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Abstract
Background: Current methods for measurement of copy number do not combine all the
desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to
improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we
aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform
from PamGene International. In this new method, electrophoretic analysis of amplified products is
replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of
hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled
MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled
reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is
that discrimination of amplified probes is based on sequence and not fragment length.

Results: In this study we showed that microarray MAPH measurement of PMP22 gene dosage
correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was
accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have
Charcot-Marie-Tooth disease type 1A (CMT1A).

Conclusion: Measurement of microarray-based endpoints for MAPH appears to be of comparable
accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential
multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes
with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

Background
The role of submicroscopic DNA copy number variation
in genetic pathologies has been established now for two
decades [1]. Early investigations recognised the impor-
tance of deletions or duplications in specific genes as caus-
ative mutations in clinical conditions, such as BRCA1 in

familial breast and ovarian cancer [2] and DMD in Duch-
enne/Becker muscular dystrophy [3]. Furthermore, subte-
lomeric chromosomal rearrangements leading to copy
number changes have been associated with learning disa-
bility and other developmental abnormalities [4]. Recent
advances in the diagnostic technologies applied to such
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conditions have also proven to be useful tools in elucidat-
ing the dynamic model of the human genome, with copy
number variation recently recognised as an important
component of human polymorphism [5-8].

As the significance of copy number variation in genetic
analysis becomes more widely recognised so does the
need to improve and extend the range of techniques avail-
able. In particular, for scanning multi-exon genes for dele-
tions or duplications, MAPH and MLPA [9] have been
used to assess the dosage of small (about 100 bp) regions
to high accuracy (reliably discriminating 3 copies from 2),
properties not easily implemented using, for example,
current array-CGH methods. One feature shared by both
Multiplex Amplifiable Probe Hybridization (MAPH) [10]
and Multiplex Ligation-dependent Probe Amplification
(MLPA) [11] is the limit to multiplicity set by the resolu-
tion of probes distinguished by their length, using capil-
lary electrophoresis. In MAPH, the requirement for
specific and stable hybridization sets a lower limit on
probe size of around 100 bp, and the requirement for
comparable co-amplification of different probes sets an
upper limit of around 600 bp; thus the largest single
probe set could contain 100 probes spaced 5 bp apart.
While this does not pose a limitation on applications
using relatively small probe sets, such as the 23 probes
used in BRCA1 testing [12], where many exons are
involved, such as DMD [13], or where screening is not tar-
geted to single gene loci, probe sets of this magnitude
would be inadequate.

The most obvious route to breaking these limits is to
employ DNA microarray technology to replace capillary
gel electrophoresis as the final analytical step in MAPH, as
discussed in the original MAPH publication [10] and in a
more recent review [14]. A microarray based on oligonu-
cleotides complementary to individual MAPH probes
would allow detection and quantification based on
sequence rather than on size. Microarray detection and
quantification should therefore allow the simultaneous
measurement of copy number at a larger number of loci.

The initial stages of microarray MAPH, up to the recovery
of specifically bound probes, remain the same as capillary
MAPH. The subsequent amplification of these probes is
modified to allow the incorporation of labels suitable for
a standard two-channel photometric array analysis. Thus,
Cy3-PZA primer is used for unknown samples and Cy5-
PZA is used to generate a reference sample from a sub-
population of normal males for comparison. The oligonu-
cleotide spots of the array are co-hybridised with Cy3-
probes from test samples and Cy5-probes from reference
samples. Copy number can then be calculated by measur-
ing the ratio of Cy3:Cy5 intensities, reflecting the amount
of probe in the test (Cy3 labelled) samples relative to the

reference (Cy5 labelled) samples. Thus, an elevated copy
number would be revealed by a Cy3/Cy5 ratio greater
than one, and less than one for a reduced copy number.

PamGene's flow-through microarrays use a novel format
in which probe is actively pumped repeatedly across the
plane of the array (hence "3-D"); diffusion is no longer
the rate-limiting step, allowing faster hybridization kinet-
ics than in diffusion-limited systems [15-17]. In this study
we used the flow-through arrays in conjunction with the
Olympus FD10 microarray instrument, which automates
the required hybridization, pumping and image capture.
Applications of the FD10 instrument in mutation detec-
tion and gene expression analyses have been published
[18-21].

Using PamGene's 3-Dimensional, Flow-Through Microar-
ray Platform we present a new format for MAPH: Microar-
ray MAPH, using PMP22 gene dosage measurements in
normal controls and CMT1A patients as an example. In
this paper we demonstrate for first time successful combi-
nation of microarray technology with MAPH, and show
that the accuracy of microarray-based MAPH is compara-
ble to established electrophoretic methods.

Results
Normalised data from microarray images were analysed
in groups of normal and CMT1A samples for an initial
global comparison of each endpoint of the mean returned
copy number for each probe (Table 1). The CMT1A group
has an elevated mean copy number for PMP22 probes,
consistent with heterozygous duplication, in both micro-
array and standard capillary assays. The standard devia-
tions for the majority of probes are similar for each
format, suggesting that the microarray format reports the
amounts of each probe as accurately as capillary electro-
phoresis. However, probes B1 and Da show unusually
high standard deviations in the microarray MAPH, sug-
gesting an additional source of variation in this format.
High variation in reported dosage for probe B1 was traced
to low spot intensity. Both the Cy3 and Cy5 intensities for
each of the three B1 complementary oligonucleotides for
all samples were similar to that of the non-human control
probes (results not shown) and were thus no greater than
background. This effect was independent of the oligonu-
cleotide used, the position on the array and the sample
analysed and therefore is probably due to an unusual
property of this specific probe resulting in its poor capture
on the array. We were, however, unable to identify obvi-
ous areas of self-complementarity in this sequence that
might prevent capture by the array. In contrast, the high
variation seen with probe Da is entirely due to two indi-
vidual results that returned higher than expected intensi-
ties in the Cy3 images. These are most likely to be array
image artefacts and are consistent with the tendency of
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Cy3 images to be more susceptible to substrate and dust
particle fluorescence compared to Cy5 images, as can be
seen to some extent in Figure 2.

The accuracy and precision of both formats, represented
by the distribution of "MRD6" values (see "Methods") in
the normal and CMT1A populations are very similar (Fig-
ure 3). This is particularly clear when directly comparing
the mean MRD6 value and MRD6 standard deviation for
each population shown in Table 2. The close agreement
between the results of each format is confirmed by a cor-
relation coefficient of 0.951 for MRD6 values for the full
data set (Figure 4). We conclude that the PamChip micro-
array format for MAPH is able to determine copy number

for PMP22 as accurately as the previous format using cap-
illary electrophoresis.

Discussion
In this study we have successfully demonstrated the com-
bination of two powerful technologies, MAPH and the
PamGene 3D Microarray. By taking the same source mate-
rial through analyses with both capillary MAPH and array
MAPH we have shown both endpoints to be in close
agreement. This conclusion was based on three key obser-
vations. Firstly, each sample was correctly partitioned into
one of two distinct populations on the basis of the MRD6
score: for normal samples the MRD6 ranged between 0.81
and 1.14; for duplicated (CMT1A) samples, MRD6 ranged

Table 1: Comparison of capillary MAPH and microarray MAPH of 28 normal samples and 21 CMT1A samples. The upper group of 
results show the mean and standard deviations for normalised data separated according to probe category and known pathology. * 
Medians used rather than means to reduce distortion by extreme outliers; see "Results" for further details.

Capillary MAPH Microarray MAPH

PMP22 
Probes

Normal (n = 28) CMT1A (n = 21) Normal (n = 28) CMT1A (n = 21)

Mean SD Mean SD Mean SD Mean SD

PMP1A 0.986 0.081 1.490 0.183 1.000 0.082 1.411 0.195
PMP4 0.986 0.089 1.567 0.237 0.982 0.082 1.490 0.216
CMT5 0.962 0.127 1.607 0.290 0.981 0.161 1.428 0.210
CMT10 0.980 0.120 1.597 0.241 0.980 0.108 1.466 0.247
PMP2 0.994 0.075 1.449 0.131 0.991 0.073 1.450 0.117
PMP3 0.972 0.098 1.471 0.101 0.973 0.132 1.420 0.149

PMP22 Mean 0.980 0.098 1.530 0.197 0.985 0.106 1.444 0.189

Capillary MAPH Microarray MAPH

Autosomal 
Probes

Normal (n = 28) CMT1A (n = 21) Normal (n = 28) CMT1A (n = 21)

Mean SD Mean SD Mean SD Mean SD

ST8D2 (19p 0.966 0.087 1.002 0.093 0.991 0.106 0.936 0.109
ST8B4 (18q) 0.960 0.117 1.058 0.161 0.991 0.074 1.014 0.094
B1 1.025 0.070 0.979 0.076 1.260* 0.811 0.970 0.169
ST10b4 (7p) 0.994 0.082 0.957 0.064 1.004 0.108 0.963 0.064
Da 1.012 0.113 0.974 0.091 1.138* 0.438 1.018 0.181
ST5C3 (8p) 0.997 0.118 1.112 0.172 1.031 0.088 1.070 0.120
ST4a4 (2q) 1.000 0.057 0.975 0.078 0.992 0.060 0.973 0.089
ST11G9 (19q) 0.989 0.160 0.968 0.099 0.952 0.123 0.957 0.153
A2 0.960 0.135 1.071 0.164 1.000 0.285 1.050 0.175

Autosomal 
Mean

0.989 0.104 1.011 0.111 1.040 0.233 0.994 0.128

Male Female Male Female
Mean SD Mean SD Mean SD Mean SD

Y 0.522 0.061 0.021 0.014 0.530 0.070 0.083 0.055
X 0.482 0.077 0.952 0.424 0.555 0.107 0.930 0.312
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between 1.20 and 1.71. Secondly, the average normalised
copy number for each probe (with two artefactual excep-
tions) across the sample set was very similar. Thirdly, the
MRD6 values for the two assays were closely correlated.

The potential for non-systematic noise in array MAPH was
illustrated by the unusually high Cy3 intensity of two data
points for spots complementary to the Da probe. These
high intensity 'spikes' are caused by dust particles settling
onto the array surface which tend to fluoresce more
intensely in the Cy3 emission spectrum than in the Cy5.
We did not take any particular precautions to ensure a
dust-free environment for our experiments, and it is pos-
sible that these additional steps may have eliminated dust
particles. Although it is doubtful whether dust contamina-
tion can be completely eliminated, especially when using
the more open FD10, the more enclosed design of more
recently released array instruments such as the PamSta-
tion 4 and PamStation 96 should also help reduce con-
tamination. It is clear that applications where diagnosis
may depend on the result of a single probe, such as the
subtelomeric sets, it will be necessary to screen and con-
trol very carefully for spurious signals due to this kind of
noise. For example, employing duplicate PCRs from sam-
ples, or duplicate spots on each array would distinguish
false-positive signals from true copy-number change, and
the data from this study show that signals from duplicate
hybridizing spots have a correlation coefficient of 0.86,
and a mean pairwise difference of about 11%. Thus gross
anomalies (for example, due to dust particles) might be
efficiently detected as poorly correlated signals, and
removed from the data set. However, in order to present a
clear picture of the potential of the system, the data pre-
sented in this report were analysed without any prior
selection. As we have seen with probe B1 the potential for
systematic noise also exists in array MAPH. As hybridisa-
tion is a key step of MAPH we can anticipate a high rate of
success in using MAPH probe sets in microarray analysis
without further modification, but it is unrealistic to expect
that all probes will perform equally well. It is likely then
that development of future applications of array MAPH
may involve some minor modifications of existing probe
sets.

In comparison with other established and commercially
available technologies, there are some clear advantages

and disadvantages to the technology we describe in this
report. ROMA [7] uses competitive hybridization of test
and reference "representations", made by amplification of
restriction fragments, to arrays of oligonucleotides. Detec-
tion of putative copy number changes by allele-specific
microarray methods [22-24], including recent work using
Molecular Inversion Probes [25], depends on analysis of
allele ratios from genome-wide SNP analyses.

Published work on copy number measurement using
Molecular Inversion Probes [25] can involve not only
information from allele ratios, but also from total signal
("copy sum"). The relative standard deviation from MIP
"copy sum" analyses is of the order of 0.05–0.15 for most
probes, but data analysis procedures including the
removal of outliers, and "smoothing" procedures com-
bining data from neighbouring loci, make it difficult to
derive a fair comparison with the data presented here.
"Smoothing" across neighbouring loci does improve the
sensitivity, but at a cost of resolution. Furthermore, while
in principle it is possible to use custom Molecular Inver-
sion Probes based on invariant positions (and therefore
using only "copy sum", not allele ratio measures), the
published data makes use of established assays based on
SNPs [25]. The resolution of MIP analyses is therefore lim-
ited by the spacing of the probes, but even if placed at very
high density in custom sets, the requirement for data
smoothing inevitably makes the effective resolution
lower. Thus while MIP technology may have real advan-
tages for truly genome-wide scans for copy number
change, it is much less suitable for targeted analysis of (for
example) exonic deletion and duplication in multi-exon
genes, where the accuracy of single-probe measurement is
critical.

MAPH has the advantage over MLPA [11], MIP and
ROMA that MAPH results are not sensitive to unexpected
substitutional variation in critical positions. In contrast to
ROMA, MIP, and other allele-specific technologies which
"smooth" data over neighbouring loci, the true effective
resolution of MAPH is given by the size of the probe
(100–500 bp). MAPH probes can be designed for nearly
all single-copy sequences, so that a direct test can be made
of very short sequences of interest (such as exons). By con-
trast, deduction of copy number changes from ROMA and
allele-specific SNP arrays depends on indirect inference

Table 2: "MRD6" copy number score variation for capillary MAPH and microarray MAPH.

Normal CMT1A

Mean SD % Mean SD %

Capillary MAPH 0.980 0.092 9.377 1.530 0.168 10.995
Microarray MAPH 0.985 0.072 7.318 1.444 0.147 10.179
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from the states of neighbouring markers, and the place-
ment of these markers is dictated not by the biological
question but by their inclusion in a subgenomic represen-
tation (in ROMA) or by the existence of common SNP var-
iation (in allele-specific analyses). MAPH also analyses
relatively small amounts (0.5–1 µg DNA) of genomic
DNA without prior manipulation or amplification, both
conserving genomic DNA resources and reducing the
opportunity for distorting representation before analysis.

Nevertheless, for other well-established methods capable
of full whole-genome copy number measurement, current
commercial availability and the capacity to screen the
whole genome in a single assay currently outweighs their
limitations. Furthermore, in some analyses there may be a
real advantage to allele-specificity, making methods like
ROMA and MAPH less advantageous. For all these rea-
sons, the particular advantages of microarray MAPH may
make it most suitable for a targeted analysis of an interme-
diate number of loci at very high precision and resolution.
Examples could include interrogating a set of 50–300
exons from selected "target" genes, or a set of 400–500
single-copy loci for analysis of karyotypic changes at rela-
tively low resolution, but with high signal:noise ratios at
each locus tested, and in a simple, fast and inexpensive
assay.

MAPH is constrained by core elements of the assay,
including probe sequence specificity, PCR efficiency and
hybridisation kinetics. Probe design for capillary MAPH is
further complicated by the electrophoretic end-point used
to determine relative probe dosage. Removing these
restrictions has implications for current and future appli-
cations of MAPH as an analytical tool. Probe sets can now
be refined, if necessary, to allow simultaneous use of
probes of similar lengths. One of the great strengths of
MAPH, its multiplicity, has also been limited by the reso-
lution of capillary electrophoresis. Probe sets that have
been too large to be accommodated in a single gel run can
now be combined to allow inexpensive and efficient anal-
ysis of larger numbers of loci simultaneously.

We chose to base array MAPH on PamGene's Flow-
Through Microarray Platform. The superior hybridisation
kinetics at the heart of the PamChip technology has short-
ened the hybridisation step from overnight to less than an
hour. Even so, the implementation of the technology used
here allows only four samples to be tested in the time it
would take to resolve around thirty two samples on capil-
lary analysis. Since this study was begun PamGene have
developed the PamStation 96 which, as the name implies,
increases the sample throughput of the technology via a
96-well format. In parallel with improvements in the
PamChip technology we have also been successful in
evolving the core MAPH protocol into a 96-well format.

Together, these advances have the potential to unlock the
true power of MAPH in combination with PamGene's
microarray systems.

Conclusion
We have been able to use oligonucleotide microarrays to
display the products from MAPH for the analysis of DNA
copy number. The accuracy of the copy number determi-
nations compares favourably with results obtained with
standard electrophoretic separation of fluorescently-
labelled fragments. Microarray readout removes the upper
limit imposed by electrophoretic mobility on the multi-
plicity, and in principle will allow the extension of MAPH
as a highly accurate, high-resolution method for simulta-
neous copy number determination at larger numbers of
loci.

Methods
Sample material
As microarray MAPH differs from capillary MAPH only in
its final stages we were able to re-examine primary MAPH
products produced in a previous study of the application
of MAPH to PMP22 gene dosage measurements [26]. This
material has already been subject to capillary electro-
phoretic MAPH analysis confirmed by clinical diagnosis
and so provided an ideal basis for the direct comparison
of the two techniques. For this study we selected a total of
49 primary MAPH samples representing 38 individuals, of
which 28 samples (26 patients) were confirmed normal
and 21 samples (12 patients) were confirmed CMT1A,
with a heterozygous duplication of PMP22. To ensure
DNA integrity, these preparations were freshly amplified
and analysed following the established capillary MAPH
protocol.

PMP22 probe set
DNA sequences for the PMP22 probe set and for other
MAPH probes along with protocols for probe set and
probe mix preparation can be found at [27]. The set con-
sisted of six probes from the target PMP22 gene and nine
reference probes from unlinked autosomal loci, together
with two sex linked probes and one non-human probe
that together acted as controls for specificity of washing
and hybridisation.

PamChip microarray design
Complementary 60 mer oligonucleotides for each probe
were initially designed as close as possible to a nucleotide
composition of 50% G/C (oligonucleotides "A"). To help
with the development process of the new format, two
additional complementary oligonucleotides for each
probe were designed allowing more variation in the GC
content. Thus, each probe had three complementary oli-
gonucleotides designated "A", "B" and "C", with "A"
designed to be as close as possible to 50% G/C. Analysis
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of the data from individual array spots (data not shown)
revealed a lower GC limit of 40% below which probes
either completely failed to be captured or showed evi-
dence of hybrid instability via highly variable spot inten-
sities. Nevertheless, initial analysis suggested that most
consistent results were obtained by using all the comple-
mentary spots for each probe ("A", "B" and "C") to gener-
ate an average spot intensity. In addition to testing three
oligonucleotides per probe, the entire array was spotted in
duplicate giving a total of six array spots for each probe.

Cy5 reference
To produce the Cy5-labelled reference sample a number
of MAPH primary products from five normal male sam-
ples were individually amplified by PCR using Cy5-PZA.
These were purified and pooled to give a single homoge-
nous reference DNA source.

Capillary MAPH
Full experimental details of MAPH have been published
previously [10,26,28] and updates to the protocol are
available at [29]. In this case each MAPH hybridisation-
selected primary product was amplified by PCR with Cy3-
PZA so that the same labelled probes could be analysed by
capillary and microarray MAPH. Amplified products were
purified and then resolved electrophoretically using the
ABI Prism 3100 Genetic Analyser with a 36 cm capillary
array loaded with POP-4™ polymer. An injection time of
40s produced peak areas for all probes that were within
the sensitive range of the instrument. Electrophoreto-
grams were integrated and peaks sized using a combina-
tion of ABI Prism's Genescan and Genotyper software.
Peak areas were used to calculate relative probe dosage as
previously described [28].

Microarray MAPH
An overview of the array MAPH protocol can be seen in
Figure 1. Co-hybridisation mixtures were composed of 8
µl of Cy3 labelled probe solution, 8 µl of Cy5 labelled ref-
erence probe solution, 2 µl of 10% SDS and 2 µl of ×20
SSPE and were held on ice until needed. Before being
applied to the array, this mixture was denatured (>95°C,
5 minutes). PamChips were loaded into the Olympus
FD10 microarray instrument according to the manufac-
turer's instructions. A custom protocol was designed
around a 50 µl displacement volume, 5 µl/s flow rate, and
5s hold after each half cycle of the pump. Each incubation
involved a pre-hybridisation stage of 2 repeats of 15
cycles, a single stage of 60 cycles for the hybridisation, and
2 repeats of 5 cycles for post-hybridisation.

Copy number determination
Images of Cy3 and Cy5 intensity were captured in 12 bit
greyscale TIFF format using manual control of the propri-
etary software pre-installed on the FD10. Example image

captures from a female sample co-hybridised with the
male reference are shown in Figure 2. Captured images
were then loaded into PamChip Analyser (V.4) which was
set to record values for median spot intensity minus a
background value for each spot using the 'local corners'
method. The tabulated spot intensity data was exported
directly into Microsoft Excel 10 where normalised ratios
of Cy3/Cy5 were calculated. Initial Cy3/Cy5 ratios were
calculated using the average intensity from all six spots for
that probe and then processed through two levels of nor-
malisation. The first level of normalisation addressed
inter-array variation in overall image intensity principally
brought about by differences in sample DNA concentra-
tion. By assuming an expected ratio of 1/1 for autosomal
control probes in each sample all ratios returned for that
sample can be adjusted to the mean of these probes.

A second level of normalisation was used to address dif-
ferential PCR amplification efficiency of individual
probes between sample and reference amplifications, and
adjusted the ratio for individual probes to the mean ratio
among unaffected controls. Copy number for each probe
was then expressed as this final normalised ratio. The
definitive PMP22 dosage was determined as the mean rel-
ative dosage of the six PMP22 probes, the so-called
'MRD6' value [26].

Ratios for the Y-linked probe were normalised to the
mean ratio of male samples only. Ratios for the X-linked
probe were normalised to the sum of the X-linked probe

Overview of microarray MAPHFigure 1
Overview of microarray MAPH. Amplifiable probes are 
hybridised with immobilised and denatured genomic DNA, 
and after stringent washing, specifically-bound probes are 
recovered. After PCR amplification, recovered probes are 
specifically detected and quantified by hybridization to oligo-
nucleotides on the microarray.
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ratios divided by half the total number of X chromosomes
present in the test population, i.e. by normalising to
female genome equivalents.
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