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Abstract

Background: Regional expression biases (REBs) are genetic intervals where gene expression is
coordinately changed. For example, if a region of the genome is amplified, often the majority of
genes that map within the amplified region show increased expression when compared to genes
located in cytogenetically normal regions. As such, REBs have the potential to act as surrogates for
cytogenetic data traditionally obtained using molecular technologies such as comparative genomic
hybridization. However as REBs are identified using transcriptional information, detection of REBs
may also identify local transcriptional abnormalities produced by both genetic and epigenetic

mechanisms.

Results: REBs were identified from a set of hepatocellular carcinoma (HCC) gene expression
profiles using a multiple span moving binomial test and compared to genetic abnormalities identified
using array-based comparative genomic hybridization (aCGH). In the majority of cases, REBs
overlapped genetic abnormalities as determined by aCGH. For example, both methods identified
narrow regions of frequent amplification on chromosome |p and narrow regions of frequent
deletion on 17q. In a minority of cases, REBs were identified in regions not determined to be
abnormal via other cytogenetic technologies. Specifically, expression biases reflective of cell

proliferation were frequently identified on chromosome 6p21-23.

Conclusion: Identification of REBs using a multiple span moving binomial test produced
reasonable approximations of underlying cytogenetic abnormalities. However, caution should be
used when attributing REBs identified on chromosome 6ép to cytogenetic events in rapidly

proliferating cells.

Background number can have noticeable effects on gene expression.
The parallel analysis of cytogenetic and transcriptional  Studies comparing wild-type and mutant strains of yeast
profiling data has revealed that changes in DNA copy  demonstrated that in regions of increased DNA copy
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number (i.e. genomic amplifications), the vast majority of
genes that mapped within the amplified region had
increased expression when compared to gene expression
in non-amplified regions [1]. In this context, the unidirec-
tional change in expression of a large number of adjacent
genes can be termed a regional expression bias (REB). The
dependence of gene expression on DNA copy number has
also been observed with human derived samples, for
example in a variety of aneuploid tumors and tumor
derived cell lines, and in tissues obtained from patients
with inherited trisomy disorders [2-13]. In these samples,
~40-70% of the genes that map to a cytogenetically
abnormal region show corresponding expression changes;
other genes within the region either do not change expres-
sion or, occasionally, change expression in the opposite
direction of the cytogenetic abnormality. Nevertheless, as
described in yeast, the majority of detectable regional
gene expression biases in these mammalian tissues also
coincide with chromosomal amplifications or deletions.
As such, it is feasible to infer cytogenetic abnormalities by
examination of high-density gene expression data. While
the majority of REBs correspond to cytogenetic abnormal-
ities, several groups have also identified a subset of
regional gene expression biases that do not coincide with
detectable DNA copy number changes [2,5,8,9,12,14].
While technical errors between DNA and expression-
based approaches may account from some of these differ-
ences, it is also possible that other epigenetic factors could
produce and regulate the appearance of REBs.

Partitioning gene expression data into subsets of adjacent
genes and applying a summary function to each subset is
a common method to identify REBs [1,5,11,15-19]. For
example, a chromosome can be broken into consecutive,
non-overlapping, 100 megabase (Mb) intervals and gene
expression values that map to each interval tested for an
expression biases using a variety of statistical/computa-
tional approaches. While partitioning approaches have
been effective in identifying REBs, these approaches may
be inherently limited due to the static nature of the parti-
tion span. Other, more dynamic, approaches to identify
REBs utilizing run and scan statistics have also been
reported [20]. However, the utility of these approaches for
genome-wide scanning of expression biases is not well
described.

Traditional data smoothing approaches ranging from sim-
ple moving averages to variable span local regression are
common and straightforward methods that can be used to
dampen variance and extract trends and patterns from
ordered data series. For example, array comparative
genomic hybridization (aCGH) data can be smoothed
using an exponentially smoothed moving average to more
easily identify abnormal chromosomal features [21].
While other approaches, such as hidden Markov models
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can also be utilized to analyze ordered genomic data [22],
the complex nature of gene expression data may prevent
the direct application of a subset of these types of analysis
techniques. In this report, we outline an approach to iden-
tify REBs that summarizes the likelihood that each gene
expression value measured lies within an regional expres-
sion bias using a multiple span moving binomial test. We
use this approach to identify REBs in a set of hepatocellu-
lar carcinoma samples and compare the results to high
resolution cytogenetic data obtained by aCGH. We also
evaluated this approach using a set of clear cell renal cell
carcinoma (ccRCC) gene expression profiles. In the
majority of cases, dynamically determined REBs coincide
with regions of DNA copy number change as determined
by other molecular technologies. Interestingly, we identi-
fied a region on chromosome 6p where REBs are identi-
fied independent of apparent cytogenetic abnormalities.
We show that the REBs in this region are produced in the
most part by transcriptional responses to cellular
proliferation.

Results

Identification of regional expression biases

To identify REBs, a modified version of a moving average
is applied to two-color gene expression data obtained
from the comparison of tumor HCC tissue to adjacent
non-cancerous tissue (Figure 1a). Briefly, to calculate a
moving average given a series of gene expression values
ordered by genomic location and a window span that con-
sists of five data points, the first five gene expression val-
ues would be collected, the average of this set determined,
and the result stored as the first element of the moving
average. The next span would include the second through
the sixth gene expression values and the average of this
span stored as the second element of the moving average.
This process would continue until the end of the data
series and the results of the moving average could be
examined to identify trends. To identify REBs from
ordered gene expression data, rather then a use an averag-
ing function to evaluate each window span, an approxi-
mated binomial test is used to estimate of the probability,
in terms of a z-score, that a gene expression bias exists
within each span (see Materials and Methods). In this
case, a positive z-score would indicate a disproportionate
number of genes within the span show increased expres-
sion in the tumor profile when compared to the non-can-
cerous sample. Analogously, a negative z-score would
indicate a disproportionate number of genes within the
span show decreased expression in the tumor profile
when compared to the non-cancerous samples. In addi-
tion, rather then collect data from a single window span,
a data from a range of spans is collected and summarized
(Figure 1b). In this case, the smallest window span used is
25, while the largest window size used is n/3 = 93. A min-
imum span of 25 assures the estimated z-scores are
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Figure |

Identification of regional expression biases. A multiple
span moving binomial test was applied to gene expression
data to identify regional expression biases. A. Plot of log,-
transformed tumor verses non-tumor expression ratios (m =
468) that map to chromosome 6 of sample HK| organized
from the p-arm telomere (left) to the g-arm telomere (right).
B. Heatmap of the set of estimations generated by applying
an approximated binomial function (see Materials and Meth-
ods) to the gene expression data using window spans of i =
[25,....,m/3]. Genomic regions that contains a disproportion-
ate number of relatively decreased expression values are
shown in blue while genomic regions that show a dispropor-
tionate number of relatively increased expression values are
shown in red. The color intensity indicates the significance of
the expression bias. The highest intensity blue color indicates
a z-score < -4 while highest intensity red indicates a z-score
>4 C. At each measured loci, an average z-score was com-
puted from the set of estimations from each window span
shown in B and plotted. Significantly down-regulated regional
expression bias estimations are highlighted in blue (z < -1.96,
p = 0.05) and up-regulated bias estimations highlighted in red
(z=1.96, p = 0.05).

reasonably accurate (see Material and Methods) and a
maximum span of n/3 prevents the generation of largely
redundant data. Typical of many types of data smoothers,
relatively small spans produce more variable REBs estima-
tions while larger spans produce broader, more diffuse,
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REB estimations (Figure 1b). To estimate REB boundaries,
for each gene loci the mean z-score derived from the range
of window sizes is computed (Figure 1c). In addition, for
plotting, the final REBs is masked so that only significant
regions of bias are displayed. For simplicity, we term this
approach IR-CGMA, for Improved Resolution-Compara-
tive Genomic Microarray Analysis keeping in mind we
have essentially described the application of an
unweighted, multiple span, moving binomial test to iden-
tify REBs.

Validation of IR-CGMA

To test the effectiveness of this method, we compared
REBs identified by IR-CGMA to aCGH data derived from
the same set of samples (Figure 2a, b). Both IR-CGMA and
aCGH identified abnormalities that are commonly attrib-
uted to HCC such as +1q, -4q, -8p, +8q, -13q, -16q, -17p,
and +17q [6]. To summarize the similarities and differ-
ences between IR.CGMA and aCGH, the predicted frac-
tional allelic gain or loss was computed at each measured
locus (Figure 3a). In the majority of cases, IR.CGMA iden-
tified frequent regional expression biases that corre-
sponded to cytogenetic abnormalities as identified by
aCGH. For example, on chromosome 1 both approaches
identified a narrow region on the q-arm proximal to the
centromere (1q21-23) that is frequently amplified. In
addition, both approaches identified a region of frequent
deletion on the distal tip of chromosome 17 (17p13).
While in general REBs corresponded to features identified
by aCGH there are regions of discrepancy. The most strik-
ing discrepancy between REBs and aCGH/CGH is located
on chromosome 6p. Gain of chromosome 6p21-23 is not
a frequently reported cytogenetic event in HCC either in
this study or in other cytogenetic studies of HCC. How-
ever, chromosome 6p was frequently identified to be tran-
scriptionally abnormal via REB scanning. Additionally,
while gain of chromosome 17 frequently occurs in HCC,
there is some discrepancy between the fraction of samples
reported by IR-CGMA and aCGH.

Given these discrepancies, to provide additional valida-
tion for the use of a multiple span binomial test to iden-
tify regional expression biases, REBs were also identified
from a set of gene expression data derived from clear cell
renal cell carcinomas (ccRCC). Like HCC, ccRCC presents
with a consistent set of cytogenetic abnormalities includ-
ing loss of 3p and gain of 5p [23]. Frequent gain of chro-
mosome 12p has also been reported in some CGH studies
of ccRCC [24]. While in this study, we do not have corre-
sponding cytogenetic data for these specific samples to
perform direct comparisons, IR-CGMA did identify
abnormalities that overlap genetic abnormalities fre-
quently identified in ccRCC, including loss of 3p and gain
of 5p (Figure 4, 5). Interestingly, gain of chromosome 6p
is not a frequent cytogenetic abnormality associated with
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Figure 2

Identification of REBs and DNA copy number abnor-
malities from individual HCC samples. 39 HCC sam-
ples were analyzed for REBs from gene expression data using
IR-CGMA and for DNA copy number abnormalities from
aCGH data using hidden Markov modelling. Corresponding
chromosome ideograms for chromosomes 1, 4, 6, 8, 13, and
|7 are also shown to scale. The red bars in the ideogram
highlight the centromere. A. IR-CGMA estimations were
plotted as a heatmap to indicate significant expression biases
as described in Figure |. For consistent plotting, z-scores > 4
and z-scores < -4 were set to 4 and -4 respectively. Scales
ranging from 4 to -4 are shown adjacent to each graph. Data
for all autosomal chromosomes for all samples was also gen-
erated [see Additional file I]. B. aCGH predictions of
genomic deletions (s < -0.225, blue) and amplifications (s =
0.225, red). The highest intensity blue color indicates a s < -1
while highest intensity red indicates s > |. Scales ranging from
| to -1 are shown adjacent to each graph. Data for all auto-
somal chromosomes was also generated [see Additional file
2].

http://www.biomedcentral.com/1471-2164/6/67

ccRCC, however, like the HCC samples, this region was
frequently identified as being abnormal via REB scanning,.
While technical effects associated with either aCGH, tradi-
tional, CGH, or IR-CGMA may be responsible a subset of
these discrepancies, it is also possible that epigenetic tran-
scriptional regulation could contributes to the REBs.
Therefore, to determine if the transcriptional abnormali-
ties reflected certain types of epigenetic effects, we exam-
ined the gene expression data in more detail.

Examination of chromosome ép and 17q REBs

To evaluate the nature of the REBs on chromosomes 6p
and 17q in HCC, misregulated genes within these regions
were identified and partitioned based on Gene Ontology
(Figure 6). Only two significantly enriched ontology's
were identified (p < 0.005) from the upregulated genes in
these regions: nucleic acid metabolism (GO:0006139)
and cell proliferation (GO:0009607) [25,26]. While a
small number of transcripts that had relatively increased
expression in the tumor samples were identified as nega-
tive regulators of cell proliferation (GO:0008283), overall
these results suggest that pronounced REBs on chromo-
some 6p and chromosome 17q reflect the active cell divi-
sion of the tumor cells compared to non-cancerous cells.
To test this hypothesis, up-regulated genes mapping to
these ontologies were removed from the HCC gene
expression dataset (154 of 8128 genes, 1.9%) and REBs
recomputed (Figure 3b). The REBs on chromosome 6p
were considerably diminished and the discrepancy on
chromosome 17q was partially diminished. In contrast,
REBs on chromosome 1q and 8q were not appreciably
changed after removing the cell proliferation associated
genes. Taken together, these results suggest that the tran-
scriptional effects of active cell proliferation participate in
the production of the REBs of 6p and 17q.

Discussion

In this paper, we describe the construction and applica-
tion of a straightforward data smoothing approach to
identify REBs from gene expression data. As evidence for
the validity of this approach, we demonstrate that REBs
overlap cytogenetic abnormalities as determined using
other cytogenetic profiling methods in the majority of
cases. Due to the dependence of gene expression on chro-
mosome dosage, identification of REBs can often assist in
the interpretation of gene expression data. For example,
detection of REBs can rapidly determine if a potential
cytogenetic abnormality associates with particular sample
classification, for example a more aggressive tumor sub-
type [27]. Perhaps more importantly, the prevalent over-
lap of transcriptional and cytogenetic abnormalities
support HCC tumorigenesis models that advocate that
recurrent cytogenetic aberrations, via their significant
influences on gene expression, play important roles in
HCC pathogenesis. In addition, the correlation between
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Figure 3

10 12 14 16 18 20 22

Summary of REBs and DNA copy number changes in HCC. A summary of the data generated as described in Figure 2.
A. For each genetic loci on the autosomal chromosomes, the fraction of HCC samples that contained significant upwards
expression biases were plotted as a positive fraction and the fraction of samples that contained significant downwards expres-
sion bias were plotted as a negative fraction. DNA copy number data determined by aCGH was plotted in a similar manner. B.
Data was plotted as in A., with the exception that genes involved in cell proliferation and nucleic acid metabolism were

removed, as described in the text, before REBs were identified.

REBs and specific DNA copy number variation can assist
in identification of candidate genes that have important
function during tumorigenesis in a specific chromosomal
regions. For example, a narrow region on the g-arm of
chromosome 1 proximal to the centromere (1q21-23) is
predicted to be frequently amplified both by IR.CGMA
and aCGH, suggesting that this region may harbour can-

didate oncogenes. Inspection of genes that are highly
expressed in 1q21-23 included several signalling mole-
cules (MDUSP12, SHC1) and transcriptional factors
(MEF2D, ILF2, TCFL1). Particular interesting is ephrin-
A1, the ligand of Eph receptor tyrosine kinase. Ephrin-A1l
has been implicated in angiogenesis and therefore may
contribute to HCC development [28]. Clearly, it is impor-
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Figure 4

Identification of REBs from individual ccRCC sam-
ples. 27 ccRCC samples were analyzed for REBs and plotted
as described in Figure 2a with the exception that chromo-
somes |, 2, 3,5, 6, and 12 are shown. Chromosomes | and 2
are shown as representative regions that do not frequent
REBs. Data for all autosomal chromosomes was also gener-
ated [see Additional file 3].
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tant to evaluate the functions of these genes in HCC and
determine the extent in which their gene expression is reg-
ulated by DNA amplification.

We also demonstrate in this study that not all REBs corre-
sponded with detectable cytogenetic abnormalities, par-
ticularly in the region of chromosome 6p. Therefore, it is
appropriate to apply alternative molecular approaches
before attributing cytogenetic abnormalities to regional
expression biases located in this region. Classification of
the differentially expressed genes in this region into Gene
Ontologies suggests that the regional expression changes
reflect aspects of tumor cell proliferation as evidenced by
an enrichment of features classified in nucleic acid metab-
olism and cell proliferation GO categories. Another nota-
ble feature of chromosome 6p, particularly 6p21-23, is
that the gene density in this region is unusually high and
harbors gene clusters of several protein families [29]. The
unusually high gene density may also contribute to the
identification of this region as frequently abnormal by
REB scanning. It has been suggested that regions of high
gene density correlates with open chromatin fibers. This
open chromatin structure may facilitate transcriptional
activation if appropriate transcriptional signals are
present [30]. Other possible explanations of the REBs
include regional methylation or Histone deacetylation.

While the high variability of gene expression data may
prevent the direct application of several data modelling
approaches, this study suggests that application of tradi-
tional data smoothing methods are appropriate to infer
cytogenetic abnormalities from gene expression data and
are worth investigating further. One potential disadvan-
tage of smoothing approaches can be difficulty determin-
ing an appropriate window span that balances overall
smoothness with optimal feature identification. While
cross-validation using training and test data sets could
theoretically identify an optimal window span for
regional expression bias identification, we could not
derive a span that was appropriate for all chromosomal
regions across multiple data sets (data not shown). How-
ever, the increase in computer processing power allows
the utilization of more computational intensive multiple
span approaches to partially compensate for single span
effects.

Unlike traditional cytogenetic analysis approaches, the
resolution of this technique has a complex dependency
on gene density, gene coverage on the array platform used,
and tissue-dependent expression patterns. On average, the
genome contains about 10 genes per Mb and varies
between regions that have gene densities of ~6 genes per
Mb (chromosome 13) to regions that have gene densities
of ~26 genes per Mb (chromosome 19) [31]. As the
smoothing approach presented requires at least 25 gene
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Summary of REBs in ccRCC. 27 ccRCC samples were analyzed for REBs and plotted as in Figure 3a.

expression values to make a prediction, theoretically, the
resolution of a REB could average ~2.5 Mb across the
genome and range between ~1 to 4 Mb. However, for this
analysis the cDNA arrays used contained ~8500 features
could be confidently mapped to predicted genes. Of these
features ~6000 genes (70%) where expressed at measura-
ble levels in the liver tissue. Assuming ~30,000 human
genes, the resolution for this study would be about 5-fold
lower then the theoretically limits or average ~12.5 Mb
across the genome and range from ~5 Mb to ~20 Mb.

While not reported here, this approach is suitable for sin-
gle channel gene expression data provided appropriate
reference and test expression profiling data can be con-
verted to log-transformed expression ratios. We have also
successfully used this approach to infer cytogenetic abnor-
malities from other species, such as mice and rats.

Conclusion

In this report, we describe a method to identify regional
expression biases using a multiple span moving binomial
test. As evidence for the validity of this approach, we dem-
onstrate that this methods identifies REBs that associate
with cytogenetic abnormalities as determined by array
CGH and traditional CGH in both hepatocellular carci-
noma and clear cell renal cell carcinoma.

Methods

Pre-processing of gene expression data sets

Two-color gene expression profiles derived from 39 HCC
tumor samples and corresponding non-cancerous liver

samples [32], and 33 RCC and adjacent non-cancerous
kidney tissue samples [33], were obtained from the Stan-
ford Microarray Database [34]. In all cases, gene expres-
sion values were normalized using the within-print tip
group normalization method as implemented in the Bio-
Conductor packages for the R environment [35,36]. Prior
to normalization, R and G values were threshold such that
R or G values <150 were set to 150. In these data sets, the
cancerous and non-cancerous samples were compared to
a pooled cell-line reference. To allow direct comparison of
tumor to non-cancerous expression values, new gene
expression ratios (R) were generated from tumor tissue
ratio (T/U) and corresponding adjacent non-cancerous
tissue ratios (N/U) such that R = log,(T/U) - log,(N/U)
[2]. Sequence comparisons were used to map microarray
probe sequences to predicted Ensembl transcripts
(Ensembl version 19) [29]. Included in the Ensembl tran-
script annotations are chromosomal mapping locations at
base-pair resolution. If multiple probes mapped to the
same locus a mean gene expression value was utilized.

Pre-processing of array comparative genomic
hybridization data sets

Two-color array CGH data for the HCC samples was gen-
erated essentially as described [37]. A manuscript
describing the details of the HCC copy number data and
initial analysis is in preparation. In all cases, copy number
values were transformed into copy number states using an
unsupervised hidden Markov model as implemented in
the BioConductor packages for the R environment
[22,36]. States in which the median copy number change
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Functional classification of differentially expressed
genes on 6p and 17q. Genes on chromosome 6p and chro-
mosome |7q that are differentially expressed in HCC com-
pared to adjacent non-cancerous tissue were identified as
described in the Material and Methods. The t-statistic corre-
sponding to each misregulated gene (p < 0.05) was plotted
with respect to gene location. For consistent plotting, t-sta-
tistics > 10 and t-statistics < -10 were set to 10 and -10
respectively. Genes classified as nucleic acid metabolism, cell
proliferation, and negative regulation of cell proliferation are
highlighted orange, red, and cyan, respectively.

was = 0.225 were defined as region of DNA gains and
states in which the median copy number change <-0.225
were defined as regions of DNA loss [37].

Identification of regional expression biases (IR-CGMA
method)

Gene expression values were separated into chromosome
subsets and ordered by gene mapping location. A sliding
window algorithm was applied to each ordered gene
expression subset such that within each window span a
binomial test was applied under the assumption that the
probability (p) of the appearance of a positive relative
gene expression value equals the probability (g4) of the
appearance of a negative relative expression value, p = ¢ =
0.5, and a z-score for the span is computed using the nor-
mal approximation to the binomial distribution. The z-
score can be converted to an approximate significance val-
ues based on the two-tailed z-statistic (z,,) critical values.

Data was generated using multiple window spans and an

http://www.biomedcentral.com/1471-2164/6/67

average z-score at each gene location was computed. More
formally, given a set of ordered gene expression values g;
forgenesj=1,2,...m, letx; denote expression bias approx-
imations for genes j =1, 2, ...m using window spans i = 25,
26, 27, ...m/3 where n denotes the number of window
spans examined. An empty matrix X, is populated

1 & 2r—t ) Lo
such that x; =— 2 N for m-i+2 >j > i where ¢
Vi=jmivn VI

denotes the number of non-zero and r the number of pos-

itive values within the span {g, .1 ---8.i.1}- T0 not dis-
card regions, «x; is tapered when j <i such that

i
L] i 2r—t
ij =
jia Ve
Final regional expression bias estimates (b;) are computed

and analogously tapered when j > m-i+2.

1
such that b; = —inj . Performing IR-CGMA on the 39
n<
1

HCC gene expression profiles took approximately five
minutes on a 2.6 GHz Intel Pentium IV with 1 GB of RAM.

Identification of misregulated genes

Identification of misregulated genes from the HCC gene
expression profiles occurred in two-steps. First, genes were
filtered to ensure each gene was well measured across the
data set using an exact binomial test (p < 0.05). In this
case, data was required in 24 of 39 (64%) of samples.
Next, a one-sample t-test assuming unequal variance was
applied to determine if expression values were signifi-
cantly misregulated (p < 0.05).

Authors' contributions

KF and KD designed and implemented the data analysis
algorithms and performed the data analysis. XC and CH
obtained the HCC samples and generated both the gene
expression and array CGH data. KF and XC collaborated
to write the manuscript. All authors read and approved
the final manuscript.

Additional material

Additional File 1

Regional expression biases for all chromosomes in the HCC samples
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-67-S1.pdf]

Additional File 2

aCGH states for all chromosomes in the HCC samples

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-

2164-6-67-52.pdf]

Page 8 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-6-67-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-6-67-S2.pdf

BMC Genomics 2005, 6:67

Additional File 3

Regional expression biases for all chromosomes in the RCC samples
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-67-S3.pdf]

Acknowledgements
This work was supported by NIH grant R33-CAI10113-01 to K.A.F, and
NIH grant KOI-CA096774 to X. C.

References

Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, Bur-
chard |, Dow S, Ward TR, Kidd M|, Friend SH, Marton MJ: Wide-
spread aneuploidy revealed by DNA microarray expression
profiling. Nat Genet 2000, 25:333-337.

Phillips JL, Hayward SW, Wang Y, Vasselli J, Pavlovich C, Padilla-Nash
H, Pezullo JR, Ghadimi BM, Grossfeld GD, Rivera A, Linehan WM,
Cunha GR, Ried T: The consequences of chromosomal aneu-
ploidy on gene expression profiles in a cell line model for
prostate carcinogenesis. Cancer Res 2001, 6 1:8143-8149.

Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X,
Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen
KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu
GX, GuJR, Chen Z, Han ZG: Insight into hepatocellular carcino-
genesis at transcriptome level by comparing gene expres-
sion profiles of hepatocellular carcinoma with those of
corresponding noncancerous liver. Proc Natl Acad Sci USA 2001,
98:15089-15094.

Virtaneva K, Wright FA, Tanner SM, Yuan B, Lemon W], Caligiuri MA,
Bloomfield CD, de La Chapelle A, Krahe R: Expression profiling
reveals fundamental biological differences in acute myeloid
leukemia with isolated trisomy 8 and normal cytogenetics.
Proc Natl Acad Sci USA 2001, 98:1124-1129.

Harding MA, Arden KC, Gildea JJ, Perlman EJ, Viars C, Theodorescu
D: Functional genomic comparison of lineage-related human
bladder cancer cell lines with differing tumorigenic and met-
astatic potentials by spectral karyotyping, comparative
genomic hybridization, and a novel method of positional
expression profiling. Cancer Res 2002, 62:6981-6989.

Crawley ]], Furge KA: Identification of frequent cytogenetic
aberrations in hepatocellular carcinoma using gene expres-
sion data. Genome Biol 2002, 3:RESEARCHO0075.

Shaughnessy |D, Barlogie B: Integrating cytogenetics and gene
expression profiling in the molecular analysis of multiple
myeloma. Int | Hematol 2002, 76:59-64.

Haddad R, Furge KA, Miller ], Schoumans |, Haab B, Teh B, Barr L,
Webb C: Genomic profiling and cDNA microarray analysis of
human colon adenocarcinoma and associated peritoneal
metastasis reveals consistant cytogenetic and transcrip-
tional aberrations associated with progression of multiple
metastases. Appl Genom Proteom 2002, 1:51-62.

Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tib-
shirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray
analysis reveals a major direct role of DNA copy number
alteration in the transcriptional program of human breast
tumors. Proc Natl Acad Sci USA 2002, 99:12963-12968.

Platzer P, Upender MB, Wilson K, Willis ], Lutterbaugh ], Nosrati A,
Willson JK, Mack D, Ried T, Markowitz S: Silence of chromosomal
amplifications in colon cancer. Cancer Res 2002, 62:1134-1138.
Mao R, Zielke CL, Zielke R, Pevsner J: Global up-regulation of
chromsome 21 gene expression in the developing Down syn-
drome brain. Genomics 2003, 81:457-467.

Masayesva BG, Patrick H, Mayer-Garrett E, Pilkington T, Mao R, Pevs-
ner J, Speed T, Benoit N, Moon CS§, Sidransky D, Westra WH, Cali-
fino J: Gene expression alterations over large chromosomal
regions in cancers include multiple genes unrelated to malig-
nant progression. Proc Natl Acad Sci USA 2004, 101:8715-8720.
Lindvall C, Furge KA, Bjorkholm M, Guo X, Blennow E, Haab B, Nor-
denskjold M, Teh B: Combined genetic- and transcriptional

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31

32.

33.

http://www.biomedcentral.com/1471-2164/6/67

profiling of acute myeloid leukemia with complex and nor-
mal karyotypes. Haematologia 2004, 89:1072-1081.

Lu Y], Williamson D, Clark J, Wang R, Tiffin N, Skelton L, Gordon T,
Williams R, Allan B, Jackman A, Cooper C, Prichard-Jones K, Shipley
J: Comparative expressed sequence hybridization to chro-
mosomes for tumor classification and identification of differ-
ential gene expression. Proc Natl Acad Sci USA 2001, 98:9197-9292.
van Eijk R, Oosting J, Sieben N, van Wezel T, Cleton-Jansen AM: Vis-
ualization of regional gene expression biases by microarray
data sorting. Biotechniques 2004, 36:592-594.

Fischer G, Ibrahim SM, Brockmann GA, Pahnke ], Bartocci E, Thiesen
HJ, Fernadez-Serrano P, Moller S: Expressionview: visualization
of quantitative trait loci and gene-expression data in
Ensembl. Genome Biol 2003, 4:R77.

Breitkreutz BJ, Jorgensen P, Breitkreutz A, Tyers M: AFM 4.0: a
toolbox for DNA microarray analysis. Genome Biol 2001, 2:.
Kim J, Chung HJ, Park CH, Park WY, Kim JH: ChromoViz: multi-
modal visualization of gene expression data onto chromo-
somes using scalable vector graphics. Bioinformatics 2004,
20:1191-1192.

Midorikawa Y, Tsutsumi S, Nishimura K, Kamimura N, Kano M,
Sakamoto H, Makuuchi M, Aburatani H: Distinct chromosomal
bias of gene expression signatures in the progression of
hepatocellular carcinoma. Cancer Res 2004, 64:7263-7270.
Husing J, Zeschingk M, Boes T, Jockel KH: Combining DNA
expression with positional information to detect functional
silencing of chromsomal regions. Bioinformatics 2003,
19:2335-2342.

Awad IA, Rees CA, Hernandez-Boussard T, Ball CA, Sherlock G:
Caryoscope: an Open Source Java application for viewing
microarray data in a genomic context. BMC Bioinformatics 2004,
5:151.

Fridlyand ], Snijders AM, Pinkel D, Albertson DG, Jain AN: Hidden
Markov models approach to the analysis of CGH data. JMVA
2004, 90:132-153.

Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B,
Eble JN, Fleming S, Ljungberg B, Medeiros L], Moch H, Reuter VE, Ritz
E, Roos G, Schmidt D, Srigley JR, Storkel S, van den Berg E, Zbar B:
The Heidelberg classification of renal cell tumours. | Pathol
1997, 183:131-133.

Verdorf |, Hobisch A, Hittmair A, Duba HC, Bartsch G, Utermann G,
Erdel M: Cytogenetic characterization of 22 human renal cell
tumors in relation to a histopathological classification. Cancer
Genet Cytogenet 1999, 111:61-70.

Consortium TGO: Gene Ontology: tool for the unification of
biology. Nat Genet 2000, 25:25-29.

Beissbart T, Speed TP: GOstat: Find statistically overrepre-
sented Gene Ontologies within a group of genes. Bioinformatics
2004, 20:1464-1465.

Furge KA, Lucas KA, Takahashi M, Sugimura J, Kort EJ, Kanayama HO,
Kagawa S, Hoekstra P, Curry J, Yang X], Teh BT: Robust classifica-
tion of renal cell carcinoma based on gene expression data
and predicted cytogenetic profiles. Cancer Res 2004,
64:4117-4121.

Brantley-Sieders DM, Chen J: Eph receptor tyrosine kinases in
angiogenesis: from development to disease. Angiogenesis 2004,
7:17-28.

Clamp M, Andrews D, Barker D, Bevan P, Cameron G, Chen Y, Clark
L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert |,
Hammond M, Hubbard T, Kasprzyk A, Keefe D, Lehvaslaiho H, lyer
V, Melsopp C, Mongin E, Pettett R, Potter S, Rust A, Schmidt E, Searle
S, Slater G, Smith ], Spooner W, Stabenau A, Stalker ], Stupka E,
Ureta-Vidal A, Vastrik |, Birney E: Ensembl 2002: accommodating
comparative genomics. Nucleic Acids Res 2003, 31:38-42.

Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA:
Chromatin architecture of the human genome: gene-rich
domains are enriched in open chromatin fibers. Cell 2004,
118:555-566.

Semple C: Deep genomics in shallow times: the finished
sequence of human chromosome 13 and 19. European Journal of
Human Genetics 2004, 12:875-876.

Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins ], Lai K, Dudoit S,
Ng I, vandeRijn M, Bostein D, Brown PO: Gene expression pat-
terns in human liver cancer. Mol Bio Cell 2002, 13:1929-1939.
Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen R}, Fero M,
Pollack JR, Van De Rijn M, Brooks |D: Gene expression patterns

Page 9 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-6-67-S3.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11158605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11158605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12430902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12430902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12430902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12706104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12706104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12706104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15088376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15088376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15088376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14611663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14611663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14611663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15492245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15492245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15492245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9390023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9390023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10326593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10326593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15205321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15205321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15205321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15302992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15302992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15489904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15489904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325

BMC Genomics 2005, 6:67

34.

35.

36.

37.

in renal cell carcinoma assessed by complementary DNA
microarray. Am J Pathol 2003, 162:925-932.

Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese
JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman
PT, Brown PO, Botstein D, Cherry JM: The Stanford Microarray
Database. Nucleic Acids Res 2001, 29:152-155.

Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai ], Speed TP: Nor-
malization for cDNA microarray data: a robust composite
method addressing single and multiple slide systematic
variation. Nucleic Acids Res 2002, 30:el5..

Gentleman RC, Carey V|, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry |, Hornik K, Hothorn T, Huber W,
lacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G,
Smith C, Smyth G, Tierney L, Yang JYH, Zhang ): Bioconductor:
open software development for computational biology and
bioinformatics. Genome Biol 2004, 5:R80.

Veltman JA, Fridlyand , Pejavar S, Olshen AB, Korkola JE, DeVries S,
Carroll P, Kuo WL, Pinkel D, Albertson D, Cordon-Cardo-Carlos,
Jain AN, Waldman FM: Array-based comparative genomic
hybridization for genome-wide screening of DNA copy
number in bladder tumors. Cancer Res 2003, 63:2872-2880.

http://www.biomedcentral.com/1471-2164/6/67

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782593
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Identification of regional expression biases
	Validation of IR-CGMA
	Examination of chromosome 6p and 17q REBs

	Discussion
	Conclusion
	Methods
	Pre-processing of gene expression data sets
	Pre-processing of array comparative genomic hybridization data sets
	Identification of regional expression biases (IR-CGMA method)
	Identification of misregulated genes

	Authors' contributions
	Additional material
	Acknowledgements
	References

