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Abstract

Background: A number of publications have recently examined the occurrence and properties of
the feed-forward motif in a variety of networks, including those that are of interest in genome
biology, such as gene networks. The present work looks in some detail at the dynamics of the bi-
fan motif, using systems of ordinary differential equations to model the populations of transcription
factors, mRNA and protein, with the aim of extending our understanding of what appear to be
important building blocks of gene network structure.

Results: We develop an ordinary differential equation model of the bi-fan motif and analyse
variants of the motif corresponding to its behaviour under various conditions. In particular, we
examine the effects of different steady and pulsed inputs to five variants of the bifan motif, based
on evidence in the literature of bifan motifs found in Saccharomyces cerevisiae (commonly known
as baker's yeast). Using this model, we characterize the dynamical behaviour of the bi-fan motif for
a wide range of biologically plausible parameters and configurations. We find that there is no
characteristic behaviour for the motif, and with the correct choice of parameters and of internal
structure, very different, indeed even opposite behaviours may be obtained.

Conclusion: Even with this relatively simple model, the bi-fan motif can exhibit a wide range of
dynamical responses. This suggests that it is difficult to gain significant insights into biological
function simply by considering the connection architecture of a gene network, or its decomposition
into simple structural motifs. It is necessary to supplement such structural information by kinetic
parameters, or dynamic time series experimental data, both of which are currently difficult to
obtain.

Background

The concept of a network motif, introduced by Alon and co-
workers [1], has rapidly become one of the central topics
of interest in the analysis of complex networks. These net-
works promise to provide a framework for the under-
standing of biological processes involving many
components such as intra- or inter-cellular networks of
interacting genes or proteins. The analysis of such frame-

works is one of the key techniques in the rapidly emerging
field of systems biology, which makes extensive use of
protein interaction, metabolic and gene regulatory net-
works. Several authors have argued that knowing the
structure of these networks, that is knowing the pattern of
interactions, will allow us to understand how combina-
tions of genes or proteins interact to achieve specific func-
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tional outcomes,
relationships.

and to predict new functional

A network motif in the sense introduced by Alon and co-
workers is a pattern or small sub-graph that occurs more
often (at some statistically significant level) in the true
network than in an ensemble of networks generated by
randomly rewiring the edges in the true network, where
the number of nodes and the degree of each node is kept
fixed. Of interest are the differences in the frequencies
with which network motifs occur in real (biological as
well as technological) networks. The recurrent presence of
certain motifs has been linked to systematic differences
[2] in the functional properties required from networks.
In analogy to electric circuits which are built up of smaller
modules, such as logic gates, it has been suggested that the
motifs in biological networks reflect functional or compu-
tational units which combine to regulate the cellular
behaviour as a whole. Recently the work of Prill et al. [3]
has looked at how one aspect of motifs, their stability,
influences biological network organisation and specifi-
cally the abundance of different motifs in the network.

The detection and enumeration of network motifs has
now been followed up by studying the dynamics of corre-
sponding mathematical models of these motifs, especially
in the context of transcription regulation networks. These
networks aim to describe the links between those genes
which code for transcription factors and the genes whose
products they control. At the moment, due to the diversity
of stimuli a cell/organism can experience, our understand-
ing of the complete sets of regulatory relationships is only
preliminary and because of the apparent importance of
post-transcriptional regulation, captures only one aspect
of the regulatory machinery. Additionally, it must be
recalled that these motifs do not exist in isolation within
the network, and their behaviour will be heavily influ-
enced by both global and local changes in the cellular
environment and the state of the network as a whole.
These considerations alone may make attempts to draw
positive conclusions about how a motif will behave overly
optimistic.

Network motifs and transcriptional regulation

To a great extent, the control of gene transcription is per-
formed by regulatory proteins known as transcription fac-
tors, which bind to specific sites on the DNA.
Transcription factors may regulate a gene in isolation, but
more commonly there are multiple transcription factors
acting in concert. The transcription factors are of course
themselves products of other (or possibly the same)
genes, resulting in a network of interacting regulatory
genes. Milo [1] and others have recently looked at ways in
which such networks can be broken down into smaller
functional units in order to more easily identify structures
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Common motifs in transcription regulation networks, (a) the
feed-forward motif, in which the product of gene X regulates
both genes Y and Z, whilst Y also regulates gene Z, (b) the
bi-fan motif, in which the products of genes X and Y regulate
both genes Z and W.

within the network. It is hoped that the appearance of
such smaller units may be indicative of modular structure
and efficient design. One of the most important motifs
that has hitherto been identified is the feed-forward motif
(see Figure 1(a)). A number of recent papers have exam-
ined the dynamics of mathematical models of the feed-
forward motif [4-6]. Recently, however, it was noted that
while the feed-forward loop motif is unusually common,
other motifs may be even more prevalent [7]. In particular
it was emphasized that when determining the relative sta-
tistical significance of the abundance of various motifs, it
was important to use an appropriate null "random"
model [8]. It was suggested that previously the back-
ground structure, that is, physical distance and compart-
mentalization, had not been adequately taken into
account when generating random networks. By using a
more sophisticated null model which took into account
spatial separation when considering whether nodes
would be connected it was found that the "bi-fan" motif
was the most prevalent in the transcription regulation net-
works of both E. coli and S. cerevisiae. Thus far, however,
there has been no detailed study of the dynamics of this
motif.

Bi-fan motifs in S. cerevisiae

In Table 1 we list bi-fan motifs extracted from the TRANS-
FAC database, and in Figure 2 highlight the regulatory
relationships reported in the literature for some of these
motifs. As is apparent from Table 1, several genes are
involved in more than one bi-fan motif. Also, the regula-
tory interactions documented in the database have been
ascertained in a non-uniform way, this simply reflects the
non-exhaustive nature of present molecular interaction
data-sets.

In Figure 2 repressive interactions are shown in red, while
promoting interactions are depicted in green. Even in the
small subset of genes for which interaction data was avail-
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Table I: Regulators and regulated genes observed in bifan motifs in S. cerevisiae and references to the relevant literature.

Regulator | Regulator 2 Regulated | Regulated 2 References
MCMI XBPI CLN3 CLB2 [16], [17]
ABFI REBI ACSI FASI [18], [19], [20]
MSN2 MEDS8 GLKI suC2 [21], [22], [23], [24], [25]
MSN2 MSN4 GLKI SuUC2 [21], [22]
MEDS8 MSN4 GLKI SUC2 [21], [24]
DALS80 GLN3 UGA4 DAL3 [26], [27], [28], [29], [30]
SKOI MIGI ENAI sucC2 [25], [23], [25], [31]
RAPI GCRI ENOI ENO2 [32], [33], [34], [21], [35], [36], [37]
ABFI RAPI ENO2 FASI [36], [37], [33]
CATS SIP4 FBPI MDH2 [38], [39], [40], [4!]

able we were able to find exemplars for a range of distinct
bi-fan architectures. We consider and contrast the dynam-
ics of each of these variants.

Dynamical models of motifs

Given a particular transcription regulation motif, such as
those in Figure 1, and straightforward assumptions about
the binding kinetics of its constituent molecular species
(genes and proteins), we can derive a mathematical
model for its dynamics. This then allows analysis of the
characteristic responses of these constituents of a motif
following an external stimulus. Both deterministic and
stochastic models are possible. A number of recent papers
have constructed and analyzed models for the feed-for-
ward motif. In particular Mangan and Alon [4] have
shown that this single simple motif can exhibit a vast
range of different dynamical behaviours.

We believe that these attempts to link structure (of motifs)
to function in terms of mathematical models raise a
number of interesting questions and problems. The
present work looks in some detail at the dynamics of the
motifs identified in Table 1. Our analysis follows the
approach of [5] for the feed-forward motif and in particu-

MCM1 XBP1 ABF1 REB1
+ SN - + + +N - +
CLN3 CLB2 ACSI FAS1
a b
Figure 2

lar we model the bi-fan motif using a system of ordinary
differential equations (ODEs).

We use the number of molecules of the two second tier
proteins as a measure of motif behaviour. We look in turn
at the four variants of the motif identified in yeast under a
series of example dynamical scenarios which reflect the
diversity of behaviour that can be demonstrated by this
simple motif, starting with coherent motifs, that is, motifs
in which every transcription factor acts to promote tran-
scription.

Results

The motifs in Figure 2 can broadly be separated into two
categories — A, B and D are generally referred to as "inco-
herent motifs", while C is a coherent motif. This nomen-
clature is due to the arrangement in C in which both
inputs act as promoters, in comparison to A and D which
are both fully incoherent (both second tier proteins have
both promoter and repressor inputs), whilst B may be
considered to be partially incoherent, as one of the second
tier proteins has incoherent inputs, whilst the other has
coherent inputs (the model used in this case is given in
equation (1), in which we consider co-operative binding

MSN2 MSN4 DALS0 GLN3

+H NN\ 4+ + -1 -\t +

GLK1 SUC2 UGA4 DAL3
C d

Examplars of bi-fan behaviour observed in the TRANSFAC database for S. cerevisige. Inhibitory interactions are shown in red,

while promoting interactions are shown in green.
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This table shows the variation in the outputs of the four different motifs identified in the literature for a variety of steady
inputs. The details of the model used can be found in the methods section, and the values of the parameters used are in Table
2. In the input column, the motif is first exposed to two high inputs, I, and I, take the value of 100. This is indicated as two
green squares. The outputs of the two second tier proteins are then measured after the system has attained equilibrium (after
10,000 seconds), and the outputs are characterized as High, Low or Off, denoted by Green, Yellow or Red squares respec-
tively. On the second row the inputs are changed to be Iy high and Iy low (values used were 100 and 10 respectively). In the
final two rows the situation is considered in which one of the inputs is turned off (denoted by a red square). What is of most
interest is the variation in the pattern of outputs along each row, indicating that the characteristic output of the motif varies
qualitatively according to the detailed structure, in addition to the quantitative variation in the outputs.

in the case that the order of binding is unimportant). In
addition we also add a derivative of the C model which we
denote as C', in which both inputs still act as promoters,
however the assumption about the way the promoters act
is different — we no longer require both promoters to bind
for Py, to be expressed (in practise it can be seen that these
operate as an AND and an OR gate respectively). Further
discussion of the many ways in which the transcription
factors operates can be modelled can be found in the
methods section.

Constant inputs

We first consider the effect of providing the motif with
steady inputs, a biological scenario which corresponds to
continued exposure to a either an environmental condi-

tion triggering independent factors, or to a constant signal
which is split into two signals by the network structure. To
examine the various responses, we consider the effect of
both signals being turned on continuously at a high level
(which we denote in the in Table 3 as a green square), the
result of one of the factors occurring at a high level whilst
the other is either low (denoted by a yellow square) or off
(denoted by red).

In this way one can see the variation in the responses of
the two output proteins, which we denote here as P, and
Py, for all motifs. In this table, we have simply provided
the transcription factors at a reasonably high concentra-
tion and quantified the response of each protein after the
system has stabilized. All of the simulations are per-
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formed with the same kinetic parameters, as detailed in
the methods section, and the qualification of a high or
low response is based on comparison with the response of
other motifs and the response of the other protein. Again,
these results are colour-coded for easy comparison, with
green, yellow and red again corresponding to high, low or
no expression.

We can see that there is significant variation in the charac-
terization of the response of the variants of the motif.

Response to simultaneous pulses

We next look at the responses of the motif in the case in
which both transcription factors are turned on simultane-
ously for 3600 seconds (an hour), and then turned off
again. Again, the precise amplitudes and durations of the
protein responses varies greatly, and are dependant on the
precise values of the kinetic parameters. Two illustrative
cases can be seen in Figure 5, again corresponding to var-
iants A and B of the motifs however. The qualitative
results are summarized in Figure 4.

Staggered pulses

Finally we look at the effect of offset pulses in the levels of
transcription factors. In the first case, providing the first
transcription factor (denoted by I;) for 3600 seconds,
then turning that off, and turning the second factor (Iy) on
for 3600 seconds. This is then reversed. The results can be
see in Figure 6, again using the colour coding scheme
described above.

Two illustrative cases can be seen in Figure 7, correspond-
ing to variants A and B, in the case in which first Iy and
then Iy are activated.

Discussion

We have seen that the the bi-fan motif exhibits a rich vari-
ety of dynamical behaviour and has the ability to perform
a number of potentially useful functions, considering for
example Figure 3, the results of steady inputs, we can see
that the motif can pass through the inputs as outputs (var-
iant A), act as a logical AND gate (variant C) or an OR gate
(variant C'). From this table of responses to the simplest
dynamical stimulation we can see already that it is very
hard to draw any firm conculsions about the role of a
bifan motif without knowing a great deal about its inter-
nal structure. Furthermore the simple distinction of coher-
ent or incoherent is also insufficient, as we can see from
the opposing behaviours of C and C'. Furthermore, there
is great variation in the detailed dynamical response as we
have seen from Figures 5 and 7, with differences in total
expression levels, steepness of response and timing of
peak expression. It must be noted that the majority of the
variation in behaviour is not unexpected, and arises as a
consequence of the parameters used, however this only

http://www.biomedcentral.com/1471-2164/7/108

exacerbates the difficulties of trying to think of, and use
motifs as higher level "functional modules".

Conclusion

Analysis of many networks in a large number of scenarios,
from biological and social networks to technological net-
works has revealed the presence of motifs, simple patterns
which occur with a greater than expected frequency. In the
context of biological networks, and specifically transcrip-
tion regulatory networks, it has been argued [9] that
motifs have evolved independently, indicating optimal
design. It has been suggested that such motifs may repre-
sent "computational elements", and in the case of the
feedforward motif, the possibility of the motif acting as a
Boolean AND or OR gate has been investigated [4].

Here we have systematically studied a range of dynamical
behaviours possible for bi-fan motifs. It had previously
been demonstrated that even for the simpler feed-forward
motif there is already a vast range of possible dynamical
behaviours. For the bi-fan, which is only slightly more
complex, we found again that there is a large range of pos-
sible response behaviours. Most notably we observed that
entirely opposing behaviours (for example, in the case of
the responses of variants C and C') can be elicited depend-
ing on the nature and strengths of individual interactions
within the motif. We were able to identify a variety of
combinations of such interactions in the bi-fan motifs
found in the transcriptional network of S. cerevisige. In
particular, we found examples of both coherent and inco-
herent architectures. This suggests that simply identifying
the presence of particular motifs, without a detailed exper-
imental evaluation of their respective dynamics, is
unlikely to offer much insight into the functional proper-
ties of real transcriptional networks. In essence this means
that knowing the structure of a network, or an inventory
of the discrete modules making up that structure, doesn't
provide enough information to predict how functional
processes occur or how biochemical reactions proceed in
a biological system.

Admittedly, our analysis does not take into account the
full complexity of real biological bi-fan motifs. This, how-
ever, makes the interpretation of bi-fan motif occurrences
in nature even more difficult: if simple mathematical
models can already demonstrate such different types of
behaviour then it is likely that real bi-fan motifs exhibit an
even richer repertoire of behaviour. One should also
remember that motifs are themselves generally only artifi-
cially identified local structures, there is no good reason to
believe that their dynamics can necessarily lead to a mod-
ularization in understanding the behaviour of transcrip-
tion networks. Many of the databases used to mine for
motifs are based on yeast-2-hybrid experimental data
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This table shows the variation in the outputs of the different motifs when both inputs are turned on to a high level for 3600
seconds and then abruptly turned off. This is denoted in the inputs as green then red. The outputs are then categorised and
colour coded as either off, low or high, corresponding to red, yellow or green. This scenario corresponds to relatively short
term exposure to a transcription factor up the transcription network. Again, the details of the model can be found in the meth-

ods section, and the parameters used are given in Table 2

which gives no indication of whether elements of identi-
fied structures are active at the same time.

Furthermore we usually lack information about the
behaviour of the input signals, essential to understand the
relationship of the motif to the network as a whole. Thus,
we can conclude that simply knowing the connection
structure of this motif is insufficient to give much insight
into its function or even its dynamical response. In order
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to do this, we would need much more detailed experi-
mental information about binding and unbinding rates
and other kinetic information. Currently, such experi-
mental data is difficult to determine in a wholesale fash-
ion, making the large scale analysis of the function of
transcription networks very problematic.
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In these two plots we again see the dynamical response of motifs A and B when the motif is excited by simultaneous step func-
tions for 3600 seconds. The two plots share their y-axes, with the scale for the response on the leftmost axis, and the strength
of the input signal on the far right axis. Note not only the difference between the two in peak expression, but also the marked
difference in total expression, time of peak expression, and behaviour after the peak between the two motifs. The curves in (a)
have been separated to enhance readability. To produce the simultaneous steps, both Iy and Iyare initially at 0 at t = 0, are then
set to 100 for 3600 seconds, then again returned to 0. The kinetic parameters used are given in Table 2.
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In this table we can see the responses of the different motifs to successive inputs. The first two rows show the effect of first
perturbing Iy and then Iy with a step function. In the third and fourth rows this is reversed. Again the main feature to notice in
this table is the variety in the responses of the motifs modelled. For the purposes of this diagram there were assumed to be
two phases of behaviour corresponding to "after” the first perturbation and "after" the second perturbation. The strength of
the response is again indicated by Red, Yellow and Green, corresponding to Off, Low or High response. As in the previous
cases, the details of the model can be found in the methods section, and the parameters used are given in Table 2.

Methods

Following [5] we only consider deterministic models and
hence use systems of ordinary differential equations
(ODEs) to describe the time evolution of the number of
molecules of the various constituent species of a bi-fan
motif. In many cases the copy numbers of some of these
(e.g. transcription factors) will be too low for ODEs to
capture the dynamics of the real system. In such cases we
can use a stochastic model which can be simulated using
for instance the Gillespie algorithm [10]. However [5]
found that for feed-forward motif the average behaviour
of an ensemble of such simulations is well characterised
by ODEs describing the mean behaviour. We confirmed
this for the bi-fan motif (data not shown). Following the
custom in the literature for feed-forward motifs, we refer
to the bi-fan network in which all interactions act directly
to promote expression as "coherent”, and use the term
"incoherent" otherwise. We analyse the dynamical
response of the motif by observing the expression levels of
the proteins in the motif. We assume that the motif is ini-
tially at equilibrium with zero input so that in the absence
of basal transcription none of the proteins in the motif are
initially expressed. We then stimulate the system at one or
both inputs for varying periods and at varying strengths,
corresponding to different dynamical situations. Our
models of transcription regulation were translated into
systems of approximately 30 ordinary differential equa-
tions [see Additional File 1|, which were subsequently

solved using Mathematica (Wolfram Research, Urbana
Champagne Illinois).

The bi-fan model

The bi-fan motif, see Figure 1, consists of four regulatory
systems, denoted as X, Y, Z and W. It is necessary to repre-
sent each of the systems in a biologically relevant way and
with realistic parameter choices. The model used here fol-
lows that of [5], in that each of the systems is composed
of a transcriptional part whereby one or more transcrip-
tion factors bind to promoter regions and regulate the
production of mRNA, as well as a translational part
whereby the mRNA is translated into protein, which may
act as a transcription factor for another regulatory system.

The model is certainly not the simplest available - we
could instead have modelled the motif as a Boolean net-
work or with weighted funtions between nodes, however
we believe that to do so does not take advantage of the
knowledge that has been gained in study of the physical
mechanism of gene regulation, and futhermore the model
we do use has the advantage that there is considerable
experimental data available to justify the choice of rate
constants, and not to have used this would have been to
not take full advantage of the experimental data. Equally,
this model does not attempt to model the many hundreds
of intermediate steps involved in each process such as
transcription, as the steps introduced would necessarily
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Here we see again the details of the dynamical response of motifs A and B to the inputs. Again, the two plots share y-axes, with
the response scale on the left, and input signal strength of the far right axis. In this case, two sucessive step functions of 3600

seconds were used to model activation by first one transcription factor and then the other immediately after. In these figures,
Iy is increased from 0 to 100 for 3600 seconds, and then at t = 3600, I, is set to 100 for 3600 seconds and Iy is turned off. Again
the kinetic parameters used in the model can be found in Table 2. Note the significant differences not only in the absolute val-

ues of peak expression, but in the shape of the curves.

have been arbitrary, and without experimental data to jus-
tify rate constants.

The model attempts to describe the process of gene regu-
lation from transcription binding to protein production
in a physically reasonable way. Each system, for example
X, is represented as having a section of DNA Dy which
codes for the mRNA My. First, the transcription factors,
which may either be proteins produced by one of the sys-
tems in the motif, or by an external signal, bind to the pro-
moter region to form a complex Q,. RNA polymerase

molecules Ry then bind to this complex as they read the

DNA, forming a secondcomplex Q;( . This complex then

breaks down as the reading process completes, releasing
in the process Qy, Ry and the newly formed mRNA M,.
The mRNA molecules are then translated, and copies of
the protein Py are produced. The initial numbers of mole-
cules used in the model were: one copy of the DNA for
each system and 30 copies of RNA polymerase, all others
were set to zero. These reactions are modelled using the
law of mass action.

Modelling the interactions
The detailed modelling of the interactions between the
two tiers of proteins can be carried out in a number of

ways, all of which will have an effect on the resultant
dynamics.

Co-operative binding — order unimportant

In this case, considered in the paper [5], both transcrip-
tion factors act to promote transcription, however they are
both needed for transcription to take place. This is mod-
elled by introducing an intermediate species, T. The equa-
tions for this model are then as follows:

Dy + Py
Dy, + Py

Ty + Ry -
-2

* kg

Qw —— Ty +My +Ry

Co-operative binding — order important

Dy, + Py Qw

Qw + Iy

Qw + Ry

*

Qw

"

kg
—8

Qly
Qw
Ty + My, + Ry,

Page 8 of 12

(page number not for citation purposes)



BMC Genomics 2006, 7:108

[Tol
[aY]
(%2}
] o _l
= [aV]
(&}
QO
° o
E 4 o
B o
& T |
s}
£
> w0y —
2
(=
T T T T T
0 2000 4000 6000 8000
Time (seconds)
a
Figure 8

http://www.biomedcentral.com/1471-2164/7/108

o
= O
o .
o= |
— Py = E
— Pw %)
Input |- § g
&5 =
—
b .
T T T T T
0 2000 4000 6000 8000
Time (seconds) b

We see the effect of assuming that the production rate of P, is sensitive to the order of binding of Py and Py to the DNA of
gene Z, see text for details. As before, the y-axes are shared. The two expression profiles for Py, correspond to inverting the
inputs, showing that the motif may able to differentiate between signal combinations. I, and I, are again modelled as step func-

tions which switch to 0 after 3600 seconds.

Independent promoters — order unimportant

This is a simpler case than the above, and is simply the
case in which both transcription factors act to promote
transcription independently. The equations are then as
follows:

-7
ky

Dy, +Px - Qw
-7 (3)
k, .

Qw + Ry — Qw
2

Qw L TN Ty + My + Ry

Promoter/repressor combination

In this case the repressor sequesters DNA, making it una-
vailable for the promoter to bind.

== T,

7 N QW

2 *
— Qw

Ty + My + Ry

Promoter/repressor combination — binding order important

In this case, the binding order of Py and Py to the DNA for
gene W now plays a role. If P, binds first it will block the
production of P, perhaps by altering the conformation
of the binding site; if, however, Py binds first then Py is still
required for production of the protein. This has the effect
of making Py a repressor when it binds first to the regula-
tion site. Examples of where this order specific behaviour
may occur include the effect of the transcription factor
p53 on chromatin structure [11]. Other papers which dis-
cuss the importance of binding order include [12] and
[13]. We see the effect that this can have on motif behav-
iour in Figure 8, where the two graphs correspond to high
Iyand low I, in (a), and the reverse in (b). Here the motif
is apparently able to differentiate between signal combi-
nations.

Dy, + Py

7
— Qw

Dy, + Px

== Ty

= Qi (5)

Ty + Py

k X
Q{/v + Ry —— Qw

* k8

Qw ——

Qw + My + Ry
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lllustrative case

With these considerations in mind, we give the full model
for variant C, the coherent motif (the other cases are sim-
ilar). The basic model for X and Y, where I, and I repre-
sent the amounts of externally produced transcription
factors:

For protein X:

Dy +1y \__—:lA Qy
-1
k, *
Qx + Ry ~ Qx
)
Qx LN Qx +Mx +Rx (6)
MX L} MX+PX
k5

My —— O

Py —&e s @

Dy +1y - Qy

k .
2 \ QY

Qy +Ry

Qy + My +Ry (7)
My + Py

My ——> O

p e, g

In the case in which both transcription factors act as pro-
moters, and in which binding order is unimportant, that
is, Equation (1), then the equations for proteins Z and W
then become:

Dy + Py
Qz + Iy
D, +Py
T, + Py

Q7 +Ry

* k8

Q —— Qz+Mz+Ry

MZ —_— MZ+PZ
M, —— O

PZ &)Q

http://www.biomedcentral.com/1471-2164/7/108

Dy, + Py
Qw + Py
Dy + Py
Ty + Py
Qw + Ry

Qi + My + Ry
My, + Py

By —we, @
The parameters used for the rates of transcription and
translation are based on the derivations in [14], and were
obtained from experimentally determined rates [15]. The
values used for the basic model are shown in Table 2.
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Appendix: motifs and networks

A network or a graph is a mathematical object consisting of
a set V of vertices, and a set E of edges connecting vertices.
If the edges have arrows or directions then the network is
called a directed network. Many different types of data
and relationships may be represented in this way. Exam-
ples of undirected networks are networks of pairs of pro-
teins which are known to interact. The networks
considered in this paper have as their vertices genes which
regulate or are regulated by the product of other genes.
The edges then represent the relationship of control, and
therefore the network is a directed network, with the
direction of the edges indicating the direction of control.
Figure Al is an example of a directed network. Motifs,
introduced in [1] are small sub-networks or patterns of
vertices and edges which occur with in the network. A
motif is considered to be interesting if it occurs unusually
frequently in the network. In Figure Al a (feed-forward)
motif is highlighted in colour.

Appendix figure

A directed network with a feed-forward motif highlighted
in colour. In the case of a transcription regulation network
the arrows indicate the direction of transcriptional con-
trol.
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Table 2: Kinetic parameters used in the model. Other parameters not given here are low number mulitples of the corresponding

parameter, and were altered as described in the text.

Parameter Value Interpretation

ky, k| 0.012,0.9 Promoter binding/unbinding

ks, k5 0.038, 0.3 RNA polymerase — DNA/promoter binding/unbinding
ks 0.039 Transcription rate for X & Y
kg 0.043 Translation rate for X & Y
kg 0.0039 mRNA decay rate
ke 0.0007 Protein decay rate

kg, k7 0.012,09 Promoter binding/unbinding for Z & W
kg 0.039 Transcription rate for Z & W

Additional material
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Supplementary material with details of the differential equations used to
model a coherent bi-fan motif in which there is full cooperativity.

Click here for file
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