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Abstract

Background: Commercial microarray scanners and software cannot distinguish between
spectrally overlapping emission sources, and hence cannot accurately identify or correct for
emissions not originating from the labeled cDNA. We employed our hyperspectral microarray
scanner coupled with multivariate data analysis algorithms that independently identify and
quantitate emissions from all sources to investigate three artifacts that reduce the accuracy and
reliability of microarray data: skew toward the green channel, dye separation, and variable
background emissions.

Results: Here we demonstrate that several common microarray artifacts resulted from the
presence of emission sources other than the labeled cDNA that can dramatically alter the accuracy
and reliability of the array data. The microarrays utilized in this study were representative of a wide
cross-section of the microarrays currently employed in genomic research. These findings reinforce
the need for careful attention to detail to recognize and subsequently eliminate or quantify the
presence of extraneous emissions in microarray images.

Conclusion: Hyperspectral scanning together with multivariate analysis offers a unique and
detailed understanding of the sources of microarray emissions after hybridization. This opportunity
to simultaneously identify and quantitate contaminant and background emissions in microarrays
markedly improves the reliability and accuracy of the data and permits a level of quality control of
microarray emissions previously unachievable. Using these tools, we can not only quantify the
extent and contribution of extraneous emission sources to the signal, but also determine the
consequences of failing to account for them and gain the insight necessary to adjust preparation
protocols to prevent such problems from occurring.

Background in functional genomic analyses. All varieties of microar-
Since their introduction in 1995 [1], DNA-based microar-  rays have in common the ability to perform binary

rays (also known as genechips) have driven an explosion
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comparisons of gene expression for a large number of
genes simultaneously in a microchip format [2-6].

In theory, biological changes should define the limita-
tions of microarray technology, but unfortunately, tech-
nological issues have frequently limited the usefulness of
microarray data. Non-biological factors including print-
ing artifacts, dye-gene interactions, background emis-
sions, and slide-to-slide variations significantly reduce the
ability to accurately monitor changes in gene expression
in microarray experiments [4,7-10]. These experimental
factors are common and often laboratory dependant due
to the complicated multi-step procedures used in the pro-
duction, hybridization, and analysis of microarrays. In
attempts to minimize the effect of variability due to non-
biological sources, a variety of statistical analyses [11,12],
normalization techniques [13-15], and metrics for image
quality [16] have been proposed. However, all these anal-
ysis techniques have two assumptions: 1) that the only
contributors to the signal within a printed spot are the
labeled DNA and a uniform background due to emission
of the glass substrate and 2) that background fluorescence
surrounding the spot is the same as background fluores-
cence under the spot, despite evidence that this assump-
tion may not be valid [7,12,17].

Neither of these assumptions can be validated with cur-
rent commercial microarray scanners. Commercial scan-
ners are univariate instruments; that is they use filters to
pass all photons emitted in a specific wavelength range to
a single point detector. This mode of operation can be
fast, but it does not allow discrimination of photons by
emission source. Thus, it is not possible to distinguish two
photons of the similar wavelength that arise from differ-
ent emitting species if they are passed through the filter for
that channel. Many problems that plague microarrays
(inaccuracies in background correction, dye-gene effects,
skew toward one channel, dye crosstalk, and contaminat-
ing fluorescence) cannot be accurately assessed in data
from filter-based microarray scanners due to this limita-
tion and this can lead to erroneous data [9,17].

To address these issues, we have developed a hyperspec-
tral-imaging microarray scanner [18] that allows the
simultaneous quantification of all fluorescent species,
including the spot-localized background leading to a sig-
nificant improvement in the accuracy of microarray data.
The hyperspectral scanner (HSS) coupled with multivari-
ate data analysis provides in-depth understanding of the
signal detected by traditional microarray scanners and can
promote improvement in microarray technology and
actually improve the quality of microarray data. The ben-
efits of an additional dimension of spectral information
for material science, cytogenetic, and histological applica-
tions [19] and live-cell microscopy [20] have been
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reviewed. However, until our report, hyperspectral imag-
ers have not demonstrated the sensitivity or speed of com-
mercial microarray scanners or the multivariate data
analysis capabilities necessary to extract sufficient infor-
mation from the complex data [21-23]. This paper
presents the use of the HSS and multivariate data analysis
to understand three anomalies commonly seen in micro-
array data: skew toward the green channel, dye separation,
and high, variable background signal. The unique capabil-
ity of HSS technology to identify and correct for the pres-
ence of these phenomena improves the reliability and
accuracy of gene expression data.

Results and Discussion

Hyperspectral imaging and multivariate data analysis
The HSS we have developed is optimized for imaging
printed DNA microarrays and excites a sample with a sin-
gle laser, typically at 532 nm, while recording the emis-
sion over a wavelength range from 550-900 nm in
approximately 0.75 nm increments to create a hyperspec-
tral data cube (Fig. 1a). Details of the optical design and
characterization of this line-imaging system have been
published elsewhere [18]. Additional lasers are available
and the wavelength range and spatial and spectral resolu-
tion are adjustable. The sensitivity and dynamic range of
this HSS is the same as or better than the commercial
microarray scanners we have tested for dyes emitting in
the green channel of commercial systems such as Cy3
[18]. Typically, red emitting dyes like Cy5 are not opti-
mally excited by our 532 nm laser, but based on its excita-
tion spectrum, we are achieving ~5-8% excitation of Cy5.
In comparison studies between an Axon 4000B microar-
ray scanner exciting Cy5 with 633 nm light and the HSS
exciting Cy5 with 532 nm light (data not shown) the HSS
was found to be a factor of 6 less sensitive for Cy5 than
commercial microarray scanner. However, the signal
acquired from Cy5 is sufficient for quantitation by the
multivariate algorithms. In addition, for the studies
reported in this publication the focus is predominantly on
the green channel emissions. In its current configuration
the HSS scanner operates at a slightly slower speed of data
acquisition (scanning at a maximum rate of 0.07 mm/s
for 10 um resolution) but this disadvantage is compen-
sated for by the more accurate quantification and
increased specificity of the fluorescent signal, especially in
the presence of contaminants. The CCD readout rate is the
limiting factor in the current HSS and newly available
charge-coupled device (CCD) detector electronics could
allow the HSS to scan at speeds up to twice the speed of
commercial scanners.

A typical hyperspectral data cube contains tens of thou-
sands to millions of spectra and spectral and spatial rela-
tionships cannot be readily visualized (Fig. 1a). To reduce
the data to a simpler representation of the important
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lllustration of hyperspectral data cube and multivariate analysis results. (a) Three-dimensional hyperspectral data
cube for an idealized two-component microarray containing emission only from labeled DNA within the printed spots. Each
pixel in the x-y image plane contains an entire fluorescence emission spectrum from 550-900 nm. (b-c) Results of multivariate
curve resolution on two-component sample hyperspectral data cube shown in A. (b) Pure component spectra identify "what"
species are fluorescing in an image. (c) Corresponding component concentration maps show "where" and "how much" of each

component in Fig. Ib is present.

features, HSS data are analyzed using multivariate curve
resolution (MCR), a powerful factor analysis technique
based on a constrained alternating least squares procedure
[24]. MCR algorithms, when applied to fluorescence
emission images, use correlations between variables to
extract 1) representative pure-component spectra of the all
the emitting species (Fig. 1b) and 2) independent concen-
tration maps depicting the spatial location of these species
and their relative concentrations from the highly over-
lapped spectral data (Fig. 1c). The MCR analysis assumes
that the number of non-noise components is known or
can be estimated and requires initial estimates to either
the spectra or concentrations.

Principal component analysis, a closely related and popu-
lar multivariate analysis technique for biological data
[25], typically provides an accurate determination of the
number of non-noise components, but often cannot pro-
vide easily interpretable pure component spectra underly-
ing complex spectral image data due to rotational
ambiguity. For these studies involving microarray data,

principal component analysis was used to determine the
number of non-noise components and to provide initial
estimates of the spectral shapes for the MCR algorithm to
iterate upon. The application of non-negativity and equal-
ity spectral constraints within the MCR algorithms facili-
tates physically meaningful solution of spectral
components. The benefits of MCR over more traditional
univariate (band integration, band ratios) and other mul-
tivariate (least squares, linear unmixing) analysis meth-
ods include the ability to separate overlapping spectral
emissions, discover the pure-component spectra with lit-
tle or no information given a priori, and model unknown
spectral contributions such as interferrents, backgrounds,
and instrument artifacts. Applications of MCR for vibra-
tional spectroscopic data have been outlined in a recent
review [26]. Recently, members of our group have devel-
oped efficient, automated multivariate statistical analysis
algorithms to analyze large X-ray hyperspectral image data
using desktop computers [27]. We have optimized these
algorithms for fluorescence image data from the HSS
[28,29].
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MCR analysis results of cDNA microarray exhibiting contamination fluorescence. Fluorescence of all species was
excited simultaneously in a single scan with 532 nm laser. (a) MCR extracted pure component spectra representing glass, Cy3,
Cy5 and a contaminant. Inset shows ~30000 raw spectra in the image data cube used to determine the pure component spec-
tra. (b) Extracted concentration maps corresponding to each of the pure component species in Fig. 2a. Resulting HSS intensi-
ties have been scaled to match the individual channel intensities seen on the Axon 4000B microarray scanner.

Throughout this paper, emissions from within the area of
the printed DNA spots are referred to as spot-specific
emissions and emissions that are not spot-specific are
referred to as background emissions. Also, ratio images
generated by commercial microarray scanners are referred
to as R/G (Red/Green) images and images generated by
HSS are referred to as Cy5/Cy3 images, because the com-
mercial scanner image is constructed from the intensities
in the red and green channels regardless of source,
whereas the HSS and data analysis produces true images
of the Cy5 and Cy3-labeled cDNA that are uncontami-
nated by emission from other species.

Spot-localized emissions: Skew to toward the green
channel

Earlier work has shown the presence of contaminant fluo-
rescence in the green channel of many common types of
microarray slides [17]. The HSS was used to confirm the
presence of the green contaminant in slides from a variety
of laboratories (four different commercial sources and in-
house printed arrays from at least four independent labo-
ratories) after hybridization. This contaminant is intro-
duced to the slide during printing and can be recognized

in the raw images as a variable, weak green channel signal
that may be observed in all spots. In our investigations we
examined slides from at least three laboratories printed
using DMSO printing methods and did not identify a
green contaminant in any of the spots on these slides.
Giotal = GCyS + Gglass +Geone Eq. 1

Commercial filter-based microarray scanners will con-
found signal from a spot-localized green contaminant
with signal from the labeled cDNA and glass substrate in
the green channel. This is because the green signal inten-
sity recorded for a pixel with a spot-localized green con-
taminant is the sum of all the green fluorescence
intensities, including the glass emission (a relatively con-
stant small value), the contaminant (a variable value),
and the labeled hybridized cDNA. This extra green inten-
sity has no affect in the red channel and little effect on
spots with high green channel signal, but contributes sig-
nificantly to the signal from spots with weak and medium
green-channel intensities. As illustrated in Equation 1
data obtained from slides with spot-localized contaminat-
ing fluorescence will report green channel intensities that
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are falsely high (G, is the total signal acquired in the
green channel; Ggy3, Gyjps and G, are the signals arising
from the Cy3 labeled DNA, glass substrate and contami-
nant, respectively.) Unfortunately the effect of spot-local-
ized contaminant emission cannot be corrected in
commercial scanner microarray data using standard back-
ground correction procedures that estimate background
signal for a spot from the signal around the spot and thus
it leads to errors in the calculated expression ratios (R/G).
The detrimental effect of the contaminant decreases with
increasing green-channel intensities but can easily
account for skews toward the green channel, dye-gene
effects, unsuccessful dye-flip experiments, and highly var-
iable low intensity data observed in many microarray
experiments.

Figure 2 shows the results of multivariate data analysis of
a hyperspectral image from a microarray slide with con-
taminating fluorescence. Because the HSS can isolate the
contaminant emission spectrum, true pure-component
concentration maps can be generated and the resulting
images of the Cy3 labeled cDNA are contaminant-free.
Using the optical filter functions of the Axon 4000B
microarray scanner, HSS images can be scaled to match
the total intensity of each of the commercial scanner
channels, thus providing a direct comparison to the com-
mercial scanner results. These scaled concentration maps
are used to calculate an accurate Cy5/Cy3 image that gives
spot intensity values without contributions from the glass
and contaminant emissions. The R/G ratio constructed
from the commercial scan (Fig. 3a) and the more accurate
Cy5/Cy3 ratio image of the same area on the slide (Fig.
3b) show the difference is dramatic, with 75% of the spots
having ratios in error of a factor of 2 or more due to the
presence of the green channel contaminant. These errors
would change the basic conclusion from the data that
most genes in the test sample were down-regulated rela-
tive to the control when, in fact, the correct conclusion
should be that most genes in the test sample were either
up regulated or not differentially expressed. The fluores-
cence contribution of the contaminant cannot be cor-
rected with current commercial technology due to
extreme spectral overlap and the variability of the spot-
localized contaminant concentration. Image thresholding
could be useful if the contaminant contribution were
known and fairly constant but even low levels of contam-
inant fluorescence would require high thresholds be set.
For example, a maximum of 100 arbitrary fluorescence
units of spot-localized contaminant signal would require
a threshold of 500 arbitrary fluorescence units be set in an
attempt to maintain errors in the 20% range.

Spot-localized emissions: Dye separation
"Dye separation" is a phenomenon referred to in the
microarray literature as a ring of one color surrounding
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the other, typically red around green [16]. Although this
phenomenon is seen in published images, there is no sat-
isfactory explanation for what causes the labeled cDNA to
hybridize with a dye-specific spatial pattern. Other spatial
patterns of hybridization, e.g., doughnuts and coffee rings
are well documented, but spatial anomalies theoretically
should affect both dyes within a spot to the same extent.

Apparent dye separation was visible in some spots on the
microarray slides we examined with the green contami-
nant. Figure 4a shows a R/G ratio image from a typical
spot exhibiting dye separation scanned on an Axon 4000B
scanner. From this image, the Cy5-labeled cDNA appears
to have hybridized in a circle around the area where the
Cy3-labeled cDNA hybridized. HSS analysis revealed that
the spot-specific signal was from three sources: Cy5-
labeled cDNA, Cy3-labeled cDNA, and green contami-
nant. The individual concentration maps generated from
the multivariate analysis of the HSS image data demon-
strate that, for this spot, the diameters of Cy5 and Cy3
hybridization are equal, although little Cy3 is present
(Fig. 4c-d). The contaminant emission, which is brighter
than the Cy3, is present in a smaller diameter circle (Fig.
4e) and the result of this localization difference is a spot
with a bright green center and a red ring on commercial
scanners. This size difference most likely occurs because of
differences in surface tension of the printed cDNA and
contaminant when drying or differences in charge of the
c¢DNA and contaminant. Figure 4b shows an accurate
Cy5/Cy3 image of this spot created from the HSS concen-
tration maps. The original Axon data produced a ratio of
Cy5/Cy3 medians of 3.0 and ratio of Cy5/Cy3 means of
3.0 while the more accurate HSS data gives rise to ratios of
medians and means of 7.7 and 7.5, respectively, for this
particular spot.

Background emissions

In microarray experiments, mean or median intensities
are calculated per spot to determine expression ratios.
These spot intensity values are typically corrected for back-
ground emission using methods that subtract local or glo-
bal estimates of background contributions. Various
background correction methods exist in data analysis soft-
ware, but all of these methods make one critical assump-
tion about the data - that the background emissions are
the same outside the spot as they are under the spot. This
assumption is valid in an ideal situation where a perfectly
homogeneous glass slide is the sole source of background
emissions and the printed DNA spot is sufficiently thin
and non-scattering so as not to interfere with the excita-
tion of the glass beneath it. Unfortunately this assump-
tion is rarely valid. Researchers have shown the results of
microarray experiments are very dependant on back-
ground subtraction methods used and have theorized that
local background values are not representative of the true
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Figure 3

Green contaminant presence alters resulting image from commercial scanner. Comparison of resulting images
from two scanners with green contaminant present. (a) Red/Green ratio image generated from Axon 4000B microarray scan-
ner depicting most spots as green indicating the control gene was expressed to larger extent than the treatment. (b) Cy5/Cy3
ratio image generated from HSS concentration maps depicting only a few spots as differentially expressed.

background emission in a spot, leading to erroneous val-
ues and negative spot intensities [30]. Options such as not
correcting for background, using a global background
value for every spot, or using negative control values as a
background can be successful in some cases, but are not
robust.

Using the HSS, we have explored background emissions
on many printed microarrays spanning a variety of prepa-
ration protocols. The unique ability to identify and isolate

all emission sources and model the background for each
pixel directly from the spectra allows us to generate pure-
concentration maps of the dyes of interest without contri-
butions from background sources. In every microarray we
have scanned (9+ different labs, in-house and commer-
cially printed slides) the background was different under
the spot than around the spot. This difference can vary
from a subtle decrease in intensity under the printed spot
to a much more predominant intensity variation that seri-
ously affects the accuracy of the data. Understanding the
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Images illustrating dye separation. (a) Red/Green ratio image generated from Axon 4000B microarray scanner showing
the red ring characteristic of apparent dye separation. (b) Cy5/Cy3 ratio image generated from HSS concentration maps show-
ing uniform Cy5 and Cy3 distribution throughout the spot. (c-e) Individual component concentration maps resulting from the
multivariate analysis of the HSS image data highlighting the difference in spot diameter of the brighter contaminant that results
in the apparent dye separation when imaged with a filter-based microarray scanner. All fluorescence emissions in the hyper-
spectral images were excited simultaneously in a single scan. (c) Cy5 concentration map. (d) Cy3 concentration map. (e)

Green contaminant concentration map.

background emissions is essential to ensuring that appro-
priate background correction techniques are used when
scans are to be performed with commercial scanners. This
increased understanding of background emissions also
provides the feedback necessary to alter the preparation
process to minimize the background emissions present on
microarray slides.

Figure 5a shows the R/G ratio image of a portion of a
microarray with spatially variable, high background emis-
sions and poor spot-specific signal in the red channel.
Although only a small area is shown, the entire array con-
tains significant variations in background intensities and
patterns. Multivariate analysis of the spectra from a HSS
image determines that the emission outside of the spots is
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Figure 5
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d.

Images illustrating background problems. All images are of same area on the microarray. (a) Red/Green ratio image gen-
erated from Axon 4000B microarray scanner. The green channel intensity dominates background and spot signal. (b-d) Indi-

vidual component concentration maps extracted from multivariate analysis of HSS image data. All fluorescence emissions in the
hyperspectral images were excited simultaneously in a single scan. (b) Glass concentration map. Note that the spots all appear

slightly dimmer than the background. (c) Cy3 concentration map. (d) Cy5 concentration map.

predominantly from Cy5-labeled cDNA, but also includes
contributions from Cy3-labeled cDNA as well as the glass
substrate. In this case the non-specific interaction of the
labeled ¢cDNA with the glass substrate is most likely
caused by inadequate blocking procedures. Non-specifi-
cally bound cDNA is not expected to contribute to the
intensities within a spot and therefore local or even global
subtraction methods would lead to spot intensities that
are too low and even negative. The critical advantage of
HSS analysis in this situation is that pure emission spectra
are quantified and spot intensities from these images do
not need separate background correction.

Two additional points should be noted about Figure 5.
First, in the HSS Cy3 concentration map, Cy3 is present
both in and outside of the printed cDNA spots. This is in
contrast to the Cy5-HSS image, in which Cy5 is absent
from many spots. We have observed a slight spectral shift

in the Cy5 emission maximum under these conditions
compared to other slides with successful Cy5 hybridiza-
tion, suggesting that the Cy5 outside the spots may con-
tain significant amounts of residual, unincorporated dye.
Cy5 and Cy3 both exhibit a spectral shift in emission
maxima upon incorporation into ¢cDNA. This effect is
illustrated in Additional File 1.

Additional File 1 compares the MCR extracted spectra
from a spotted array containing only Cy5-dCTP in the
spots and a second spotted array containing only Cy5-
cDNA in the spots showing the effect the molecule Cy5 is
attached to can have on the emission maxima of Cy5. Sec-
ond, the HSS image of the glass concentration shows
another phenomenon: the glass intensity is lower under
very bright spots (spots with intensities > 6000 arbitrary
fluorescence units on the commercial scanner we utilized)
than outside of the spots. This difference is slight but con-
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sistent. We believe this is due to scattering or absorption
of the laser light by the printed spot, decreasing the irradi-
ance of the glass beneath the DNA spot.

We also observed several microarrays with high back-
ground in smears across the slide. (data not shown) In
those cases, the spectra from the smears did not resemble
Cy3 or Cy5, but, instead, were from a green contaminant.
The smears persist across the surface of the spot and con-
tribute to additional signal intensity in the Cy3 channel.
No background correction method can adequately correct
for this emission and unless the contribution from this
contaminant is modelled and removed from the data, the
analyzed microarray data will not be reliable.

Conclusion

The microarrays utilized in this study consisted of com-
mercial preprinted slides or slides printed in-house using
widely accepted techniques, and thus are representative of
a wide cross-section of the microarrays currently
employed in genomic research. The results presented in
this paper demonstrate that three common anomalies
cited in the microarray literature can be explained by
extraneous emission sources, reinforcing the urgent need
for careful attention to detail to recognize the presence of
extraneous emissions that reduce accuracy of existing
microarray data.

Our work illustrates the impact hyperspectral scanning
can have on the accuracy and reliability of genomic data.
Hyperspectral imaging, together with multivariate data
analysis, is a critical tool for understanding and
characterizing the sources of microarray emissions after
hybridization. Our state-of-the-art HSS and multivariate
algorithms permit the simultaneous identification and
quantification of contaminant and background emissions
in microarrays, thus markedly improving the reliability
and accuracy of these data. Using these tools, we can
obtain accurate concentration maps that are corrected for
the effect of contaminant emissions. Perhaps more impor-
tantly, this approach provides the capability to quantify
the extent and contribution of extraneous emission
sources to the signal, the consequences of failing to
account for them, and the insight necessary to adjust prep-
aration protocols to prevent such problems from occur-
ring. The utility of the HSS technology coupled with
multivariate data analysis is not limited to microarrays,
but could improve the understanding of data from a vari-
ety of applications based of fluorescence imaging and
microscopy. In addition to providing more accurate meas-
urements, the HSS also has potential to increase the
throughput and improve analysis of microarray experi-
ments by providing quantitation of multiple overlapping
dyes. Future work will demonstrate this capability with

http://www.biomedcentral.com/1471-2164/6/72
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Methods

Microarray slide preparation

The data presented represent timepoints from a large
experiment performed to study gene expression in yeast
cells exiting the stationary phase. Wild-type MAToS288c
cells (ATCC) were grown in 100 ml YPD+A at 30°C for 7
days (stationary phase) with aeration. Cells of a 7-day cul-
ture were resuspended in fresh media prewarmed to 30°C
and samples were taken at various timepoints. 7-Day cells
sampled before refeeding served as the reference time-
point 0. Approximately 4 x 10° cells were collected to
yield 50-200 pg total RNA. The RNA protocol is described
in the web supplement. http://biology.unm.edu/biolo
maggieww/Public_Html/Spexit.htm. Twenty ug of RNA
was used for each labeling reaction. Cy3 and Cy5 (Amer-
sham) labels were incorporated into reference and exper-
imental cDNA (green and red, respectively) via first strand
cDNA synthesis.

For the slides shown in this paper commercially printed
CMT S288C yeast v. 1.32 arrays (Corning) were used
although additional slides from other laboratories were
investigated and are consistent with our findings for these
arrays. The slides were pre-hybridized, hybridized, and
post-processed according to procedures described in pre-
viously published methods [17].

Microarray scanning and analysis using commercial
microarray scanner

Hybridized glass microarray slides were scanned with 10
um spatial resolution using an Axon 4000B microarray
scanner. Instrument settings were as follows: 100% laser
power and PMT settings of 600-650 for both the red and
green channels. Resulting images were analyzed using
GenePix 3.0 or 4.0 (Axon) to locate and quantify the
printed spots. Grids used to define spot diameters were
aligned manually and diameters were adjusted to match
actual spot diameters (180-240 um). Care was taken to
flag spots that were visibly compromised (dust, scratches,
smears, etc.) as "bad' and these spots were not used in cal-
culating statistics or in any future analyses. Background
levels were calculated locally for each spot using the
median of the background pixels. The spot intensities
reported are the median values after local background
subtraction.

Microarray scanning using hyperspectral microarray
scanner

Following the scans with the commercial scanner, areas
on the same slides were scanned using the HSS [18]. All
fluorescence was excited with a 532 nm laser (<20 mW
total power dispersed over a 1 mm x 0.010 mm area for

Page 9 of 11

(page number not for citation purposes)


http://biology.unm.edu/biology/maggieww/Public_Html/Spexit.htm
http://biology.unm.edu/biology/maggieww/Public_Html/Spexit.htm

BMC Genomics 2005, 6:72

line imaging) and the emission spectrum from 550 to 900
nm was collected in line scanning (push-broom) mode
with a scan speed of 0.04 mm/s and a CCD rate of 4
frames/sec with EMCCD gain set to 128. This scanning
protocol produced images with 10 um spatial resolution
in the motion direction. A bin by 2 configuration was
used in the vertical dimension of the CCD in order to
assure a spatial resolution of 10 wm in that dimension
using a 10x objective (Nikon PlanApochromat) and taken
into consideration our overall system magnification (6x
with 10x objective). Instrument control/data collection
was accomplished using custom software written in the
C++ environment.

All image preprocessing and multivariate analysis was per-
formed using in-house written Matlab software. (Matlab v
6.5, Mathworks, Inc) HSS images were preprocessed to
locate and remove cosmic events using a modified, 5-
point median filter over the immediate area of a cosmic
spike only. To correct for spectral image curvature and to
calibrate the wavelength axis reference images of neon
and krypton gas discharge lamps were used. Signals from
both lamps were combined for accurate calibration over
the large spectral range. Principal component analysis was
performed on the resulting preprocessed images and the
number of spectral components was determined by
inspecting the eigenvalues in a Scree plot [31]. A con-
strained, alternating least squares MCR analysis was per-
formed using the number of components from the PCA
analysis plus an additional offset (linear baseline) compo-
nent. The MCR algorithm also requires initial estimates
for the spectra and/or the concentrations. The algorithm
was initialized with either the positive values of the prin-
cipal components or spectra identified from previous
image analyses. Non-negativity constraints were applied
to all components for both concentrations and spectra
and spectral equality constraints were applied to the offset
component throughout the analysis and to portions of
other component spectra as needed to prevent physically
unrealistic solutions (i.e. Cy5 emission signal at wave-
lengths <590 nm or spectral or concentration nonnegativ-
ity). All constraints were applied using rigorous least
squares methods. One hundred to five hundred iterations
were performed in the MCR analysis, although the solu-
tion often converged in fewer iterations. Resulting compo-
nent concentration maps were scaled to be directly
comparable to the commercial scanner results by convolv-
ing the hyperspectral data recreated by the concentration
maps of the emissions of interest with the optical filter
function of each of the commercial scanner channels. The
results were integrated and scaled to achieve total inte-
grated intensities equal to the per channel values obtained
with the commercial scanner. These scaled concentration
maps were then written as individual tif files and read into
the GenePix software where spots were identified and

http://www.biomedcentral.com/1471-2164/6/72

quantitated for each of the components using the meth-
ods presented above for commercial microarray data.
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