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Abstract
Background: In the recent years a strong resemblance has been observed between the insect
immune system and the mammalian innate immune mechanisms suggesting their common origin.
Among the insects, only the dipterans (Drosophila and various mosquito species) have been widely
investigated for their immune responses towards diverse pathogens. In the present study we
constructed and analysed the immune transcriptome of the lepidopteran Antheraea mylitta, an
economically important Indian tasar silkmoth with a view to unravel the potential immune-related
genes and pathways.

Results: An expressed sequence tag (EST) library was constructed from mRNA obtained from fat
bodies of A. mylitta larvae that had been challenged by infection with Escherichia coli cells. We
identified 719 unique ESTs from a total of 1412 sequences so generated. A third of the
transcriptome showed similarity with previously characterized immune-related genes that included
both the known and putative immune genes. Of the four putative novel defence proteins (DFPs)
annotated by PSI-BLAST three showed similarity to extracellular matrix proteins from vertebrates
implicated in innate immunity, while the fourth was similar to, yet distinct from, the anti-microbial
protein cecropin. Finally, we analysed the expression profiles of 15 potential immune-related genes,
and the majority of them were induced more prominently with E. coli compared to Micrococcus
luteus. We also identified several unknown proteins, some of which could have probable immune-
related functions based on the results of the ProDom analysis.

Conclusion: The present study has identified many potential immune-related genes in A. mylitta
some of which are vertebrate homologues and others are hitherto unreported putative defence
proteins. Several genes were present as members of gene families, as has also been observed in
other insect species.

Background
Insects are evolutionarily successful organisms and
occupy almost all habitats in nature. An efficient immune
system is one of the attributes for this evolutionary suc-
cess. However, unlike mammals, the insects lack an adap-

tive immune system. The insect immune response is
comprised of cellular and humoral components. The
former involves the action of haemocytes in phagocytosis
of microbes, encapsulation of large pathogens and nodule
formation [1] whereas the latter involves activation of
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prophenoloxidase cascade leading to melanisation of
invading microorganisms [2] and synthesis of a battery of
anti-microbial peptides [3].

Insect immunity is well studied in dipterans such as fruit
flies and mosquito species [4-7]. Only limited informa-
tion is available on genes induced on pathogen challenge
in a few lepidopteran species that include the domesti-
cated silkmoth, Bombyx mori [8], Cecropia moth,Hyalo-
phora cecropia [9] and tobacco hornworm,Manduca sexta
[10] and in these too the immune response pathways
employed to combat pathogen infections remain to be
fully characterised.

Abundant genetic resources are now available for B. mori,
with a 9 X shotgun sequence coverage of its genome and
more than 100,000 ESTs in dbEST (NCBI) [11-13]. With
reference to insect immunity, the ESTs have been obtained
from baculovirus-infected B. mori cultured cells and
pupae, but no large scale information on bacteria-induced
immune genes is as yet available.

In this study, we have constructed and analysed an
immune transcriptome following bacterial challenge of
the Indian tasar wild silkmoth, Antheraea mylitta, an eco-
nomically important lepidopteran cultivated for silk pro-
duction. Prior information on immune response genes in
wild silkmoths is lacking except for a few peripheral stud-
ies. Two proteins from A. mylitta – a lysozyme protein, 3-
D structure of which is elucidated [14] and a protease
inhibitor have been characterized [15]. We chose to exam-
ine the fat body transcriptome since it is a major immune
organ in insects, analogous to the mammalian liver. We
generated a total of 1412 ESTs, of which 31% could be
ascribed to putative immune functions. We also validated
the upregulation of a selected subset of genes from the
immune transcriptome by semi-quantitative RT-PCR.

Results and discussion
As described in Materials and Methods, we constructed a
cDNA library from fat body tissues of E. coli- challenged A.
mylitta larvae and randomly sequenced a large number of
inserts from the library. By running TGICL program, we
obtained 719 clusters from a total of 1412 ESTs, of which
166 were contigs (comprising 859 ESTs) and 553 were
singletons. The majority of the EST clusters were 500 to
600 bp, with an average of 524 bp and a maximum of
1994 bp (Figure 1). Each of these clusters potentially rep-
resents a unique gene from A. mylitta, and our results have
hence expanded the number of genes known for this
organism from the handful previously known genes. The
1412 EST sequences (accession numbers EB742119-
EB743530) can be accessed at the NCBI EST sequence
database, dbEST and the 719 clusters can be accessed at
URL mentioned in references [16].

BLAST analysis
The different ESTs were classified into categories such as
immune-related, housekeeping, hypothetical insect pro-
teins, hypothetical non-insect proteins based on the
homology in NCBI protein BLAST (Table 1). Of the 1412
ESTs, 432 (31%) showed similarity to known or putative
insect immune proteins; thus, even though the cDNA
library was not normalized, a significant proportion (one-
third) of the transcriptome was represented by putative
immune-related genes. A total of 569 ESTs (39%) were
homologous to housekeeping genes and proteins
involved in functions other than immunity. Functional
class distribution of the ESTs is depicted in Table 1. Based
on the sequence similarity, 679 of the 1412 ESTs were
classified as insect-specific (224 of the 719 clusters) and
409 ESTs (204 clusters) were common to both insects and
mammals (Figure 2a and 2b). The number of ESTs show-
ing similarity to only the mammalian proteins was 14 and
those showing similarity neither to insects nor to mam-
mals were as few as 13. Gene Ontology analysis of the EST
sequences was also carried out and the details are pro-
vided as supplementary data (see Additional data file 1).

Domain search
The sequences, which could not be assigned any function
based on homology search in NCBI, were searched for
conserved domains in ProDom database. Of the 260 clus-
ters that had no matches with known proteins in NCBI
BLAST, we could assign protein domain families to 196
clusters based on the ProDom search (see Additional data
file 2). The remaining sequences did not show any hits in
ProDom and should be further analysed by other special-
ized computational tools.

Signal peptide and transmembrane domains
We further screened the unannotated proteins (no hits or
hits with hypothetical proteins in NCBI database) for the
presence of signal peptide and absence of transmembrane
domains. This characteristic of many of the immune pro-
teins has been utilized to screen probable immune-related
genes in large-scale transcriptome studies [17], although
the reliability of this criterion to identify the immune
related genes remains to be experimentally tested. In the
present study, 25 out of 260 genes tested fulfilled these
criteria and could be considered as potential immune-
responsive genes. However, since all the 260 clusters
checked are not all full-length sequences, it is possible that
we may have missed some others amongst them that rep-
resent gene products harbouring signal peptide without
transmembrane domain, and hence the actual number
may be higher.

Putative immune proteins
A total of 80 clusters were assigned a putative immune
function based on their similarity with previously charac-
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terized immune response genes and their distribution pat-
tern is shown in Figure 3. These putative immune proteins
were categorized into different functional groups – i. anti-
microbial proteins, ii. pattern recognition receptors
(PRRs), iii. proteases and protease inhibitors and iv. puta-
tive defence proteins with unknown function. A subset of
these putative immune genes (thirty-eight) is represented
with the details like GenBank accession numbers, putative
function, E-value (BLAST) etc (see Additional data file 3).
Homologues of several other proteins, implicated in
immunity such as antioxidants, ferritins, transferrins,
apolipophorins and apoptotic pathway components were
also found, but are not further described here.

Putative anti-microbial proteins
Attacin-like proteins were the most abundantly expressed
transcripts in terms of EST copy number in the immune
transcriptome (Table 2). Six different types of putative

attacins accounted for 34% (148 ESTs) of the immune
transcripts. A previous study had reported the presence of
four types of attacins in D. melanogaster [18] and a similar
study in immunized pupae of H. cecropia led to the isola-
tion of six closely related types of attacins [9]. Second in
the list of highly expressed genes were cecropin-like pro-
teins (55 ESTs, ~13%). Three types of cecropin homo-
logues were found in the A. mylitta transcriptome and a
previous study in H. cecropia had similarly shown the
existence of three types of cecropins [19]. Three types of
putative lysozyme transcripts were detected, one of which
was homologous to a bacteriophage T7 lysozyme-like
protein reported in B. mori that was later named, based on
functional analysis, as a peptidoglycan recognition pro-
tein [20]. The second was homologous to the bacteriolytic
lepidopteran lysozymes known to lyse the bacterial cell
wall [21]. The third was a lysozyme-like protein that lacks
one or both of catalytic residues essential for muramidase

Table 1: Classification of EST functional class categories based on similarity searches with NCBI protein database. 

Category No. of ESTs

Total no. of ESTs 1412 (100%)
Immune-related 432 (31%)
Housekeeping genes and other genes not involved in immunity 569 (39%)
Hypothetical/unknown insect proteins 135 (9.5%)
Hypothetical/unknown non-insect proteins 50 (3.5%)
Weak homology in NCBI* 170 (12%)
No homology in NCBI 56 (3.9%)

Percentage value of each category is in parenthesis. *- Hits with relatively less similarity (E value>1e – 05).

Distribution of read lengths of A. mylitta ESTs and clustersFigure 1
Distribution of read lengths of A. mylitta ESTs and clusters. (a) Read lengths of 1412 ESTs. (b) Read lengths of clusters.
Page 3 of 10
(page number not for citation purposes)



BMC Genomics 2006, 7:184 http://www.biomedcentral.com/1471-2164/7/184
activity. This protein has not been reported in lepidopter-
ans before and is homologous to dipteran lysozyme-like
proteins of unknown function. Three types of putative
lebocins and gloverins, which are the lepidopteran spe-

cific anti-bacterial genes, were also observed in A. mylitta
transcriptome.

The data generated in the present study conformed to the
trend of anti-microbial genes being present as multiple
gene families as observed in many other insect species and
highlighted the essentiality of these genes in the organism
[22]. Another interesting finding with respect to immune
response was the presence of a protein identical to seroin.
This protein is reported to express in the silk glands of B.

Table 2: The abundant genes in A. mylitta transcriptome. 

Gene definition No of ESTs

Attacin 96
Cecropin D 31
Defense protein 1 30
Ribosomal protein S2, Attacin 26
Elongation factor 1α 24
Hemolin 23
Attacin 22
Cecropin 17
Ferritin 15
Mucin 13

The number of ESTs indicates the transcript abundance for each of 
the category

Classification of ESTs (a) and Clusters (b) based on the number of sequences showing similarity to insect and or mammalian proteins in NCBI protein nr databaseFigure 2
Classification of ESTs (a) and Clusters (b) based on the number of sequences showing similarity to insect and or mammalian 
proteins in NCBI protein nr database. X-axis: 1) Insect, 2) Insect and Mammal, 3) Unknown, 4) Mammal, 5) Neither Insect nor 
Mammal, Y-axis: Number of sequences.

Distribution of immune-related transcripts in A. mylitta fat body transcriptomeFigure 3
Distribution of immune-related transcripts in A. mylitta fat 
body transcriptome. The figure in parenthesis indicates the 
number of isoforms identified in that particular gene family.
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mori and is known to protect the cocoon from microbes
[23]. A homologue of anti-fungal protein, gallerimycin,
previously characterized from Galleria mellonella and
shown to be induced by LPS injection [24], was also
found.

Putative pattern recognition receptors (PRRs)
PRRs in the insects bind to and detect pathogen associated
molecular patterns (PAMPs) like lipopolysaccharide, pep-
tidoglycan, β 1–3 glucan, lipotechoic acid etc [9,25]. The
putative PRRs identified in the present immune transcrip-
tome analysis were hemolins, peptidoglycan recognition
proteins (PGRPs), gram-negative binding proteins
(GNBPs), lectins and mucins. A. mylitta fat body transcrip-
tome revealed two different proteins resembling hemolin,
an immune inducible protein implicated in insect immu-
nity [26] and it would be worthwhile to study the function
and specificities of the different proteins of hemolin fam-
ily. Three types of PGRP-like proteins were found in the A.
mylitta immune repertoire in the present study as com-
pared to D. melanogaster where 13 PGRP genes are known
to be involved in the activation of the various effector
pathways in immunity [27].

Putative proteases and protease inhibitors
Various proteases and protease inhibitors regulate the
diverse immune mechanisms like melanization, phagocy-
tosis and induction of anti-microbial peptides [10]. A
homologue of a prophenoloxidase activating protease
characterized in B. mori and M. sexta [11] was also found
in the A. mylitta immune transcriptome. Several other
classes of putative proteases like cysteine proteases, serine
proteases and metallo-proteases were also identified. As
many as thirteen distinct serpin-like (serine protease
inhibitors) and twelve potential protease inhibitors were
detected in the immune transcriptome. Five different ser-
pins have earlier been identified in M. sexta and shown to
differ in the induction pattern upon immune challenge
[1]. In the light of these studies, the information on ser-
pins and protease inhibitors from the A. mylitta immune
transcriptome will prove to be invaluable in further
understanding of various immune pathways in insects.

Putative defence proteins with unknown function
Several potential new members of known protein families
were identified in the present study. Among the new
members, one was a putative lysozyme-like protein
described in the previous section. An array of putative pro-
teinase inhibitors and proteases were also found. Many of
them are new, and their study would enhance our under-
standing of the mechanisms of proteolytic cascades in
insect innate immunity. A few immunoglobulin (Ig) like
molecules were identified by ProDom search (see Addi-
tional data file 2). Ig-like molecules- hemolin [26] and
more recently Dscam have been implicated in insect

immunity [28,29] and it would be interesting to evaluate
the role of these putative Ig-like molecules in insects.
Among the potential immune proteins, we describe below
in more detail four putative defence proteins (DFPs), for
two of which (DFP-1 and DFP-4) we have confirmed the
induction upon E. coli infection by semi-quantitative RT-
PCR.

DFP-1, DFP-2 and DFP-3
We have grouped these three proteins together, as they are
70–85% similar to each other (DFP-1&DFP-3 = 85%,
DFP-1&DFP-2 = 79% and DFP-2&DFP-3 = 77%). All of
them have a signal peptide and appear to be secretory pro-
teins. DFP-1 was abundantly expressed in the immune
transcriptome suggesting its possible involvement in
immunity. In addition, these three proteins showed high
similarity to immune induced unknown proteins from
other lepidopterans like Hyphantria cunea, Samia cynthia
ricini,M. sexta and Lonomia obliqua [10,30-32] (Figure 4),
as also with some hypothetical proteins from other insects
and vertebrates in the NCBI database (see Additional data
file 4). Analysis by Position-specific iterative BLAST (PSI-
BLAST) [33] revealed similarity of DFP-1, 2 and 3 to the
vertebrate extracellular matrix proteins (ECM), stromal
cell derived factor receptor-2, spondin and reelin and pos-
sessed the common domain termed as 'reeler' (Table 3).
These ECM proteins are involved in the central nervous
system signaling and immune mechanisms like 'signaling'
and 'pathogen recognition' [34,35]. Stromal cell derived
factor/receptor complex has been shown to activate JAK/
STAT pathway and mediate the migration and prolifera-
tion of haematopoietic cells [35]. Recently, mindin a pro-
tein belonging to the F-spondin family has been shown to
act as a pathogen recognition receptor in mice [34]. Also,
spondin has been shown to be upregulated in Drosophila
upon bacterial infection by microarray analysis [36]. The
similarity of DFP-1, 2 and 3 to molecules involved in
immune responses in vertebrates further support the
immune-related role of these new proteins.

DFP-4
This protein was particularly intriguing as it showed simi-
larity to cecropin, the insect anti-bacterial peptides in the
primary sequence BLAST analysis. The multiple alignment
of the various cecropins and DFP-4 is shown in Figure 5.
Based on the SignalP prediction, DFP-4 is likely to be a
non-secretory intracellular protein, unlike cecropins that
are secreted into the haemolymph. Cecropins are small 5–
6 KD peptides whereas DFP-4 is a 17 KD protein with
additional unrelated regions at the N and C-termini. The
exact role of DFP-4 is not clear and needs to be investi-
gated.
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Expression profile
The transcriptome under study most likely represents a
plethora of E. coli-induced genes in the fat body of the
tasar silkmoth. We validated 15 putative immune
response genes by semi-quantitative RT-PCR, and their
expression profiles are shown in Figure 6. All but two

genes, a putative protease inhibitor [Gen-
Bank:DQ666519] and a seroin gene [Gen-
Bank:DQ666525] were upregulated upon infection. The
two DFPs tested, DFP-1 [GenBank:DQ666501] and DFP-
4 [GenBank:DQ666503], were induced by both E. coli
and M. luteus. DFP-1 was highly expressed in all the tissues

Multiple sequence alignment of DFP-1, 2 and 3 amino acid sequences with homologues from other lepidopteransFigure 4
Multiple sequence alignment of DFP-1, 2 and 3 amino acid sequences with homologues from other lepidopterans. Lonomia obli-
qua [GenBank:AAV91350], Manduca sexta [GenBank:AAO21507], Samia cynthia ricini [GenBank:BAD05929], Hyphantria cunea 
[GenBank:AAD09280] protein sequences, respectively. Black and grey shades indicate the identical and similar amino acid res-
idues, respectively.

Table 3: Proteins similar to putative defence proteins (DFPs) revealed by PSI-BLAST analysis. 

Novel proteins from A. mylitta Description and function of proteins similar to DFPs.

DFP-1, DFP-2, DFP-3 1. Stromal cell derived factor receptor 2 homologue
Homo sapiens [GenBank:NM_001013660.1]
(catecholamine catabolism) reeler domain

2. Spondin
Bos taurus [GenBank:Q9GLX9]
H. sapiens [GenBank:Q9HCB6]
Extracellular matrix, cell adhesion protein that promotes the attachment of spinal cord and sensory neuron 
cells

3. Reelin precursor
H. sapiens [GenBank:P78509]
Extracellular matrix serine protease. Enzymatic activity is important for the modulation of cell adhesion

DFP-4 Cecropin D precursor
L. obliqua [GenBank:AAV91462]

The GenBank accession numbers are given in parentheses.
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with a more prominent expression in mid gut whereas
DFP-4 was exclusively expressed in fat body (Figure 6). We
analysed the expression pattern of the aforementioned
genes in larval tissues differentially challenged with E. coli
(gram-negative) or M. luteus (gram-positive) and com-
pared with challenged or mock-challenged (saline-
injected) tissues as negative controls. Most of the genes
analysed were expressed more prominently upon infec-
tion with E. coli than with M. luteus suggesting that there
may be differential responses towards different patho-
gens. Two pathways of differential immune induction
have been identified in Drosophila. Gram-positive bacteria
and fungi induce the Toll pathway whereas gram-negative
bacteria evoke the Imd pathway [37], but the degree of
conservation of these pathways between Drosophila and
lepidopterans is not known.

Conclusion
The immune response in insects is dynamic and different
effector genes are likely expressed at different time points
during infection, contributing to the ability of the insects
to ward off infections in spite of the absence of adaptive
immunity. The current transcriptome represents genes
likely expressed upon E. coli infection in the A. mylitta fat
body at 24 hrs post infection. Unexpectedly, the Imd path-
way components that are implicated in the activation of
various effector pathways upon gram-negative bacterial
infection in Drosophila were not present in our transcrip-
tome. The 24-hour post infection period may have been
non-optimal for expression of some genes, and since the

EST library was not normalized the less abundant tran-
scripts may have gone undetected. Alternatively, it is pos-
sible that other pathways are involved in the immune
induction in the moths.

The present study has increased the repertoire of lepidop-
teran-specific putative immune response genes by several
hundred-fold. This will be a valuable resource for lepidop-
teran-specific immune studies in particular and insect
immune studies in general.

Methods
Insects, bacterial inoculation and tissue collection
A. mylitta, 5th instar, day 3 larvae were procured from
Regional Research Station, Warangal, Andhra Pradesh.
Log phase E. coli cells (DH5α), washed and resuspended
in saline (0.3 M NaCl, 0.005 M KCl), were injected into
the haemocoel of the larvae as described earlier [38]. At 24
hours post infection (hpi), larvae were dissected to isolate
fat body, and the tissue was flash frozen in liquid N2 and
then stored at -70°C till further use.

cDNA library construction and generation of ESTs
Total RNA was extracted from the fat body using Trizol
reagent (Invitrogen). The complementary DNA synthesis
was carried out using Stratagene ZAP-cDNA® synthesis kit
following manufacturer's instructions. Directional cDNA
library was constructed by cloning of cDNA fragments
into pBluescript II SK (+) vector and electroporation into
E. coli strain DH10B. Insert-containing plasmid clones

Multiple sequence alignment of DFP-4 with cecropins from other lepidopteransFigure 5
Multiple sequence alignment of DFP-4 with cecropins from other lepidopterans. L. obliqua putative cecropin [Gen-
Bank:AAV91462], M. sexta cecropin [GenBank:AAO74638], B. mori cecropin D [GenBank:BAE53371], Helicoverpa armigera 
cecropin [GenBank:AAX51193.1]. The unique regions of DFP-4 (no homology to cecropins) are boxed.
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were sequenced with RV-M primer (5'GAG CGG ATA ACA
ATT TCA CAC AGG 3') with the aid of MegaBACE3000
sequencer.

EST processing
Raw sequences obtained from sequence chromatograms
were processed using several programs. A cut-off Phred
Quality Value of ≥15 was assigned to extract quality
sequences from chromatograms. The quality sequences
were screened for the presence of vector sequences using
'Cross Match' program [39]. Then masked vector
sequences were automatically removed by in-house devel-
oped trimming tool. Sequences shorter than 50 bases
were removed. The resulting high-quality sequences were
assembled into sequence contigs with the TGICL program
[40], which initially makes clusters using MegaBLAST and
thereafter makes an assembly using CAP3 for each cluster
generated in the first step. A cluster is defined as a unique
sequence obtained either by multiple alignment of many
sequences that are > 95% similar or derived from a single
sequence. A cluster containing ≥2 ESTs is termed a contig
and that containing only one sequence, a singleton.

The unique putative gene sequences obtained by cluster-
ing and assembly were annotated by running BLAST [41]

against non-redundant (nr) protein database of NCBI.
Further, BLAST output was parsed to classify the putative
gene transcripts into different functional classes.

Analysis of unknown proteins
Proteins that did not show any significant hits in NCBI nr
database or showed similarity to unknown or hypotheti-
cal proteins were characterized by additional computa-
tional tools.

a. Domain search
For the sequences showing high similarity to hypothetical
and/or unknown proteins, and those showing weak simi-
larity to nr protein database, domain search was per-
formed using ProDom [42]. Putative function was
assigned based on the type of domains found.

b. Signal peptide and transmembrane domain analysis
Presence of transmembrane domains and signal peptide
analysis was done on the transcripts not showing any sig-
nificant hits in NCBI database. The signal peptide analysis
was done by SignalP software [43] and trans-membrane
domain analysis was done with TMHMM program [44].

c. Functional annotation with PSI-BLAST
The functional annotation of four novel immune upregu-
lated transcripts (DFPs) was done using PSI-BLAST [33].

Expression profile
A. mylitta larvae were differentially challenged- a) Unchal-
lenged, b) Saline-injected, c) M. luteus and d) E. coli. Log
phase E. coli and M. luteus bacteria, washed and resus-
pended in insect saline (0.3 M NaCl, 0.005 M KCl) were
injected (30 µl) into a set of A. mylitta larvae. One set each
of saline-injected and uninjected larvae were kept as a
control. Four tissues, namely fat body, epidermis, mid gut,
and silk gland were dissected out and flash frozen in liq-
uid nitrogen. Total RNA was isolated using Trizol reagent.
To remove genomic DNA contamination, total RNA was
treated with RNAse free DNAse (NEB) as prescribed by the
manufacturers. cDNA was synthesized using MMLV
reverse transcriptase (Invitrogen) and oligo dT primers
from 1 µg of total RNA. The primers were designed for the
selected ESTs by Primer3 software [45].

Semi-quantitative RT-PCR was carried out for all the four
differentially challenged tissues using an Eppendorf mas-
ter cycler under the following conditions- 94°C, 2 min-
initial denaturation, 27 cycles (94°C – 30 s, 58°C- 30s,
72°C-2 mins) and a final elongation at 72°C for 10 mins.
Actin cDNA was amplified as an endogenous control. PCR
reaction components included: 1X buffer, 100µM dNTPs,
1.5 mM MgCl2, 0.5 units Taq polymerase (MBI), 0.5 µM
primers. Primer sequences are enlisted in additional data
(see Additional data file 5).

RT-PCR profiles of 15 putative immune genes from 4 differ-entially challenged tissues of 5th instar larvaeFigure 6
RT-PCR profiles of 15 putative immune genes from 4 differ-
entially challenged tissues of 5th instar larvae. E- E. coli chal-
lenged, M- M. luteus challenged, S- saline-injected, U- 
unchallenged. Actin was used as an endogenous control. The 
GenBank accession numbers of the 15 genes are provided as 
additional data (see Additional data file 5).
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Obtaining full-length cDNA by 5' RACE
We had obtained full-length coding sequences of the DFP-
1, 2 and 3 through EST sequencing. To acquire full-length
DFP-4 cDNA, we carried out 5' RACE PCR using the 5'
RACE kit (Clontech). The 5' ends were amplified by using
an adaptor primer and a reverse gene specific primer. PCR
was performed for 25 cycles in an Eppendorf master
cycler. A 300 bp band was isolated, sequenced and con-
firmed to be the 5' DFP-4 sequences.
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