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Abstract

Background: Cancer is a major medical problem in modern societies. However, the incidence of
this disease in non-human primates is very low. To study whether genetic differences between
human and chimpanzee could contribute to their distinct cancer susceptibility, we have examined
in the chimpanzee genome the orthologous genes of a set of 333 human cancer genes.

Results: This analysis has revealed that all examined human cancer genes are present in
chimpanzee, contain intact open reading frames and show a high degree of conservation between
both species. However, detailed analysis of this set of genes has shown some differences in genes
of special relevance for human cancer. Thus, the chimpanzee gene encoding p53 contains a Pro
residue at codon 72, while this codon is polymorphic in humans and can code for Arg or Pro,
generating isoforms with different ability to induce apoptosis or interact with p73. Moreover,
sequencing of the BRCAI gene has shown an 8 Kb deletion in the chimpanzee sequence that
prematurely truncates the co-regulated NBR2 gene.

Conclusion: These data suggest that small differences in cancer genes, as those found in tumor
suppressor genes, might influence the differences in cancer susceptibility between human and
chimpanzee. Nevertheless, further analysis will be required to determine the exact contribution of
the genetic changes identified in this study to the different cancer incidence in non-human primates.

complex process in which genetic, epigenetic and environ-
mental factors are implicated [3-6]. The importance of

Background

Cancer is a major and growing clinical problem in mod-

ern societies. Although usually referred to as a single dis-
ease, cancer represents more than 200 different
pathologies, which are characterized by an uncontrolled
cell growth that may derive in the invasion of surrounding
tissues and the subsequent generation of metastasis in dis-
tant organs of the body [1,2]. Tumor development is a

genetic factors in cancer is now well established, as muta-
tions in specific genes have been associated with the neo-
plastic transformation and development of specific cancer
types [3,7,8]. This fact is further supported by the exist-
ence of hereditary cancer syndromes, caused by germ-line
mutations in specific genes and responsible for about 5%
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Distribution of cancer genes in different functional
categories. The percentage of genes present in each cate-
gory is indicated.

of all diagnosed malignancies [9-11]. Over the last two
decades, a number of studies have focused on the identi-
fication of the different genes that can contribute to can-
cer. These studies have led to the conclusion that
alterations in three types of genes - oncogenes, tumor-
suppressor genes, and stability genes — are mainly associ-
ated with the genesis of cancer [3]. These studies have
alsocontributed to elucidate the molecular mechanisms
through which these genes act during tumor development
and progression [12]. Finally, in some cases this knowl-
edge has resulted in the introduction of new therapeutic
strategies for cancer treatment [13-16].

Chimpanzees (Pan troglodytes) represent our most closely
related organism. They have a more similar physiology to
human than any other model organism, and the study of
several human diseases in chimpanzee has led to a better
understanding of pathologies such as hepatitis or AIDS
[17,18]. Interestingly, a number of works have reported
that cancer incidence in non-human primates is very low.
This fact is especially evident for epithelial neoplasms
such as breast, prostate or lung carcinomas, which are
responsible for more than 20% of human deaths but
whose incidence in great apes is less than 2% [18-22]. The
difference in cancer incidence between human and chim-
panzees can mainly derive from three facts: i) exposure to
different environmental factors, including diet and habits,
ii) differences in life expectancy and iii) genetic differ-
ences that might result in humans being more susceptible
to cancer development.

http://www.biomedcentral.com/1471-2164/7/15

The completion of the first draft of the chimpanzee
genome sequence has opened the possibility to study
whether genetic differences between human and chim-
panzee could contribute to the observed differences in
cancer susceptibility between both species [23]. To
address this question, we have used the chimpanzee
genome sequence to identify and compare the ortholo-
gous genes of a set of 333 human genes that have been
previously implicated in cancer development [3,7]. This
analysis has revealed that all analyzed human cancer
genes are present in the chimpanzee and exhibit a high
degree of conservation between both species.

However, further detailed analysis of a series of genes of
special interest in human cancer such as p53 and BRCAI,
has revealed some differences with the corresponding
chimpanzee counterparts. In this work, we present the
results of this comparative genomic analysis and discuss
the putative relevance of the observed genetic changes for
explaining some aspects of the differential cancer suscep-
tibility between human and chimpanzee.

Results

Analysis of cancer genes in the chimpanzee genome

As an initial attempt to study cancer-associated genes in
the chimpanzee, we have compared 333 human cancer
genes to the chimpanzee genome and identified and ana-
lyzed the orthologous genes (see Additional data file 1).
The set of human cancer genes was selected from the liter-
ature based on mutational analysis and/or roles in proc-
esses such as chromosomal stability, promoter
methylation or control of mitotic checkpoints [3,4,7,24-
28]. As can be seen in Figure 1, more than 50% of the
genes belong to three main functional categories: tran-
scription factors, phosphorylation (including kinases,
kinase inhibitors and phosphatases), and DNA repair.
Other functional groups include structural proteins,
GTPases and GTPase regulators or proteins involved in
ubiquitylation. Finally, other minor groups include tumor
suppressors, the protein and RNA components of the tel-
omerase, or proteins implicated in apoptosis among oth-
ers.

To perform this study, the cDNA sequence from all
human cancer genes was first compared with the chim-
panzee genome in order to determine the presence or
absence of the corresponding orthologs, and then to pre-
dict their complete cDNA sequences. This analysis
revealed that all analyzed human cancer genes are present
in the chimpanzee genome. The high sequence coverage
of this set of cancer genes (96% coverage at the nucleotide
level, 1,161,044 nucleotides), has allowed us to perform a
detailed comparison - at the nucleotide and amino acid
level - of cancer genes between both species (see Addi-
tional data file 1 for more details).
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Table I: Cancer genes with codons inserted/deleted in chimpanzee. Summary of chimpanzee cancer genes showing inserted/deleted
codons with respect to the human sequence. The number of inserted/deleted codons, the amino acid change and whether the
insertion/deletion occurred in trinucleotide expanded regions is shown. The status of this codon in human is also indicated.

Gene Codons Residues inserted Human status
Codons inserted in chimpanzee
CCNEI | S -
FANCC | Q (in polyQ repeat) Polymorphic
FGFRI | D (in polyD repeat). -
HOXDI | | G (in polyG repeat) -
HSPCAI | E (in polyE repeat) -
MLLT2 | S -
MLLT3 2 SS (in polyS repeat) Polymorphic
MNI 4+| QQQQ and Q (in polyQ repeats) -
PML 2 GF -
Codons inserted in human
AFI5QI14 | R -
ASPSCRI 2 ER (in polyER repeat) Polymorphic
ATFI | A -
DEK | E (in polyE repeat) Polymorphic
DING 1+2 L and RD (in polyRD repeat) -
EP300 3 MQQ (2 repeats in human, | in -
chimpanzee)
LMO2 | G (in polyG repeat) -
MLLT2 | S (in polyS repeat) -
MYST4 2+ EE and E (in polyE repeats) Polymorphic
NUMAI 4 AAIG -
SMO | L (in polyL repeat) -
ZNF384 | Q (in polyQ repeat) Polymorphic

Direct comparison of human and chimpanzee cancer
genes indicates that they are highly conserved, showing
99.38% identities at the protein level, and 99.19% at the
nucleotide level, what is similar to the average amino acid
identities between both organisms (99.38%) [23]. Inter-
estingly, we have identified 71 cancer genes (representing
21% of the total) encoding proteins which are 100% iden-
tical to their human counterparts (Additional data file 2).
The conservation of cancer genes between human and
chimpanzee suggests that they perform essential cellular
functions and are in agreement with previous studies [29].
This proposal is consistent with the fact that most ana-
lyzed cancer genes encode intracellular proteins highly
conserved from yeast to human, and implicated in funda-
mental processes such as cell signalling, cell cycle control
and maintenance of genomic stability [3].

Analysis of insertions and deletions in protein coding
regions from thechimpanzee genome

Despite the high conservation between human and chim-
panzee cancer genes described above, in the course of the
present study we identified 20 chimpanzee genes (6% of
all analyzed genes) that encode proteins containing or
lacking specific residues due to the insertion or deletion of

codons in the corresponding open reading frames (Table
1). The analysis of these genes can be important in order
to identify human-specific changes in protein coding
genes. A total of 9 chimpanzee genes encode proteins con-
taining extra amino acids in their sequence, 6 of them
located within trinucleotide repeats resulting in longer
expansions in chimpanzee, with up to 4 extra glutamine
residues in the case of MN1. On the other hand, 12 chim-
panzee genes encode proteins with less amino acids than
their human counterparts. Similarly to the expanded pro-
teins in chimpanzee, 8 of the 12 expansions in human
proteins were located in trinucleotide repeats. The higher
proportion of longer alleles in humans than in chimpan-
zee is consistent with known results [30]. Interestingly,
analysis of these expanded regions using information
retrieved from EST databases, resulted in the finding that
six human genes, ASPSCR1, DEK, FANCC, MLLT3, MYST4
and ZNF384, are polymorphic for these loci. As functional
trinucleotide tandem repeats that vary in humans have
been shown to be also variable in chimpanzee [30], it is
likely that all these genes present variability in both spe-
cies. These results suggest that these regions might be
prone to genetic instability, and open the possibility to
investigate if all these genes showing human-chimpanzee
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variability in trinucleotide repeats are polymorphic in
humans and influence the risk of tumor development.

During the course of this analysis, we also observed that
52 genes (representing 15.6% of all analyzed cancer
genes) contained putative frameshifts and/or premature
stop codons in the coding sequences (Additional data file
3). This high number of conflictive regions is not likely to
reflect bona fide differences between these species, but the
result of sequencing problems or artefacts derived from
the assembly process. To evaluate these possibilities, we
took advantage of the availability of two independent
assemblies for the chimpanzee genome, called ARACHNE
and PCAP [23]. The ARACHNE assembly, containing
more coverage and fewer order conflicts, is used by most
public genome browsers and was employed in the initial
steps of this study. The PCAP assembly is a de novo assem-
bly that is non-redundant with ARACHNE and provides
an additional resource for this kind of sequencing con-
flicts. To distinguish artefacts of the assembly process
from real differences or sequencing errors, we compared
the conflictive regions identified in cancer genes to the
PCAP assembly. This strategy resulted in the resolution of
83% of the conflicts, as they were correct in the PCAP
assembly, thereby suggesting that they represented errors
generated during the assembly process. Nevertheless, 9
cancer genes (BCL3, ELL, GAS7, MLL, MLLT3, NF1,
RECQL4, SMARCB1 and TPR) still contained the same
frameshift in both assemblies. Because these genes might
represent real differences between human and chimpan-
zee cancer genes, we PCR-amplified all these conflictive
regions, and the resulting DNA fragments were subjected
to direct sequencing. This strategy allowed us to confirm
that these genes do not contain frameshifts or premature
stop codons, and encode functional proteins in all cases.
These findings call the attention to the degree of accuracy
of the chimpanzee genome despite the existence of two
assemblies. Ongoing efforts to increase the shotgun cover-
age from ~4 fold to ~8 fold redundancy will produce a
higher quality sequence necessary for a reliable ascertain-
ment of specific interesting discrepancies.

Analysis of missense mutations in cancer genes in the
chimpanzee genome

Mutations in human cancer genes can be originated by
different causes, including chromosomal translocations
resulting in fusion proteins, disruption of the coding
sequence by frameshifts or premature stop codons, and
point mutations that modify the structure and function of
the corresponding protein. As mentioned above, we did
not find evidence in the chimpanzee genome of gene
fusions, frameshifts or premature stop codons in the set of
analyzed cancer genes. However, it is interesting to study
the status in the chimpanzee genome of residues that are
variable in human genes and are associated with cancer.

http://www.biomedcentral.com/1471-2164/7/15

For this purpose, we extracted the information of variant
alleles in human genes from the Human Gene Mutation
Database (HGMD) and the Online Mendelian Inherit-
ance in Man (OMIM) databases [31,32], and determined
the corresponding residue in the chimpanzee protein. We
found two genes associated with breast cancer, BRCA2
and ERBB2, in which the chimpanzee sequence differed
from the human in residues that have been reported to be
polymorphic in humans. Both alleles, BRCA2 (N372H)
and ERBB2 (V655I), have been associated with different
risk of developing breast cancer [33,34]. Interestingly, in
both cases the chimpanzee sequence (N372 and 1655)
corresponds to the allele that has been associated with a
reduced risk of cancer, and both are being found at high
frequencies in humans, around 0.8 for N372 [34] and
from 0.7 to 0.9 for 1665.

We also identified at least two cases in genes associated
with colon carcinomas, MLH1 (A441T) and MSH2
(S323C), and one with prostate carcinomas, PON1
(I102V), in which the susceptibility allele in human
appears to be the wild-type allele in chimpanzee. How-
ever, due to the limited clinical and functional data on
these variants, the biological significance of these findings
is still unknown, and further studies will be required to
determine the pathogenic activity of these alleles.

Analysis of the tumor suppressor gene p53 in the
chimpanzee genome

A detailed analysis of the gene encoding the tumor sup-
pressor p53, which is the most frequently mutated gene in
human cancer [35], showed a single amino acid difference
between human (Arg at position 72) and chimpanzee
(Pro72). Interestingly, this p53 codon is polymorphic in
human and the allele encoding Pro72 is frequent in some
populations [36]. Analysis of chimpanzee DNA from four
different geographic regions revealed a Pro/Pro genotype
in all cases, what confirmed our findings using the chim-
panzee genomic sequence. However, we cannot rule out
the possibility that this codon might be polymorphic in
chimpanzee and that the Arg72 allele could be present in
some individuals, what would require the analysis of a
greater number of samples. In this sense, sequencing of 14
chimpanzee samples revealed a Pro/Pro genotype, sug-
gesting that this allele would be the most common one in
chimpanzee, with a Poisson distribution maximum esti-
mate of allele frequency of 0.1 at a 95% confidence inter-
val.

Additionally, we have sequenced the same p53 region in
different primates, including gorilla, orangutan or man-
drill, and determined that codon 72 codes for Pro in all
species (Fig. 2). The fact that apes and some Old World
monkeys contain Pro at this position, suggests that it is the
ancestral allele and the Arg72 allele is unique to the
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Figure 2

Amino acid alignment of the p53 proline-rich domain
from different primates. Schematic representation of p53

protein (AD: activator domain, PR: proline-rich domain; DB:

DNA-binding domain; TD: tetramerization domain; and RD:

C-terminal regulatory domain). The proline-rich domain con-
taining Arg72 (arrowhead) was sequenced in different primate
species and aligned to the human sequence.

human lineage. Nevertheless, the ancestral Pro/Pro geno-
type is still present in humans, representing about 8.3% of
the Central-European population and 45% of the African
yoruba population (see dbSNP rs1042522) [37]. This
finding raises interesting questions about the different
susceptibility to cancer of both organisms, as several stud-
ies have shown that both isoforms are functionally differ-
ent in their ability to induce apoptosis or interact with p73
[38-40].

Analysis of the BRCAI locus in the chimpanzee genome

The tumor suppressor BRCA1 has an unusual evolution-
ary history, in that ratios of replacement to silent nucle-
otide substitutions (K,/Kg) are greater than one when
comparing human and chimpanzee lineages, but not in
lineages of other primates or other mammals [41-43].
This observation is consistent with positive selection pres-
sure on BRCAI during recent hominoid evolution. We
evaluated the complete human and chimpanzee genomic
sequences of BRCAI in light of this observation. In
human and chimpanzee, the BRCA1 locus spans ~130 kb,
including the BRCA1 gene itself and a partially duplicated
5' (telomeric) region. The duplication includes the highly
conserved bidirectional promoter regulating BRCAI1 and
the adjacent gene NBR2, a BRCA1 partial pseudogene, and
NBR1/M17S2. The number of nucleotide differences
between human and chimpanzee sequences at the BRCA1
locus is not remarkable, 1.15%, and does not vary appre-
ciably between the BRCAI locus and the duplicated
region. However, humans and chimpanzee sequences dif-
fer by an 8 Kb insertion/deletion within the partially
duplicated region. The deletion on the chimpanzee
sequence prematurely truncates the NBR2 gene. The con-
sequences to BRCA1 expression in chimpanzee of the
truncation of the adjacent, co-regulated gene are not

http://www.biomedcentral.com/1471-2164/7/15

known. In mouse, the region is not duplicated and the
bidirectional promoter co-regulates Brcal and Nbr1 [44].

Discussion

The availability of the chimpanzee genome sequence pro-
vides an excellent opportunity to explore the genetic basis
for some of the biological differences between human and
our most closely related organism [23]. An striking find-
ing in this regard is the observation that non-human pri-
mates show a lower incidence of cancer than humans,
specifically for epithelial carcinomas [18,20]. To investi-
gate if this different susceptibility to cancer was due to
genetic differences between humans and chimpanzees, we
performed a comparative analysis in the chimpanzee
genome of a set of 333 human genes that have been
directly implicated in tumor development [3,7]. This
analysis revealed that all human cancer genes contain a
clear ortholog in the chimpanzee genome, and show a
percentage of identities at the protein level similar to the
genome average (99.38%). Nevertheless, the strict conser-
vation of this group of more than 330 genes contrasts with
the recent analysis of other groups of genes, including a
set of 560 proteases, which shows that at least 7 genes are
absent in either human or chimpanzee genomes [45], or
the CD33-related Siglecs, which also show specific loss of
some genes in the human lineage [46]. These data suggest
that despite cancer genes show a percentage of identities
similar to the genome average, they are perfectly con-
served between human and chimpanzee, confirming pre-
vious studies showing a higher conservation of genes
implicated in essential cellular functions [29].

This study has shown that despite the high degree of iden-
tity in cancer genes, there are 1542 amino acid changes
whose contribution to the different cancer susceptibility
between human and chimpanzee should be further inves-
tigated. Nevertheless, additional factors contributing to
the observed differences could include changes in diet,
lifestyle or exposure to mutagenic agents [47-49]; physio-
logical differences in immune system or in life expectancy
and aging rates [50]; variations in gene expression, alter-
native splicing or in DNA methylation patterns [51,52]; or
alterations in other genes not analyzed in this study. In
this regard, we must emphasize that we have compiled a
group of 333 genes that are causally implicated in cancer
development as a result of mutational analysis or owing
to their participation in processes such as control of
mitotic checkpoints, chromosomal stability or promoter
methylation. This set of genes includes those annotated in
a recent census of human cancer genes 7], but also incor-
porates novel genes described to be mutated in human
carcinomas [3,4,25-28]. However, the possibility that
other yet unknown cancer-related genes are responsible
for the different susceptibility to this disease between
human and chimpanzee, cannot be ruled out.
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In relation to the existence of functional differences in the
immune system of human and non-human primates, it is
now clear that the immune and inflammatory responses
play important roles in cancer development and progres-
sion [53-56]. Accordingly, structural and functional varia-
tions in genes associated with these processes might be
responsible for the species-specific susceptibility to certain
tumors. Life expectancy is another factor that might con-
tribute to the observed differences in cancer incidence
between human and chimpanzee. Although age is known
to represent a major risk factor for cancer development,
the observation that non-human primates have a lower
incidence of epithelial carcinomas but not other cancers
[18], suggests that life expectancy might contribute only
partially to the observed differences in cancer susceptibil-
ity. On the other hand, and despite the strong conserva-
tion in the coding regions of cancer genes from human
and chimpanzee, it is possible that differences in regula-
tory elements outside these coding regions can result in
changes in the expression levels or in the tissue distribu-
tion patterns [57]. In fact, recent reports have shown con-
siderable differences in the expression levels of
orthologous genes from different primate species [58-60],
supporting the idea that regulatory changes might account
for some interspecies differences, including cancer suscep-
tibility [61].

Despite the high conservation of cancer genes between
both species, we identified 20 genes containing several
codon insertions or deletions in their protein coding
regions, although the functional significance of these dif-
ferences, including their putative association with cancer,
will require further studies. It is interesting to note that in
70% of these cases, the insertion/deletion event occurred
within trinucleotide repeats, suggesting that these regions
could be prone to genetic instability, in both human and
chimpanzee genomes. Analysis of EST databases allowed
us to confirm this hypothesis, as six human genes,
ASPSCR1, DEK, FANCC, MLLT3, MYST4 and ZNF384,
were polymorphic in the number of repeats in these
regions. In the case of genes implicated in cancer, it will
also be interesting to study if some of the identified hap-
lotypes could confer a higher risk of tumor development.

The fact that most cancer genes show a high degree of con-
servation between human and chimpanzee, prompted us
to analyze in more detail the observed changes in genes
previously reported to be of special relevance in human
cancer, such as the tumor suppressors p53 and BRCA1. We
found that chimpanzee p53 shows a single amino acid
difference with human p53, resulting in a protein contain-
ing Pro instead of Arg at position 72. Interestingly, this
codon is polymorphic in human, and the Pro72 residue is
common in all studied human populations [36,62].
Sequencing of this region in other non-human primates

http://www.biomedcentral.com/1471-2164/7/15

allowed us to confirm that this Pro residue has been con-
served during evolution, and suggests that the Arg72
allele, present in 55-92% of the human population, arose
in the human lineage. The presence of Pro72 in chimpan-
zee might have physiological consequences, as several
reports have found interesting functional differences
between both p53 isoforms. In fact, p53-Arg72 protein
has an increased ability to induce apoptosis, to translocate
from the nucleus to the mitochondria, to be degraded by
the E6 oncoprotein of human papillomavirus or to inacti-
vate p73 when mutated [38-40]. Different studies have
provided evidence for an increasedrisk of cancer develop-
ment associated with the Arg72 genotype, although this
topic has been controversial and further studies will be
necessary to definitely address this question [39,40,63].
Therefore, and although the presence of Pro72 in chim-
panzee p53 might contribute to the reduced cancer sus-
ceptibility in non-human primates, further work will be
required to confirm this hypothesis.

Analysis of the tumor suppressor BRCA1 has shown that
it has been subjected to positive selection during recent
hominoid evolution, as the overall K,/K ratios are greater
than one when comparing human and chimpanzee line-
ages, but not on lineages of other primates or mammals,
as has been recently shown [43]. Additionally, the chim-
panzee BRCA1 locus contains an 8 Kb deletion in the par-
tially duplicated 5' region. This deletion prematurely
truncates the NBR2 gene, which is regulated by a bi-direc-
tional promoter that co-regulates NBR2 and BRCA1. The
consequences to BRCA1 expression in chimpanzee of the
truncation of the adjacent, co-regulated gene are not
known. The distinctive evolution of human and chimpan-
zee BRCA1 suggest that an evolutionary approach may be
important to understanding selection at this, and perhaps
other cancer associated genes [43,64,65].

Conclusion

In summary, in this work we have performed an analysis
of a defined set of 333 genes to try to elucidate the molec-
ular basis of human-chimpanzee differences in one aspect
of significant biomedical relevance: the interspecies varia-
bility in cancer susceptibility. The overall picture emerging
from this comparative analysis is one that reflects the high
degree of conservation in this group of cancer genes,
although specific differences in relevant genes such as p53
and BRCAT1 can illuminate new functional and evolution-
ary aspects of these tumor-suppressor genes. Altogether,
the limited genetic variability found in this human-chim-
panzee comparative analysis might contribute to the dif-
ferent cancer susceptibility between these closely related
species. However, further investigations will be necessary
to determine the influence of these genetic changes in can-
cer, or whether additional factors, such as changes in gene
regulation, immune system genes, life expectancy or envi-
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ronmental influences, might also contribute to this proc-
ess.

Methods

Bioinformatic screening of the chimpanzee genome

A database of human cancer genes was constructed by
using information from the literature, and the corre-
sponding cDNA and protein sequences were retrieved
from the GenBank database. Each single human ¢cDNA
sequence was compared against the ARACHNE and PCAP
chimpanzee genome assemblies by using a combination
of BLAT and BLAST algorithms [66,67]. The correspond-
ing chimpanzee cDNA and protein sequences were
extracted and compared to the human ortholog by using
the EMBOSS sequence analysis package. The full list of
cancer genes, accession numbers and comparison to the
human orthologs are available at in the Additional data
file 1. In all cases, the primary chimpanzee cDNA
sequence was obtained from the ARACHNE assembly, as
this sequence is used by the Chimpanzee Genome
Sequencing Consortium and by most public genome
browsers (NBCI, Ensembl, or UCSC). However, in those
cases where the chimpanzee gene was incomplete, the
PCAP assembly was used to fill gaps in the genome, and
the corresponding sequence was incorporated to the
chimpanzee cDNA sequence for our analysis.

Conflictive regions were defined as those presenting
frameshifts or premature stop codons in the chimpanzee
coding sequence. Those regions were carefully examined
in both ARACHNE and PCAP assemblies, as well as the
corresponding human region in the human genome
sequence and EST databases. In four cases (LMO2, MLLT7,
MN1, and MYST4) the presence of a putative frameshift or
premature stop codon in the chimpanzee sequence
resulted from incorrect human sequence entries that con-
tained frameshifts in the deposited entry. Modification of
the human c¢DNA with the aid of EST and genomic
sequences resulted in curated human cDNA and protein
sequences, and the absence of frameshift or premature
stop codon in the corresponding chimpanzee prediction.
All other conflictive regions in the chimpanzee genome
were solved by PCR amplification and direct sequencing
of the corresponding gene using chimpanzee genomic
DNA.

PCR amplification and direct sequencing of chimpanzee
genes

Chimpanzee, gorilla, orangutan and mandrill genomic
DNA from different geographic regions was obtained
using standard phenol-chloroform procedures. To ana-
lyze conflictive regions in the chimpanzee genome, we
designed specific oligonucleotides flanking the exon of
interest (Additional data file 3), and the corresponding
region was PCR amplified from chimpanzee total

http://www.biomedcentral.com/1471-2164/7/15

genomic DNA in a Perkin Elmer 9700 thermocycler using
High Fidelity Taq DNA polymerase or GC-RICH PCR sys-
tem for regions rich in GC content (Roche Diagnostics).
The amplified product was purified and subjected to auto-
matic sequencing using the 5' oligonucleotide as primer
using an ABI Prism 310 DNA sequencer (Applied Biosys-
tems).
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