with the goal of qualifying
the 70-mer arrays for general use at the National Cancer
Institute. More specifically, we compared the Incyte
Unigem2 set of human cDNAs (~9900 genes), the
Operon human Version 2.0 set of long oligonucleotides
(~21,329 genes), and Affymetrix HG-U133A arrays
(~22,200 genes). RNA preparations from cell lines
MCF10A, LNCaP, Jurkat, L428, SUDHL6, and OCI-Ly3
were used as probe templates, and the expression of each
gene was compared directly with that of the same gene in
the Human Universal Reference (HUR) RNA from
Stratagene.

Genes in common across platforms
Only genes common to all three platforms were used in
the comparison. Genes were matched by UniGene Cluster
(UniGene Build #161), and unique cluster memberships
were determined for each array type, as listed in Table 1
and enumerated in the Venn diagram in Figure 1. The
intersection for the three platforms consisted of 6430 Uni-

Venn diagram with number of genes present in each plat-form, genes in common between platforms, and genes in common among all three platformsFigure 1
Venn diagram with number of genes present in each plat-
form, genes in common between platforms, and genes in 
common among all three platforms.

Incyte UniGEM2Incyte UniGEM2
8097 Genes8097 Genes

Hs Operon V2Hs Operon V2
19179 Genes19179 Genes

Affy U133AAffy U133A
13899 Genes13899 Genes

64306430 GenesGenes
in commonin common

7082

6593
12999

Table 1: Overlapping gene sets represented in 3 microarray platforms

Incyte UniGEM2 Hs-Operon V2 HG-U133A
Total features / probe sets: 9128 21522 22215
Distinct UniGene clusters: 8097 19179 13899

UniGem2 & Operon V2 UniGEM2 & HG-U133A Operon V2 & HG-U133A
Genes in common 7082 6593 12999

Genes in common in all arrays 6430 6430 6430
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Gene clusters, and all analyses were carried out with all of
these genes or a subset of them.

Comparison of expression ratios
An estimate of the concordance of the platforms was pro-
vided by the percentage of genes that showed expression
ratios "in the same direction." All matched gene sets that
had expression ratios (relative to the Universal Standard)
greater than 1.0, irrespective of magnitude, were consid-
ered to be in the same direction, and the same for expres-
sion ratios less than 1.0. As seen in Table 2, the agreement
was reasonably good, ranging from 74% to 82%. For com-
parison, ~50% concordance would be expected by chance.
Many of the discordant values were at what might be con-
sidered "trivial" levels because a large proportion of ratios
are near unity. For example, approximately 48%, 28% and
13% of the genes from Incyte, Operon and Affymetrix
respectively, exhibit expression ratios within the range of
1.1 to 0.9. Thus, a ratio difference of only 0.95 versus 1.05
is designated a mismatch, which normally would be con-
sidered very concordant in the biological sense.

Statistical tests and thresholds on fold change are com-
monly used for the identification of altered gene expres-
sion by microarray assays. Hence, we estimated the
statistical significance of differential expression of each
RNA from the HUR by one sample Student-t test for a
change from ratio of 1. Comparison between platforms
using expression values significant at p < 0.05 shows con-
cordance in direction of 93%–98% (Table 3 – no thresh-
old). At the 1.5 and 2-fold threshold level, the agreement
between platforms approaches 100% indicating that for
reproducible data all three platforms are highly concord-
ant in direction.

Correlation between platforms
The scatter plots shown in Figures 2a–c indicate graphi-
cally the correlation between the platforms for Jurkat
RNA. Values of r for all platforms and all cell lines are
given in Table 4. The values ranged from 0.7 to 0.8.
Operon and Affymetrix were better correlated than were
Operon and Incyte. The values were intermediate for the
relationship between Incyte and Affymetrix. Figures 2d–f
and Table 5 indicate that the correlation coefficients
between replicates within the same platform are closer, as

Table 2: Proportion of genes expressed in same direction between platforms ignoring expression level. The numbers of genes in 
matched and mismatched directions are given for each cell line and each platform pair, and agreement is given in percentages.

Array Platform: Cell line: Direction-matched Direction-
mismatched 

(ignoring 
expression level)

Total number of 
genes used in 

calculation

Percent agreement 
in direction

GEM2 & Operon V2 Jurkat 4597 1373 5970 77 %
L428 3535 1251 4786 74 %

SUDHL 4608 1525 6133 75 %
Ocily3 4094 1368 5462 75 %
LNCaP 4189 1333 5522 76 %

MCF10A 4469 1429 5898 76 %
Total 25492 8279 33771 75 %

GEM2 & HG-U133A Jurkat 3657 906 4563 80 %
L428 3203 918 4121 78 %

SUDHL 3541 809 4350 81 %
Ocily3 3826 984 4810 80%
LNCaP 3747 1031 4778 78 %

MCF10A 3584 950 4534 79 %
Total 21558 5598 27156 79 %

Operon V2 & HG-
U133A

Jurkat 3688 795 4483 82 %

L428 2909 738 3647 80 %
SUDHL 3520 776 4296 82 %
Ocily3 3509 947 4456 79 %
LNCaP 3607 860 4467 81 %

MCF10A 3511 898 4409 80 %
Total 20744 5014 25758 81 %
Page 3 of 14
(page number not for citation purposes)



BMC Genomics 2005, 6:63 http://www.biomedcentral.com/1471-2164/6/63
Table 3: Concordance between platforms using statistically significant expression ratios at p-value < 0.05 and at 1.5 and 2-fold 
threshold levels.1

No threshold 1.5-fold 2-fold

GEM2 vs. 
Operon

GEM2 vs. 
U133A

Operon vs. 
U133A

GEM2 vs. 
Operon

GEM2 vs. 
U133A

Operon vs. 
U133A

GEM2 vs. 
Operon

GEM2 vs. 
U133A

Operon vs. 
U133A

Number of comparisons2

Jurkat 1471 1678 1740 1096 1088 1220 588 614 749
L428 651 1394 750 580 1051 632 430 678 469
SUDHL 1400 1527 1707 1081 1177 1277 698 741 831
OCI-Ly3 1484 1834 1698 1285 1428 1333 814 900 903
LNCaP 1167 1170 2062 737 751 1252 369 404 696
MCF10A 1555 1429 1880 899 812 1118 405 409 559

Percent of concordance
Jurkat 97% 96% 98% 98% 99% 100% 99% 99% 100%
L428 96% 96% 98% 98% 98% 99% 99% 99% 100%
SUDHL 95% 97% 98% 97% 98% 99% 99% 99% 100%
OCI-Ly3 94% 96% 96% 95% 98% 98% 98% 99% 99%
LNCaP 93% 95% 96% 97% 98% 99% 99% 100% 100%
MCF10A 94% 95% 96% 98% 98% 99% 99% 99% 100%

Total number of comparisons
7728 9032 9837 5678 6307 6832 3304 3746 4207

Total number of concordances
7334 8650 9540 5509 6191 6755 3257 3719 4190

Percent agreement
94.9% 95.8% 97.0% 97.0% 98.2% 98.9% 98.6% 99.3% 99.6%

Percent of data used3

54.0% 57.5% 60.4% 39.7% 40.2% 42.0% 23.1% 23.9% 25.8%

1GEM2: Incyte GEM2 arrays; Operon: Operon V2 arrays; U133A: Affymetrix Human Genome U 133A GeneChip arrays.
2Comparisons between two platforms were done only when the expressions of both platforms met the p-value and threshold criteria.
3Fraction of common expressions between two platforms to the total number of expressions found at p < 0.05 in both platforms.

Table 4: Cross platform correlation coefficients. Pearson correlation coefficients are given for each platform pair and cell line, 
calculated over the genes common to all platforms. Values were obtained from scatter plots as shown in Figure 2a-c.

Platform Jurkat L428 SUDHL OCI-Ly3 LNCaP MCF10A Median

Incyte/Operon 0.727 0.707 0.708 0.724 0.710 0.708 0.709
Incyte/Affy 0.767 0.777 0.781 0.780 0.741 0.744 0.772
Operon/Affy 0.813 0.784 0.783 0.790 0.796 0.782 0.787

Table 5: Median correlation coefficients of replicates within same platform. Calculations and values obtained as in Table 4.

Platform Jurkat L428 SUDHL OCI-Ly3 LNCaP MCF10A

GEM2 0.859 0.919 0.902 0.873 0.827 0.845
Operon V2 0.916 0.805 0.849 0.828 0.951 0.928
HG-U133A 0.956 0.957 0.960 0.952 0.963 0.954
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expected, when compared to the correlations between
platforms. In general, however, there was reasonably good
concordance among the platforms.

Principal Component Analysis (PCA)
A projection on the first three principal components,
which together explain 48.8 % (21%, 14%, and 13%) of
the total variance, is shown in Figure 3. Close clustering of
the cell samples is observed in this projection, indicating
appreciable agreement among array platforms.

"Correlation of Correlations" analysis
The global concordance of the three platforms across all of
the cell lines was estimated by calculating the "correlation
of correlations" coefficient [10,11]. As seen in Figure 4a–
c, the correlations for the three platforms across all cells

lines were quite good. The Pearson correlation of correla-
tion coefficients was 0.965 between Operon and Incyte,
0.995 between Affymetrix and Incyte, and 0.956 between
Operon and Affymetrix.

Clustered Image Map (CIM) visualization and analysis [12]
We used hierarchical clustering to demonstrate graphi-
cally the relationships among platforms, among cell lines,
and among genes. 909 genes expressed at two times back-
ground or more in at least two of the six cell lines were
included in the analysis. The resulting CIM ("heat map")
is shown in Figure 5a–b. All three platforms cluster
together for all six cell lines, as one would wish to find,
and almost all of the gene expression values show reason-
able concordance. Only a few exceptions can be seen in
the cluster shown in Figure 5b. Some of the mismatches

a-f. Scatter plot analysis to determine correlation coefficients between and within platforms using Jurkat RNA as an exampleFigure 2
a-f. Scatter plot analysis to determine correlation coefficients between and within platforms using Jurkat RNA as an example. 
Correlations for all cell lines are given in Table 4. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus 
Operon (d) GEM2 versus GEM2 replicate correlation (e) Operon versus Operon (f) HG-U133A versus HG-U133A
Page 5 of 14
(page number not for citation purposes)



BMC Genomics 2005, 6:63 http://www.biomedcentral.com/1471-2164/6/63
may be due to simple errors in gene identification, rather
than to the technologies of the platforms. The Incyte
library is guaranteed by the manufacturer to be only 90%
correct, and an unknown percentage of the Operon and
Affymetrix oligonucleotides may have been designed on
the basis of incorrect sequences in the public databases.
Indeed, we found one oligonucleotide in the Operon set
that was apparently designed from an EST sequence that
has since been withdrawn from the UniGene database
(see RT-PCR studies below). In any case, the concordance
is quite high across all platforms with this method of anal-
ysis as well as with the others.

Quantitative real-time RT-PCR
In a pilot study with the three platforms, we compared
and contrasted gene expression values for only the cell
lines MCF10A and LNCaP. RT-PCR data for twelve genes
are shown in Figure 6. Most of the values are in reasonable
agreement except that there are differences in the magni-
tudes of the expression ratios. As found in other studies,
the RT-PCR values are generally higher, probably because
ratios are "flattened" with the microarray platforms.
Affymetrix ratios are sometimes higher, but that may sim-
ply reflect the method of quantitation used in their analy-
sis. The cDNA array ratios are generally lower than those

Principal Component Analysis (PCA) of the three microarray platforms and six cell lines using expression of the 3186 genes with signals above backgroundFigure 3
Principal Component Analysis (PCA) of the three microarray platforms and six cell lines using expression of the 3186 genes 
with signals above background.

LNCAPLNCAP

MCF10AMCF10A

IncyteIncyte
AffyAffy
OperonOperon

JURKATJURKAT

OCIOCI--Ly3Ly3

SUDHL6SUDHL6

L428L428
Page 6 of 14
(page number not for citation purposes)



BMC Genomics 2005, 6:63 http://www.biomedcentral.com/1471-2164/6/63
from other platforms. Because the cDNA fragments are
longer and double-stranded, they are more prone to non-
specific hybridization and can cross-hybridize more easily
to related sequences. These characteristics of the probes
may result in higher background signal and concomitant
reduction in dynamic range of the ratios. In general, we
have found that the long oligonucleotide arrays have a
larger dynamic range than the do the cDNA arrays.

For further RT-PCR analysis, we chose a set of ten genes to
test the accuracy of the three array platforms for all six cell
lines. Those genes were chosen because there appeared to
be a discrepancy among platforms in the direction of their
ratios (i.e., whether they ratios were greater or less than
unity). The results are shown in Figures 7a–f. Of special
interest was gene ETR101, in which the Operon array was
in disagreement across all cell lines. Further inquiry
revealed that the sequence had been found to be incorrect
and had been removed from the UniGene database. Since
the oligonucleotide had been designed from the incorrect
sequence, it is not surprising that it gave a different value.
Other discrepancies may be due to similar sequence
errors, as even the most up-to-date databases are still
being corrected and modified. In the case of AGL, the RT-
PCR assay is in disagreement in several cases with two out
of three of the array platforms; it appears to demonstrate
an upregulation of the mRNA, whereas the arrays, with
the exception of Incyte, point to a downregulation.
Although RT-PCR is supposed to be the "gold standard"
for measuring gene expression, this result shows that

caution is indicated in interpreting results with even the
PCR technology.

Discussion
The purpose of this study was to compare and contrast the
three major microarray platforms, with the goal of
qualifying the long oligonucleotide platform for general
use in our laboratories. Our principal findings were that
the magnitude of any particular expression ratio may differ
from one platform to the other but that the "direction" of
gene expression difference for genes with sufficient inten-
sity of signal appears to be well correlated across plat-
forms. The differences in apparent magnitude of
expression were not unexpected. The platforms differ
widely in many characteristics, including size of targets,
number of targets, concentration of targets, labeling
protocol, and quantitation algorithms. Nevertheless, the
overall concordance of the three platforms was reasonably
good, and one should be able to compare experimental
data between and among the different array types. That is
perhaps not surprising if one considers microarrays sim-
ply as miniaturized, multiplexed dot blots.

A survey of the literature on platform comparisons reveals
a mix of results. Several studies suggest disagreement in
expression between platforms [13-20], and several dem-
onstrate agreement [11,21-34]. The explanation for the
discrepancies among these reports is not altogether clear.
However, we think the following points should be
remembered when designing such studies:

a-c. Correlation of correlations of platforms for all cell linesFigure 4
a-c. Correlation of correlations of platforms for all cell lines. Correlation values R for each pair of platforms are given in the 
figures. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus Operon.
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The same RNA templates should be used throughout the 
entire experiment
RNA preparations from similar, but non-identical, biopsy
samples can yield dissimilar results [35], and RNA from
different versions of the same cell line can yield widely dif-
ferent expression profiles [36,37].

Only genes common to all platforms should be used in the 
analysis
That may seem an obvious requirement, but it is not
always easy to meet in practice. For example, careful study
of sequences present in various cDNA arrays indicates that
20–30% of spots may contain the wrong clone or a misi-
dentified one [10,14,38-40]. A similar situation exists for
the short oligonucleotide platform (Affymetrix) because
more than 19% of the sequences have been reported not
to correspond to the appropriate mRNA Reference
Sequence [41,42]. In these studies, measurements of

cross-platform consistency were significantly improved
when only sequence-matched genes were used. Similarly,
discrepant results in studies using cDNA and Affymetrix
platforms could be explained by errors in gene sequences
[43]. The percentage of incorrect or misidentified
sequences in the long oligonucleotide libraries is
unknown, but we appear to have found one sequence in
error during our own RT-PCR studies. Overall, then, sig-
nificant disagreement in expression ratios among plat-
forms may be due to sequence errors, not to intrinsic
differences among array systems.

Only spots with signals significantly above background 
(and that pass stringent quality-control filters) should be 
used in the comparisons
With most high-density arrays, a large proportion of the
genes can be expected to have signals near background, as
probably fewer than half of all human transcripts are

a-b. Clustered image maps showing patterns of expression relationship among genes, platforms, and cell linesFigure 5
a-b. Clustered image maps showing patterns of expression relationship among genes, platforms, and cell lines. The axes were 
ordered by hierarchical clustering using an uncentered correlation and the average linkage algorithm for 909 genes expressed 
at a two-fold or greater level in at least two of the six cell lines. (a) Clustering of all 909 genes (b) A subcluster of 41 genes to 
show correct clustering and congruence of expression values. As indicated by the cluster trees, all three platforms gave essen-
tially the same relationships among the six cell lines.

Figure 5bFigure 5bFigure 5aFigure 5a

A subcluster
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expressed in any particular cell type or tissue [44].
Although stringent filtering decreases the number of
measurements included in the analysis, the outcome will
be more meaningful.

When comparing results from the three platforms, the
magnitudes of ratios were often quite different, but there
was generally good agreement in the direction of
differences in expression (Figs. 6 &7, Tables 2 &3). Thus,
it may be less productive to correlate absolute changes in
expression than it is to look for agreement in direction.

Overall, the two oligonucleotide platforms were the most
concordant pair. Possible reasons are (i) that the array tar-
gets are single stranded, all of the same size (25-mer or 70-
mer), with approximately the same melting temperature;
(ii) the array elements have a much higher molarity of
gene-specific sequences than do the cDNA arrays; (iii) that
oligonucleotides tend to be more specific in terms of

sequence and less prone to cross-hybridization than are
cDNAs.

Conclusion
As the efficiency and economy of oligonucleotide arrays
improves, they will probably become the platforms of
choice for gene expression analysis, replacing the cDNA
type entirely. Long-oligonucleotide arrays are being pro-
duced by ink-jet [6,45] and pin-spotting methods
[26,27,31]. In these studies, where experiments specifi-
cally compared long-oligonucleotide arrays with the more
"standard" platforms, correlations were good, and the
long-oligonucleotide arrays performed as well as, or better
than, the cDNA or short oligonucleotide variety. The data
reported here confirm and extend those results, with the
added advantage of comparing all three major platforms
at one time and in the same place – something that, to our
knowledge, has not been done before. As a note of cau-
tion, however, we have used materials from three com-
mercial array platforms, and our results and conclusions

Quantitative real-time RT-PCR analysis of 12 genes matched for direction of expression relative to the reference RNA for all three platformsFigure 6
Quantitative real-time RT-PCR analysis of 12 genes matched for direction of expression relative to the reference RNA for all 
three platforms. Log2 ratios are given in table below the graph. This example is a comparison between LnCaP and MCF-10A.
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may not necessarily translate to other platforms and
manufacturers.

Since this study began, many articles have appeared
reporting the "meta-analysis" of microarray data from
unrelated laboratories using several different array
platforms [46-54]. Those studies have reported useful
clinical and diagnostic findings when the data were strin-
gently filtered before analysis. Eventually, standardization
and simplification of the systems may lead to a situation
in which only one or two robust methods are used in all
laboratories, with a concomitant improvement in the
accuracy of gene expression data.

Methods
Experimental design
Three array platforms were tested. Incyte cDNA arrays and
Operon long oligonucleotide (70-mer) arrays were
printed in house, and Affymetrix 25-mer HG U133A
arrays were purchased from the manufacturer. The cDNA
and long oligonucleotide arrays were assayed in
quadruplicate, two each of red/green and green/red for
dye "flips" (reverse fluor experiments) to help eliminate
dye bias (except for L428 that had 3 replicates and OCI-
Ly3 with 5 replicates). The Affymetrix arrays were tested in
duplicate. RNA preparations from six cell lines were tested
with each platform using a universal reference RNA (Strat-
agene) as the standard.

a-f. Quantitative RT-PCR analysis of 10 mismatched genes in the six cells lines for all three platformsFigure 7
a-f. Quantitative RT-PCR analysis of 10 mismatched genes in the six cells lines for all three platforms. (a) MCF10A, (b) LnCaP, 
(c) OCI-Ly3, (d) Jurkat, (e) SUDHL-6 and (f) L428.
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Cell lines and RNAs
Cell lines were grown and RNA isolated at the core Gene
Expression Laboratory, NCI-Frederick. MCF10A (benign
mammary epithelial), LNCaP (prostate carcinoma), Jur-
kat (T-cell lymphoma), SUDHL6 (germinal center B-cell
like diffuse large B-cell lymphoma), OCI-Ly3 (activated B-
cell like diffuse rare B-cell lymphoma and L428 (Hodg-
kin's lymphoma) were grown under standard conditions
[55], and RNA was isolated from the cells using TriRea-
gent following the manufacturer's protocol (Molecular
Research Center, Inc., Cincinnati, OH). Integrity of the
RNA was confirmed by analysis with the Agilent 2100 Bio-
analyzer (Palo Alto, CA) using the RNA 6000 LabChip®

kit. For use as the index standard, Human Universal Ref-
erence RNA (HUR RNA) was purchased from Stratagene
(La Jolla, CA).

Preparation of cDNA and oligonucleotide arrays
Arrays with 10,000 cDNAs were prepared from ready-to-
print UniGEM2 libraries obtained from Incyte, Inc.
(Wilmington, DE). Version 2.0 libraries containing
22,000 oligonucleotides of 70 bases in length were
obtained from Operon, Inc. (Alameda, CA). Arrays were
printed by standard protocols on Corning Ultra-GAPS II
slides (Corning, NY) using a GeneMachine® (San Carlos,
CA) instrument. cDNAs were suspended at a concentra-
tion of 100 µg/ml and oligonucleotides at 25 µM in
3XSSC buffer, and the arrays were printed using SMP3
pins from Telechem International (Sunnyvale, CA). The
spotted nucleic acids were fixed to the slides using proto-
cols supplied by the manufacturers. The 25-mer oligonu-
cleotide HG U133A Genechip® arrays were purchased
from Affymetrix, Inc (Santa Clara, CA).

Labeling and purification of targets
Labeled cDNAs from cell samples for hybridization to the
long-oligonucleotide and cDNA arrays were synthesized
and labeled by the indirect amino-allyl method, using rea-
gents and protocols supplied by the manufacturer. For
cDNA synthesis, we used Stratascript reagents (Stratagene,
La Jolla, CA) and Cy3 and Cy5 fluorophore amino-allyl
reagents from Amersham (Piscataway, NJ). Twenty micro-
grams of total RNA was used for each synthesis. Labeled
cDNA targets were purified using Minelute purification
kits (Qiagen, Valencia, CA). cRNA targets for the Affyme-
trix arrays were synthesized, labeled, and purified accord-
ing to vendor's (Affymetrix) instructions. Briefly, 10 µg of
total RNA was used to make double-stranded cDNA using
reagents and protocols obtained from Invitrogen
(Carlsbad, CA). Linear amplification was carried out by a
modification of the Eberwine T7 method [56], and biotin
was incorporated into the cRNA using the Enzo High
Yield RNA Transcript labeling Kit (EnzoDiagnostics,
Farmingdale, NY).

Hybridization and washing of arrays
The cDNA and long-oligonucleotide microarrays were
prehybridized in 40 µl of 5XSSC with 0.1% SDS and 1%
BSA at 42°C for 30 minutes. The prehybridization solu-
tion was removed, and arrays were hybridized for 16
hours at 42°C in 5XSSC buffer containing Cy3/Cy5
labeled targets, 25% formamide, 0.1% SDS, 1 µg Cot-1
DNA, and 1 µg poly A RNA. The cDNA arrays were washed
at room temperature in 2XSSC, 0.1% SDS for 2 minutes,
1XSSC for 2 minutes, 0.2XSSC for 2 minutes and
0.05XSSC for 1 minute. The long-oligonucleotide arrays
were treated the same except that the last wash step was
omitted. The slides were dried by centrifugation at 650
rpm for 3 minutes. The Affymetrix arrays were hybridized
and washed using the manufacturer's protocol. The arrays
were then stained with streptavidin-phycoerythrin using
the standard antibody amplification protocol (GeneChip®

Expression Manual, Affymetrix, Inc., Santa Clara, CA).

Array scanning and image processing
Long-oligonucleotide and cDNA arrays were scanned
using an Axon 4000B scanner at 10-micron resolution.
Images were processed, and signals from spotted arrays
were quantitated using Genepix 3.0 software (Axon
Instruments, Union City, CA). The Genepix result files,
including signal, background, standard deviation, pixel
statistics and quality parameters for both channels were
deposited in the microarray database (mAdb) maintained
by the NCI/CIT bioinformatics group [57]. The data were
filtered on the basis of signal levels and spot quality. Local
background values were subtracted from spot intensities
to obtain signal values. Data were included if the signal-
to-background ratio was ≥ 2, the signal intensity was
>100, the spot diameter was between 50 and 180 microns,
at least 70% of the pixels were above their standard devi-
ation and the spot was not flagged as "bad" visually.
Arrays were normalized by median-centering the logarith-
mic ratios so that the median ratio of all genes that passed
through the filters was equal to 1. For cDNA arrays, nor-
malized expression ratios of 9050 genes were calculated,
and the same procedure was applied to long-oligonucle-
otide arrays for the expression of 20,799 genes. Affymetrix
HG-U133A arrays were scanned with the Affymetrix
GeneArray scanner at 488 nm and 3-micron resolution.
The images were analyzed using Microarray Suite 5.0 soft-
ware (MAS5; Affymetrix Inc., Santa Clara, CA). Cell-line to
HUR expression ratios were computed by comparative
analysis of MAS5 values. The data were filtered using
MAS5's signal detection and change calls generated at rec-
ommended default settings. The ratios included were
those that had present calls for signal detection or an
increase or decrease call associated with the ratio. The fil-
tered data contained 17,647 genes. For all statistical calcu-
lations, logarithmic values of ratios to the base 2 were
used.
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Determination of genes in common among all platforms
Genes were matched by UniGene cluster methods
[11,58], and expression levels were compared for only the
6,430 genes common to all platforms (Table 1 and Figure
1). UniGene clusters (Homo sapiens: UniGene Build
#161) of probes of all three platforms were determined by
the NCI/CIT Bioinformatics group [57] using the BLAST
program from the National Center for Biotechnology
(NCBI, Bethesda, MD 20894). There were multiple probes
for some of the UniGene clusters. This resulted in match-
ing of two or more probes of one platform to one or more
probes of another platform. All possible combinations
across three platforms were considered for each UniGene
cluster. One probe from each of the platforms was
selected as follows. Initially, for a given combination, the
replicates were averaged to obtain expression patterns of
six RNAs on three platforms. The sum correlation coeffi-
cients of these three patterns to their mean pattern was
determined. The combination having the highest sum was
selected for further analysis. This method relies on the
assumption that the probes specific for a gene yield simi-
lar expression patterns independent of the platform. The
matched expression ratios will be made available at our
website http://nciarray.nci.nih.gov/publications/.

Estimation of total matched versus mismatched expression 
values
Expression ratios for genes in common across all cell lines
and platforms were determined. If the ratio of a gene was
≥ 1 or ≤ 1 for both platforms being compared, the expres-
sion was considered matched irrespective of the magni-
tude. Otherwise, the ratios were considered to be
mismatched (i.e., in opposite directions). These values
give a rough, binary indication of the correlation between
platforms (Table 2). Concordance between platforms
using significant expression ratios at p-value <0.05 and
1.5 to 2-fold threshold levels are given in Table 3.

Correlation of expression among all platforms
To determine how well the data from the three platforms
coincided, correlation coefficients were obtained from
analysis of scatter plots of the mean expression values
from the three array formats. Figure 2a–c are examples of
scatter plot analyses of the three platforms using data
from the Jurkat cell line RNA. The boundaries for ratio val-
ues greater than two-fold are delineated by the external
lines. Correlation coefficients for all three pairs of plat-
forms for all six cell lines are listed in Tables 4 &5).

Principal Component Analysis (PCA)
The global gene expression patterns of the six cell lines in
all three platforms were studied by principal component
analysis (PCA) [59]. All genes (3186) with signals above
background were included. Differences in signal magni-
tude among platforms were nulled out by normalizing the

data from each to unit standard deviation. Individual plat-
form variations were accounted for by employing unit var-
iance. A projection on the first three principal
components, which explained 48.8% (21%, 14%, and
13%) of the total variance, is shown in Fig. 3. The calcula-
tions were done using Partekpro 5.0 software (Partek Inc.,
St. Charles, MO)

Platform concordance by "correlation of correlations" 
coefficient
The global concordance of expression levels of the three
platforms can be expressed in terms of the 'correlations of
correlations' coefficient described previously [10,11]. To
perform the computations, step 1 was calculation of the
Pearson correlation coefficient across all matched genes
for each of the 15 possible pairs of cell lines for each plat-
form. Step 2 was calculation of the Pearson correlation
coefficients of those correlation coefficients for the three
possible ways of pairing the three platforms. The results
are shown in Figures 4a–c.

Hierarchical cluster analysis and Clustered Image Maps 
(CIMs)
Hierarchical clustering of individual replicates (data not
shown), including 3662 genes detected in 80% of the
arrays revealed a grouping of RNA samples independent
of the type of array platform. A set of 909 genes expressed
at >two-fold levels in all platforms in at least two cell lines
was used for hierarchical cluster analysis to determine
how closely the genes, cell lines and platforms
corresponded in their expression values. As a distance
metric, we used 1-r, where r is the Pearson correlation
coefficient [60]. Cluster nodes were determined using an
average linkage algorithm. In the resulting CIM (heat
map) [14a], up- and down-regulation with respect to the
reference RNA are color-coded as red and green, respec-
tively (Figure 5a–b).

Quantitative real-time RT-PCR
RNA preparations from each of the six cell lines and Strat-
agene Human Universal Reference RNA were converted
into single-stranded cDNA using the Applied Biosystems
High-Capacity cDNA Archive kit (ABI, Foster City, CA).
Primer and probe sets were obtained as ABI Assays-on-
Demand™ Gene Expression Products (TaqMAN® MGB
probes, FAM™ dye-labeled) for a set of genes to be studied,
as well as GAPDH and BACT, which were used as compar-
ative controls. All quantitative PCR reactions were per-
formed in quadruplicate, with two carried out in an ABI
Prism® 7000 sequence detection system and two in a Cor-
bett Research R-300 instrument (Corbett Research, Sid-
ney, Australia). The results were analyzed using the
"Relative Quantitation of Gene Expression" method
described in ABI Prism 7700 Sequence Detection System
User Bulletin #2, Rev B. An initial study comparing only
Page 12 of 14
(page number not for citation purposes)

http://nciarray.nci.nih.gov/publications/


BMC Genomics 2005, 6:63 http://www.biomedcentral.com/1471-2164/6/63
two cell lines, LnCaP and MCF10A, was carried out for the
three platforms. Twelve genes that matched in direction of
change were chosen for Q-PCR analysis, and the results
are shown in Figure 6. Subsequently, ten genes were cho-
sen for analysis using all six cell lines and three platforms.
Genes in that set were deliberately chosen for mismatched
ratios to determine if any platform was in error more often
than the others. The results are shown in Figures 7a–f.
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