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Abstract
Background: Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant
producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain
improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC
13032 would significantly advance functional genome analysis in this bacterium.

Results: A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by
electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-
containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the
chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts,
revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a
target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses
nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional
requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene
involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by
transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910
showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910
delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by
histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC 3.1.3.15) in C.
glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria,
including mycobacteria and streptomycetes.

Conclusion: The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established
system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The
identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine
synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-
spectrum of IS6100.
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Background
Corynebacterium glutamicum is a non-sporulating soil bac-
terium, belonging to the high G+C Gram-positive Actino-
bacteria. The bacterium, originally isolated as a natural
glutamic acid excreter, is nowadays widely used as an
industrial relevant producer of several L-amino acids and
vitamins [1,2]. The common method to isolate amino
acid-producing strains of C. glutamicum uses the iterative
approach of general mutagenesis and subsequent screen-
ing for mutants with a high capacity to secrete the amino
acid of interest [3]. With the development of genetic engi-
neering methods, like gene disruption and replacement
[4,5] or over-expression and deregulation of single genes
[6,7], tools for more rational strain improvement are pro-
vided and successfully applied [8,9]. The availability of
the complete genome sequence of C. glutamicum ATCC
13032 in combination with automatic annotation tools
[10] enhanced the potential of corynebacterial research
greatly. However, despite single gene manipulation tech-
niques and the acquired knowledge about genes or the
function and regulation of their corresponding enzymes
in the metabolic context of the cell, there are still gaps in
some metabolic pathways and a large amount of genes for
which functions could not yet be assigned. A practicable
strategy to analyse genes of unknown function is to
mutate them, e.g. by generating a genomic insertion
mutant library, and subsequently characterize the pheno-
typic properties of individual clones within the library. An
ideal resource for this purpose would be an ordered or
random collection of insertion mutants, each containing
a defined insertion in a particular non-essential gene, with
which a large number of clones could be analysed simul-
taneously [11,12].

In response to this demand, transposon mutagenesis sys-
tems became of increasing interest for genome-scale
manipulation, analyses and single-gene studies in bacte-
ria. Transposon systems are efficient mutagenesis tools in
a wide variety of bacterial species [13]. The advantages of
a mutagenesis system employing antibiotic resistance
conferring transposons are the ability of a random inte-
gration into the chromosome, a positive selection for
transposon mutants and the physical marker introduced
at the site of mutation [14].

Transposons and insertion sequences (IS) are defined seg-
ments of DNA that can relocate as a unit between genomic
regions [15]. Transposons range from class I composite
transposons consisting of a pair of IS elements that
enclose additional genetic information for antibiotic
resistance or other properties, to complex class II trans-
posons, to conjugative transposons that combine hybrid
features of transposons, plasmids and bacteriophages
[16].

Insertion sequences (IS) are the simplest form of mobile
genetic elements. These elements generally possess one or
two open reading frames encoding the protein that causes
its mobility, the transposase. The majority of IS elements
is flanked by terminal inverted-repeat sequences (IR). As a
result of the integration mechanism IS generate directly
repeated sequences (DR) of the target DNA flanking the
element of a fixed length, which are characteristic for a
given element.

A large number of native insertion sequences and their
isoforms as part of transposons could be isolated from
chromosomes and plasmids of coryneform bacteria and
assigned to different members of mobile element families
[17]. Furthermore, insertion sequences can be used to
construct artificial transposons [18] and artificial transpo-
son vectors [19] to circumvent, for instance, the natural
limitation of missing antibiotic resistance markers. Sev-
eral active mobile IS have been published for C. glutami-
cum. Most of these appear to transpose randomly, but are
of limited usability for random mutagenesis due to a
more or less distinctive target site preference. The IS ele-
ments IS1249 and IS1513 as part of the transposons
Tn5432 and Tn5564, prefer triple A/T or a central palin-
dromic tetranucleotide (CTAG) as target sequences
[20,21]. Recent studies with IS31831, as part of Tn14751
or IS14999 revealed A/T-rich regions [22] or an 8-bp pal-
indromic sequence as preferred target sites [23].

In 2003, Bonamy et al. [24] reported about an IS1207-
based transposon Tn5531 with an apparent low target
site-specificity in the C. glutamicum strain ATCC 14752.
However, the endogenous occurrence of seven copies of
the highly similar insertion sequences (ISCg1a – ISCg1d,
ISCg7, ISCg10 and ISCg17) in the strain ATCC 13032
impede the application of this transposon there since inte-
grations would mainly be a result of RecA-mediated
homologous recombination events.

The insertion element IS6100 was initially isolated as part
of the composite transposon Tn610 of Mycobacterium for-
tuitum [25]. Later studies revealed its presence in a wide
spectrum of host organisms from different bacterial line-
ages, e.g. Arthrobacter sp. [26], Pseudomonas aeruginosa
[27], Xanthomonas campestris [28], or Aeromonas salmonic-
ida [29]. It is 880-bp in size and is bordered by 14-bp per-
fect terminal inverted repeats. In common with other
members of the IS6 family it translocates by replicative
transposition which results in both the formation of a
cointegration complex with an additional copy of the ele-
ment itself as an end-product and the occurrence of an 8-
bp direct repeat at the target site [17,30]. Tauch et al. [31]
isolated IS6100 from the C. glutamicum antibiotic resist-
ance-plasmid pTET3 present in the strain C. glutamicum
LP-6 and showed that the element is transpositionally
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active in the strain ATCC 13032. Subsequent Southern
hybridization analyses of a small number of clones sug-
gested that IS6100 inserts in a random manner into the  C.
glutamicum chromosome.

In this study a transposon library of the completely
sequenced type strain ATCC 13032 with a statistically rep-
resentative size was constructed using an transposon vec-
tor based on the IS6100 element. By auxanography
analyses several auxotrophic mutants could be obtained.
Plasmid rescue and sequencing of the insertion sites
revealed a number of known biosynthesis genes as well
hitherto unknowns. The additional development of a
PCR-based screening strategy permitted the rapid detec-
tion of insertion mutants in any chromosomal region of
interest. Taken together, the transposon used and the
library created represent novel tools with high impact on
functional genome analyses in C. glutamicum ATCC
13032.

Results
Transposon mutagenesis of Corynebacterium 
glutamicum ATCC 13032 with an IS6100-based 
transposon vector
In vivo mutagenesis of the C. glutamicum ATCC 13032
genome was performed with the IS6100-based artificial
transposon vector named pAT6100. The vector is a con-
struct resulting from cloning IS6100 into the vector
pK18mob2 [31]. The pAT6100 plasmid DNA extracted
from Escherichia coli DH5αMCR was transformed into
electrocompetent cells of C. glutamicum RES167, a restric-
tion-deficient strain derived from the wild-type, by elec-
troporation. Since the vector shares no homologous
sequences with the host genome and it is not able to rep-
licate autonomously in C. glutamicum the kanamycin
resistance phenotype is the result of a transposition event
into the chromosome. The transposition efficiencies
ranged from five to ten c.f.u. per µg of desalted plasmid
DNA.

An ordered clone library was constructed comprising
10,080 independent mutant clones. With a coverage more
than three-fold with respect to the 3,002 coding regions
determined for C. glutamicum ATCC 13032 [10] we expect
that nearly all non-essential genes contain insertions. In
order to estimate the theoretical quality of the library, sta-
tistical analyses were made: Given the number of clones in
the transposon library (10,080), the estimated number of
non-essential genes (2,400) [32], and the average gene
length (952 bp), the average probability for any given
gene to be disrupted by at least one transposon insertion
is 97%.

In order to perform experimental analyses of the library,
first a potential target site preference of the transposon

was tested. Therefore, 26 clones were randomly selected
and plasmid rescue cloning was carried out by digesting
chromosomal DNA of the selected clones with EcoRI or
XbaI, respectively, religating of the rescue constructs,
transferring to E. coli and subsequent sequencing of the
genomic insert with IS6100-specific primers. The
sequence data obtained was analysed for sequence
homologies with BLASTN searches against the C. glutami-
cum ATCC 13032 whole genome sequence [10]. The
BLAST results revealed the common 14-bp inverted repeat
of either left and right flank of the cointegrate followed by
the individual 8-bp direct repeat target site for each clone,
indicating the position of the transposon integration
(Table 1). As the target sites of the clones were each differ-
ent, with no duplicates with the same or similar
sequences, it can be assumed that these 26 transposition
events occurred independently. The position of the trans-
poson in every mutant, as well those selected randomly
(Fig. 1, red bars) and those investigated in auxanographic
analyses (Fig. 1, black bars) were plotted on a circular map
representing the C. glutamicum ATCC 13032 chromo-
some. The picture indicates a random distribution
throughout the genome without regions of significant
accumulation of insertions. Both, intragenic and inter-
genic insertions were detected. The G+C content was cal-
culated from the eight nucleotides of the target site and
ten flanking nucleotides upstream and downstream. It
showed a high variance ranging from 39.3% to 78.5%,
whereas the medium G+C content for the chromosome of
the strain ATCC 13032 is 53.8%. The two possible orien-
tations of the cointegrate with respect to the directions of
replication or transcription are present in nearly equal
proportions indicating that neither orientation is
favoured.

An additional test for target site preferences was carried
out by performing sequence pattern searches with the
TEIRESIAS algorithm [33]. For this purpose a total of 172
target sites acquired from the random selected clones and
from mutants of the auxanographic analyses (see below)
were used. No sequence pattern, palindromic sequences
or regions of nucleotide symmetry could be detected with
this bioinformatic approach (data not shown). Addition-
ally, the occurrence of the bases at a distinct position of
the 8-bp target sequence was calculated (data not shown).
The values and therefore the appearance of bases appear
to be distributed evenly. Neither the pattern searches nor
the nucleotide distributions in the TSD indicate a signifi-
cant target site preference for insertion.

The cointegration of the transposon vector forms long
direct repeats in the form of IS6100 copies at the site of
insertion. Such direct repeats might cause instability by
replication slippage or by homologous recombination,
thereby losing the integrated vector and one or both of the
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Table 1: Target site analyses of randomly selected C. glutamicum transposon mutants.

Clone notation a Integration 
position b

Locus tag c Gene Gene product Target site 
duplication 

(TSD) d

G+C content 
[%] e

Transposon 
orientation f

51G06 141,831 cg0165 ABC-2 type transporter GGCGCGCG 78.5 -

01A01 603,250 cg0683 Permease AGTGAACC 53.5 +

52D11 737,930 cg0822 Conserved hypothetical protein CCCAACGG 60.7 +

51B11 853,795 cg0924 ABC-type cobalamin/Fe3+-siderophores transport system periplasmic components CTCAACGG 53.6 +

31D11 899,182 cg0963_0964 CTCTTTTT 39.3 +

51H01 1,097,334 cg1185 tnp10b Transposase – fragment ISCg10a AAAAATAC 57.1 +

51D02 1,099,353 cg1192 Aldo/keto reductase CCCTAGCG 46.5 +

147A01 1,129,669 cg1228 ABC-type cobalt transport system, ATPase component CCTACGTT 42.9 +

51B03 1,137,471 cg1237 Putative membrane protein CCTTTGAG 42.9 +

51E04 1,161,219 cg1265 Conserved hypothetical protein TAAGGAAG 39.2 -

51E02 1,217,257 cg1310 tfdF Maleylacetate reductase CGATTACG 50.0 -

51G12 1,246,055 cg1338 thrB Homoserine Kinase CCTATTAC 46.4 -

57D08 1,408,925 cg1516 Hypothetical protein GCGATATC 46.4 -

121D05 1,613,084 cg1724 Putative protein kinase ArgK or related GTPase of G3E family AGGTGAAG 60.7 +

43C10 1,717,632 cg1825 efp Translation elongation factor P CGGGTGTC 60.7 +

157H05 1,944,316 cg2053_2054 upstream putative membrane protein (cg2054) CTTGATTC 42.9 +

29F07 2,180,143 cg2296 hisI Probable phosphoribosyl-AMP cyclohydrolase CGCCAAAG 57.1 -

17B06 2,234,105 cg2349 ATPase components of ABC transporters with duplicated ATPase domains TTCTGGAA 64.3 -

75E09 2,418,388 cg2537 brnQ Branched-chain amino acid uptake carrier GTTTCATT 42.8 +

51C02 2,537,800 cg2661 Putative dithiol-disulfide isomerase involved in polyketide biosynthesis ACTGGACT 53.6 +

51A01 2,772,437 cg2913 ABC-type Mn2+/Zn2+ transport system, permease component TTGCTGAT 57.2 +

97B06 2,913,169 cg3049_3050 upstream acyltransferase (cg3050) CTCGACTG 57.1 +

02A09 2,958,982 cg3100 dnaK Heat shock protein Hsp70 TTCTCAGC 53.5 +

51A02 3,132,229 cg3271_3272 GTCAGCCG 60.7 -

35E03 3,166,513 cg3319_3320 upstream uncharacterized enzyme related to sulfurtransferases (cg3319) CTTCAGTC 46.4 +

51F01 3,222,657 cg3373 Bacterial regulatory protein, ArsR family CTTCCGCG 60.8 +

a Indicates the position of the clone in the transposon library.
b Absolute position of the cointegrate in the C. glutamicum ATCC 13032 genome [GenBank:BX927147].
c Integration of a transposon within or between genes (separated by underscoring)
d Sequence of the 8-bp direct repeat.
e G+C content was calculated from 28 nucleotides around integration (TSD and 10 nt down-/upstream).
f Orientation of the integrated transposon with respect to the genome in clockwise (-) and counterclockwise (+) direction

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX927147
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IS6100 elements in the absence of antibiotic selection. To
assess this, five randomly selected individual clones were
subcultured in antibiotic-free liquid complex medium in

twelve rounds of 48 h each. The last culture was plated on
solid complex medium. From this culture, 900 single col-
onies from each clone were tested on kanamycin-contain-

Distribution of transposon insertions on a circular plot of the C. glutamicum ATCC 13032 genome [GenBank:BX927147]Figure 1
Distribution of transposon insertions on a circular plot of the C. glutamicum ATCC 13032 genome [GenBank:BX927147]. Col-
oured bars of the outer circle pointing inward and outward show the orientation of the cointegrates with respect to the 
genome in clockwise and counterclockwise direction, respectively. Red bars indicate the integration positions mapped for ran-
domly selected clones and black bars map those investigated by auxotrophy analysis. Additional circles (from inward to out-
ward) represent relative G+C content and coding regions transcribed in clockwise and counterclockwise direction, 
respectively. A positive deviation in G+C content from the average (53.8%) is shown by bars pointing outward and a negative 
deviation by bars pointing inward. Annotated genes are coloured according to the colour scheme of the functional classes sys-
tem COG (cluster of orthologous groups) [89]. The plot was generated with GenDB version 2.2 [90].
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ing plates. No loss of the resistance phenotype and
therefore the integrated transposon could be observed. It
has to be concluded that the integrations are stably main-
tained in C. glutamicum even in the absence of selective
pressure. Additionally, isolated DNA from randomly
selected clones which had not been grown under selective
growth conditions was used to perform PCR experiments.
In all cases the presence of the cointegrate was verified
(data not shown).

Auxanographic screening and targeted gene identification 
using PCR techniques
The initial step of performing genome-scale auxano-
graphic analyses was the plating of the entire transposon
library on minimal medium plates. After 32 h of incuba-
tion this screening approach delivered 342 mutants which
exhibit a clear growth-deficient phenotype. The appear-
ance of potential auxotrophic mutants which are unable
to form colonies under such growth conditions was used
as an initial criterion for efficient mutagenesis. These
mutants were further characterized by the rapid method
for identification of bacterial biochemical requirements
according to Holliday [34]. Therefore, 12 plates of mini-
mal medium were each supplemented with different com-
binations of six growth factors. Mutants with a single
biochemical requirement would grow on two plates. The
double auxotrophic mutants could be determined by
growth on only a single plate and an alternative require-
ment by growth on more than two plates. For the latter
two cases the exact nutritional requirements have to be
determined by further tests combining individual growth
factors.

With this method, a total of 36 different growth factors,
which are adapted to corynebacterial needs by omitting
biotin, choline, and thiosulfate, and adding cobalamine,
glutamine, as well as asparagine, could be tested simulta-
neously. These growth factors comprise 21 amino acids,
six nucleotides and nine vitamins, including some of their
precursors. Each candidate auxotrophic clone was inocu-
lated on all twelve plates and incubated for 32 h. Forty-
seven out of the 342 clones tested formed slow growing
colonies on every plate, suggesting that these are generally
growth-deficient but not auxotrophic mutants. With the
redefined number of 295 clones circa 2.9% of the transpo-
son library are genuine auxotrophic mutants. This roughly
correlates to prior studies with different transposons in
which auxotrophic mutants were obtained with frequen-
cies of 1.3% in C. glutamicum [24], 2.5% in Rhodococcus
spp. [35] and 2% in Rhodococcus fascians [36].

Out of these 295 clones 167 display a requirement for a
single growth factor (57%). Among these, 141 exhibit an
auxotrophy for one of eleven different amino acids, 24 for
one of four different nucleotides and two for different

vitamins. Additionally, we have found twelve clones that
show a double and six with an alternative requirement.
Altogether, the auxotrophic requirements of nearly two
thirds of the mutants could be identified.

From all of the auxotrophy categories a number of clones
was selected and the transposon integration sites were
determined using the plasmid rescue technique described
above. Table 2 summarizes the phenotypic and genotypic
data obtained from these clones.

In the majority of clones the observed auxotrophic pheno-
type is well explained by the existing annotation of the
disrupted gene. For example amino acid biosynthesis
genes like argG (arginine), thrB (threonine), proC (pro-
line), serA (serine), leuD (leucine) or lysA (lysine) were
subject to intensive studies in C. glutamicum before, and
the transposon insertions in these genes resulted in the
expected auxotrophic phenotypes. This was also the case
for insertions into genes that show high similarities to
genes with a known function in closely related species, e.g.
guaA and guaB2, known to be involved in the guanosine
monophosphate biosynthesis in Corynebacterium ammoni-
agenes [37], or to genes in more remote organisms, e.g.
purA and purB which are involved in adenosine mono-
phosphate biosynthesis in E. coli [38]. Another example
are the carAB genes: even though these genes are not char-
acterized in C. glutamicum they are well known to cause a
double requirement for both arginine and uracil in E. coli
since they encode for the subunits of a protein that pro-
vides the essential carbamoylphosphate for arginine and
pyrimidine biosynthesis [39]. The ilvC gene is well studied
in C. glutamicum and is known to cause a double auxotro-
phy for isoleucine and valine when disrupted [40]. The
successful supplementation of a metE transposon mutant
strain with either methionine or cobalamin (vitamin B12)
is explained by the fact that a cobalamin-dependent
(MetH) and a cobalamin-independent enzyme (MetE)
perform the same step in methionine biosynthesis in C.
glutamicum [41]. The loss of the MetE enzyme, the pre-
ferred route during aerobic growth, can be compensated
by supporting the MetH function with appropriate
amounts of cobalamin.

In some cases the correlation of observed phenotype and
the gene targeted by transposon integration are not so
obvious. An example is the guanine auxotrophy of the
nadA insertion. The nadA gene is located together with
nadB and nadC and encodes a protein which is apparently
involved in quinolinate and nicotinamide adenine dinu-
cleotide biosynthesis. It is currently unclear why guanine
supplements growth of this mutant. Also in the case of the
integration in gene thiO the connection between gene
function and auxotrophy is not clear yet. The gene as part
of the thiEOSGF cluster encodes a putative D-amino acid
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Number of 
clones

Auxotrophic 
requirement

Integrated in locus a Integrated in gene a Encoded protein

Single 
auxotrophy

8 Adenine cg3063 cg2876 purA (5) purB (3) Adenylosuccinate synthase Adenylosuccinate lyase

6 Guanine cg0703 cg0699 
cg1216

guaA (2) guaB2 (2) 
nadA (1)

putative GMP synthase, Inositol-monophosphate dehydrogenas
synthase

8 Uracil cg1816 cg0617 (1) pyrB (1) - Aspartate carbamoyltransferase catalytic chain, Putative Molybd
guanine dinucleotide biosynthesis protein

2 Hypoxanthine cg2857 b purF (1) b Amidophosphoribosyltransferase

5 Arginine cg1586 argG (1) Argininosuccinate synthase

6 Phenylalanine cg2391 cg3207 aroG (2) pheA (4) Phospho-2-dehydro-3deoxyheptonate aldolase, Prephenate deh

16 Histidine cg2299, cg2303, 
cg2305, cg1699, 
cg2297, cg1698, 
cg2296, cg0910

hisA (1), hisB 
(4),hisD (3), hisE 
(1), hisF (2), hisG 
(2), hisI (1), hisN (1)

Phosphoribosylformimin-5-aminoimidazole carboxamide ribotid
Imidazoleglycerol-phosphate dehydratase, Histidinol dehydroge
Anthranilate synthase component I, probabale Cyclase (imidazo
phosphate synthase-subunit), Phosphoribosyltransferase, prob.
Phosphoribosyl-AMP cyclohydrolase, Histidinol-phosphate pho

cg2237 thiO (1) Putative D-amino acid oxidase flavoprotein oxidoreductase

11 Proline cg0490 proC (1) Pyrroline-5-carboxylate reductase

5 Methionine nd c nd c

13 Serine cg1451 serA (1) Phosphoglycerate dehydrogenase

17 Cysteine cg3118 cysI (2) Ferredoxin-sulfite reductase

14 Leucine cg1488 leuD (1) 3-Isopropylmalate dehydratase, small chain

6 Threonine cg1338 thrB (1) Homoserine kinase
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2 Lysine cg1334 lysA (2) Diaminopimelate decarboxylase

46 Tryptophan cg3364, cg3363, 
cg3362, cg3361, 
cg3359, cg3360

trpA (5), trpB (11), 
trpCF (10), trpD 
(9),trpE (6), trpG 
(2)

Tryptophan synthase alpha chain, Tryptophan synthase beta ch
glycerol-phosphate synthase/phosphoribosylanthranilate isomer
Anthranilate phosphoribosyltransferase, Anthranilate synthase 
Anthranilate synthase component II

1 Biotin h cg2147 (1) BioY family membrane protein

1 Pyridoxine cg0897 pdxR (1) Pyridoxine biosynthesis transcriptional regulator, Aminotransfe

Double 
auxotrophy

8 Arginine/Uracil cg1813 cg1814 carB (1) carA (1) Carbamoyl phosphate synthase subunit, Carbamoyl phosphate s
subunit

4 Valine/Isoleucine cg1435 cg1437 ilvB (2) ilvC (2) Acetolactate synthase, Acetohydroxy acid isomeroreductase

Alternative 
requirement

1 Arginine or Cytosine nd c

1 Cysteine or 
Pyridoxine

cg0156 (1) ROK-type transcriptional regulator

1 Proline or Threonine cg1238 (1) putative membrane protein

3 Methionine or 
Cobalamin

cg1290 metE (2) Homocysteine methyltransferase

a Numbers in brackets indicate the number of clones allocated to the respective gene.
b Integration 30 nt upstream of start codon
c nd, not determined.
d Referenced for Corynebacterium ammoniagenes.
e Referenced for Escherichia coli.
f Referenced for Mycobacterium smegmatis
g Referenced for Rhizobium etli.
h Supplementable with 10-fold amounts of biotin compared to the wild-type strain

Table 2: Characterization of transposon mutants with an auxotrophic phenotype (Continued)
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oxidase flavoprotein oxidoreductase that is known to be
involved in thiamine biosynthesis [42]. Although a polar
effect on the downstream genes thiSGF is not experimen-
tally verified, such an effect would furthermore affect a
more extensive part of the thiamine synthesis. The mutant
is supplementable by histidine and not, as expected, by
thiamine.

Since the de novo purine and pyrimidine nucleotide syn-
thesis pathways are poorly characterized in C. glutamicum
especially the functions of genes like purF or pyrB require
further studies as well. Mutants with transposon inser-
tions in the C. glutamicum genes purC, purE, and purK,
known as purine biosynthesis genes in E. coli [38], were
found among those which grew on more than three plates
(data not shown). These mutants appear interesting to be
investigated in further studies.

The genes of most biosynthetic pathways in C. glutamicum
are scattered in different genetic loci. A special case where
the distribution of transposon insertions in a limited
genomic region could be tested is the trp operon contain-
ing six genes which encode all functions of tryptophan
biosynthesis in C. glutamicum [43]. For this, the transpo-
son insertion sites of 43 tryptophan-auxotrophic clones
were determined. The insertion sites were all different and
located within every gene from trpE to trpA (Fig. 2).
Although the trp operon contains more insertions than
statistically expected, this example gives additional evi-
dence that the transposon library is random and that the
transposon system can be used to mutagenise the C.
glutamicum chromosome up to a high density.

To find a gene of interest that is mutated by a transposon
is sometimes not possible by phenotypic screening. We
were interested to map additional insertions upstream

from the trp operon. For this, a PCR-based screening strat-
egy was chosen and the workflow by Hobom et al. [44]
was adapted so that the entire library could be screened
for insertion events by iterative rounds of three-step PCR
experiments simultaneously. This strategy delivered
another transposon insertion which was mapped 35 bp
upstream from the predicted trpP translation start. This
mutant did not exhibit a tryptophan-auxotrophic pheno-
type in subsequent growth tests which coincides with the
assumption that the trpP gene encodes a permease neces-
sary for tryptophan- and 5-methyltryptophan uptake in C.
glutamicum [45].

Identification of a novel C. glutamicum gene closing the 
last gap in histidine biosynthesis
The whole genome sequence of C. glutamicum ATCC
13032 is known and the genes are annotated based on
sequence similarity and experimental data [10]. Due to
the fact that a large number of amino acid biosynthesis
genes have been characterized before, only few pathways
remained incomplete. With the help of sequence similar-
ities and subsequent genetic analyses further genes have
been identified [46] leaving only few gaps. These "miss-
ing" genes mostly encode transaminases which are noto-
rious for their involvement in more then one pathway and
were also partly characterized by bioinformatic and bio-
chemical studies [47,48]. Beside this, only a single step in
histidine biosynthesis remained, where no gene was
known or a candidate gene could be identified by
sequence similarity.

The metabolic pathway of the histidine biosynthesis, reac-
tions, enzymes, as well as the organization of the corre-
sponding genes display a high degree of conservation in
bacteria [49]. According to the KEGG PATHWAY database
[50] the histidinol-phosphate phosphatase (HolPase) is

Physical map of the tryptophan gene cluster in C. glutamicum ATCC 13032. Within the trpPEGDCFBA genes, indicated by blue arrows, the coloured bars denote the mapped integrations of 43 independent tryptophan auxotrophic mutantsFigure 2
Physical map of the tryptophan gene cluster in C. glutamicum ATCC 13032. Within the trpPEGDCFBA genes, indicated by blue 
arrows, the coloured bars denote the mapped integrations of 43 independent tryptophan auxotrophic mutants. The two orien-
tations with respect to the genome are indicated in black (clockwise) and green (counterclockwise direction). The transposon 
integration identified by PCR screening is also marked (orange bar). The left stem-loop symbol denotes the transcriptional 
attenuator involved in the regulation of the tryptophan biosynthesis [43] and the right loop a Rho-independent transcriptional 
terminator structure.
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an exception which was not characterized at a genetic level
in C. glutamicum and closely related Actinobacteria. This
enzyme (L-histidinol-phosphate phosphohydrolase; EC
3.1.3.15) catalyses the penultimate step of the biosynthe-
sis, the dephosphorylation of histidinol phosphate to his-
tidinol, the direct precursor of histidine. In the reference
organisms E. coli and Salmonella typhimurium the HolPase
activity is associated with the N-terminal domain of the
HisB bifunctional enzyme. The C-terminal domain
exhibit similarity to an imidazoleglycerol-phosphate
dehydratase (EC 4.2.1.19), which catalyses the sixth step
of the histidine synthesis. However, amino acid sequence
homology searches revealed that in C. glutamicum, like in
most bacteria, the imidazoleglycerol-phosphate dehy-
dratase is encoded as a monofunctional enzyme. Addi-
tional similarity searches for the E. coli homologs of the
HolPase in C. glutamicum and other organisms, including
the entire class of Actinobacteria, does neither provide any
significant sequence homologies to ORFs in the C.
glutamicum genome nor to well-conserved domains in
other Actinobacteria.

Since the loss of the HolPase activity is supposed to
exhibit a histidine-auxotrophic phenotype the corre-
sponding unidentified gene in C. glutamicum was pre-
sumed to be among the 16 histidine-auxotrophic

transposon mutants. Determination of the transposon
integration sites in these mutants revealed insertions in
seven of the nine histidine synthesis genes known so far,
hisGE, hisHAFI and hisDCB, and another one in the gene
cg0910 (Table 2). The integration in this gene, which com-
prises 783 bp, is located 125 bp downstream from the pre-
dicted cg0910 translation start, suggesting that the gene
product is non-functional. The cg0910 gene is preceded by
the gene cg0911 and both might be transcribed together
(Fig. 3). The cg0911cg0910 locus is located far from
known histidine biosynthesis genes. BLASTP searches
with the deduced protein sequence of both genes revealed
significant similarities to each other and to inositol-
1(or4)-monophosphatases (IMP; EC 3.1.3.25) which
hydrolyse the ester bond of inositol phosphate to generate
inositol.

Validation of cg0910 gene function by deletion and 
homologous complementation
In order to confirm the phenotype of the transposon
mutation, a cg0910 deletion mutant was constructed
using the "gene splicing by overlap extension" (gene SOE-
ing) technique [51]. Therefore, a fusion product of chro-
mosomal DNA regions of 622 bp and 541 bp directly up-
and downstream, respectively, of the cg0910 target locus
was created, which was subsequently cloned into the

Schematic representation of the 3-kb chromosomal region around cg0910 (blue arrow) in C. glutamicum. His- and his+ denote a histidine-auxotrophic or -prototrophic phenotype of the corresponding mutant or strain, respectivelyFigure 3
Schematic representation of the 3-kb chromosomal region around cg0910 (blue arrow) in C. glutamicum. His- and his+ denote a 
histidine-auxotrophic or -prototrophic phenotype of the corresponding mutant or strain, respectively. The transposon integra-
tion (A) is marked with a green flag. Red arrows indicate the binding positions of the primers used to amplify the deletion frag-
ments (B; yellow boxes). The features of the deletion- (B) and complementation (C) constructs are also designated. The ruler 
indicates the absolute position in the genome.
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pK18mobsacB vector system [5]. The resulting vector
pK18mobsacB-∆cg0910 was finally used for targeted gene
deletion. The deleted internal cg0910 fragment was 702
bp of size (Fig. 3).

The initially observed phenotype of the transposon
mutant with the integration in cg0910 (clone 99G01)
could be reproduced with the resulting deletion mutant,
termed CG281, which was tested negative for its ability to
grow on minimal medium without and positive with his-
tidine supplementation. This indicated that possible sec-
ondary effects in the transposon mutant could be ruled
out and that the loss of the cg0910 gene product is respon-
sible for histidine auxotrophy. Both the mutants 99G01
and CG281 also grew on minimal medium supplemented
with histidinol, the end product of the histidinol phos-
phatase reaction, comparable to the wild-type strain.
These results suggest that cg0910, assigned with the gene
name hisN, encodes the hitherto unknown but essential
HolPase activity in C. glutamicum, and is the functional
homolog of the E. coli N-terminal HisB protein domain
(Table 2).

To provide further evidence that the cg0910 gene encodes
the HisN function, homologous complementation was
carried out in both mutants 99G01 and CG281. For this,
the complete cg0910 coding sequence was amplified by
PCR with primers providing an optimized ribosome bind-
ing site and additional restriction enzyme recognition
sites. The amplificate was subsequently cloned into the
IPTG-inducible shuttle expression vector pEC-XT99A
[52]. The resulting plasmid pEC-XT99A-cg0910ex (Fig. 3)
was subsequently transferred to the corresponding
mutant strains which were then tested for histidine pro-
totrophy. In both cases the extrachromosomally located
cg0910 gene product complemented the loss of the corre-
sponding chromosomal region in trans (data not shown).

Phylogenetic analysis of Cg0910 and related inositol 
monophosphatases (IMP)
BLAST searches revealed four IMP paralogs in the C.
glutamicum ATCC 13032 genome with significant similar-
ity to cg0910, by name cg0911, cg0967 (cysQ), cg2090
(suhB), and cg2298 (impA). For a functional classification
of the inositol monophosphatase family-like proteins,
phylogenetic analysis in comparison to sequence-related
proteins from other Actinobacteria and the model organ-
ism E. coli was conducted. For this, similarity searches
with the deduced amino acid sequences of the C. glutami-
cum IMPs in non-redundant databases were carried out,
comprising, beside E. coli K-12, the genomes of Actinobac-
teria including completed as well as draft status genomes.
Proteins with reliable similarity scores were used to per-
form a multiple alignment. Based on this alignment a
phylogenetic tree was created by the neighbour-joining

method and, subsequently, the tree was evaluated by
bootstrap analysis (Fig. 4).

The phylogenetic tree separates the five C. glutamicum IMP
paralogs (Fig. 4, bold) into distinct classes which all
include apparent orthologs from other Actinobacteria.
The denotation of the respective class was derived from
members for which a physical function has been
described (Fig. 4, box): CysQ in E. coli [53], ImpA in Myco-
bacterium smegmatis [54], SuhB in M. tuberculosis [55] and
HisN (Cg0910) in C. glutamicum.

The putative orthologs of Cg0911 form a separate class.
None of its members, comprising only corynebacterial
and one Nocardioides species, was functionally character-
ized up to now.

Discussion
In this study we describe a transposon system applicable
for efficient random mutagenesis in C. glutamicum ATCC
13032. The use of an IS6100-based transposon vector gave
rise to a transposon library of statistically representative
size comprising independent mutant clones.

It was shown earlier that IS6100 is capable of transposing
in vivo in C. glutamicum with unique transposition events
by forming a cointegrate with the chromosome [31]. The
excision frequency and therefore the stability of a replica-
tive transposon integration is usually controlled by a
resolvase protein, which is not encoded by the pAT6100
transposon vector. Nevertheless, cointegrate resolution
involving either the two identical IS6100 copies or the 8-
bp direct repeats might be caused by homologous recom-
bination or by replication slippage resulting in the loss of
the vector part and one or both copies of the IS6100 ele-
ment. In this study an antibiotic sensitivity could not be
observed after prolonged growth in the absence of antibi-
otic pressure during cultivation, indicating that IS6100
generates cointegrations that are stably maintained in C.
glutamicum. This finding conforms with the study of
Weaden and Dyson [56] in which the stable cointegration
of IS6100 was observed in Streptomyces avermitilis.

The already developed transposon systems are not well
applicable for random mutagenesis in the sequenced C.
glutamicum type strain ATCC 13032 because of similar
endogenous insertion sequences, pronounced target site
preferences, or low transposition frequencies. For
instance, seven copies of ISL3 family-like sequences in the
ATCC 13032 genome prevent the usage of IS31831 [18]
and related elements (e.g. IS1207) [24] as well as their
derived transposons (e.g. Tn5531) [24]. Very recently a
mutagenesis system was described that used IS31831- and
Tn5-based minitransposons to generate a comprehensive
library of the C. glutamicum strain R which covers nearly
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Dendrogram showing the relationship of inositol monophosphatase family proteins (IMP) in Actinobacteria and E. coli K-12Figure 4
Dendrogram showing the relationship of inositol monophosphatase family proteins (IMP) in Actinobacteria and E. coli K-12. A 
multiple alignment with amino acid sequences of proteins with high similarity to the C. glutamicum IMPs was generated with the 
use of the DIALIGN2 software. Based on this alignment an unrooted phylogenetic tree was constructed using the neighbour-
joining algorithm integrated in the CLUSTALX package and visualized as a radial tree by the TreeTool software. The branches 
were combined to classes that delivered within the bootstrapping analyses in at least two thirds of the cases the same subtree. 
These classes, marked by different colours, were named according to the designations in the boxed leaves. The locus tags 
(leaves) were obtained from the GenBank genome entries. C. glutamicum proteins are printed in bold letters. Locus tag prefixes 
denote following organisms (c, complete genome sequence; da, draft assembly): Arth (Arthrobacter sp. FB24; da), BL (Bifidobac-
terium longum NCC2705; c), BLinB01 (Brevibacterium linens BL2; da), DIP (Corynebacterium diphtheriae NCTC13129; c), CE (C. 
efficiens YS-314; c), cg (C. glutamicum ATCC 13032; c), jk (C.  jeikeium K411; c), Ecoli (Escherichia coli K-12; c), Francci3 (Frankia 
sp. CcI3; c), Franean1 (Frankia sp. EAN1pec; da), JNB (Janibacter sp. HTCC2649; da), Krad (Kineococcus radiotolerans SRS30216; 
da), Lxx (Leifsonia xyli subsp. xyli str. CTCB07; c), Micol (Micromonospora olivasterospora; da), MAP (Mycobacterium avium subsp. 
paratuberculosis K-10; c), ML (M. leprae TN; c), Rv (M. tuberculosis H37Rv; c), Mycsm (Mycobacterium smegmatis str. MC2 155; 
da), nfa (Nocardia farcinica IFM 10152; c), Noca (Nocardioides sp. JS614; da), PPA (Propionibacterium acnes KPA171202; c), 
RhoDS7 (Rhodococcus sp. DS7; da), Rxyl (Rubrobacter xylanophilus DSM 9941; da), SAV (Streptomyces avermitilis MA-4680; c), 
SCO (S. coelicolor A3(2); c) and Tfu (Thermobifida fusca YX; c).
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80% of the presently unpublished genome [57]. The C.
glutamicum strain R has the advantage of not possessing
insertion elements of the IS31831 family. In contrast to
this, IS6100 is absent from the strain ATCC 13032 chro-
mosome, ruling out integration by homologous recombi-
nation and thus it is suitable to perform transposon
mutagenesis in this strain. Beside IS6100 quite a few active
mobile elements have been published for C. glutamicum
which are of restricted usability of generating a compre-
hensive random transposon library since they prefer spe-
cific sequences, e.g. a triple A or T (IS1249) [20] or
palindromic sequences (e.g. IS14999) [23], as a target for
integration. On the other hand, prior studies with IS6100-
based transposons suggested independent transposition
and absence of a target site preference. This was first
shown in Streptomyces lividans and S. coelicolor by nucle-
otide sequence comparison for a small number of
mutants [58] and, on the basis of Southern hybridization
studies in S. lividans [59] and C. glutamicum [31].

In this study, the usability of IS6100 for mutagenesis in
the type strain ATCC 13032 was shown by analysis of a
larger number of clones. The sequence data determined
from 172 insertions delivered definite position informa-
tions and, consequently, allowed comprehensive analyses
on the transposon target sites. Each clone investigated car-
ried the transposon in a different chromosomal location.
The absence of regional preferences together with the
absence of sequence preferences (sequence pattern, nucle-
otide-usage for the TSD positions or G+C content) as a tar-
get demonstrated the randomness of the library
constructed and applied in auxanography analyses. Fur-
thermore, this system might be a practicable genetic tool
in other organisms as well because of the broad host-spec-
trum of the IS6100 element.

This study integrated genomic sequence data with
genome-scale auxotrophy analyses. By means of auxano-
graphic assays, for 63% of the 295 isolated auxotrophic
mutants with distinct phenotypes various nutritional
requirements could be identified. Additionally, out of this
contingent the different integration loci of 101 clones
were determined. The value of 2.9% auxotrophic clones
only slightly differs from those in other transposon muta-
genesis studies (1.3% [24], 2.5% [35] and 2% [36]) but is
remarkably higher compared to studies in which auxo-
trophic mutants were obtained with frequencies of 0.2%
in "Brevibacterium flavum" with IS31831 [18], 0.2% in C.
glutamicum with IS1249 (Tn5432) [20] and 0.5% in Strep-
tomyces avermitilis with IS6100 [56]. This might be
explained by the fact that latter systems use mobile ele-
ments for which an insertion sequence specificity was
identified (IS31831 and IS1249).

Transposon integrations were found in a variety of known
amino acid, nucleotide and vitamin pathway genes as well
in genes encoding hypothetical proteins or such of pres-
ently unknown function. The vast majority of the
observed auxotrophic phenotypes could be correlated and
explained with the knowledge of the mutated genomic
region since most genes of amino acid, nucleotide and
vitamin biosyntheses are annotated in C. glutamicum. In
contrast, for some observed phenotypes the connection
between gene and auxotrophy is not yet clear, delivering
interesting targets for further studies. The loss of gene
products associated with de novo synthesis or recycling
pathways may be compensated by influx of necessary
metabolite entries from other pathways that share com-
mon intermediates or precursors to a given intermediate.
For instance, the PurF protein, an amidophosphoribosyl-
transferase, is known to be involved in more than one
pathway. In Salmonella typhimurium PurF is the first of five
enzymes shared by the de novo purine and HMP
(hydroxymethylpyrimidine) synthesis, an essential com-
pound of thiamine biosynthesis. Thus, PurF is expected to
be required for both purine and thiamine biosynthesis
[60]. It is not obvious why a purF transposon mutant is
supplementable solely by hypoxanthine. Alternative path-
ways were discovered which could bypass the requirement
for all pur genes in thiamine synthesis [61,62]. Therefore,
hypoxanthine, a purine derivative, might be sufficient to
compensate the growth-deficiency of this mutant.

It is known that transposon insertions near the beginning
or within an operon can attenuate or interrupt the expres-
sion of downstream genes preventing RNA polymerase
readthrough [63,64]. A polar effect on downstream genes
was experimentally shown for an IS6100 integration in
the gene cysI (cg3118) with transcriptional analysis using
Real Time RT-PCR [65]. This example points out that the
transposon system is not only applicable for high density
mutagenesis of chromosomal regions (e.g. tryptophan
operon, Fig. 2) but might be utilised for the determination
of operons.

The screening approach for characterization of auxo-
trophic mutants used in this study shows a limitation in
resolving complex growth phenotypes, exhibited by one
thirds of these mutants. However, determination of trans-
poson positions in randomly selected members of this
auxotrophy category revealed for example mutations
within purC, purE, and purK, genes known to be involved
in purine biosynthesis. Such genes, as mentioned above,
might be of interest to be investigated in further experi-
mental studies. These findings indicate that also the com-
plex phenotypes are not a result of additional
spontaneously occurring mutations, but caused by disrup-
tion of the corresponding gene or by the accompanying
polar effect.
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For detailed studies on gene functions, transposon
mutants have to be confirmed experimentally in order to
rule out secondary mutations, polar effects or leaky phe-
notypes. In this study, this was carried out by a concrete
example in which, by the means of supplementation,
genetic deletion and complementation assays, the last gap
in the histidine biosynthesis pathway of C. glutamicum
could be closed.

Initial similarity searches revealed that the Cg0910 pro-
tein (HisN), together with another four paralogs in the C.
glutamicum genome, apparently belongs to the mono-
phosphatase-family proteins that usually hydrolyse the
ester bond of myo-inositol-1(or4) phosphate. Inositol
monophosphatases (IMP) play a crucial role in the bio-
synthesis of inositol and inositol phospholipids [66]. The
role of IMP in bacteria is not completely clear yet. Bacteria
of the genus Mycobacterium contain a number of inositol-
derived cell wall constituents, like phosphatidylinositol
(PI), phosphatidylinositol mannosides (PIM), lipoarabi-
nomannan (LAM) and lipomannan (LM) [67-69]. LAM-
like molecules and other inositol-containing phospholip-
ids are not only present in mycobacteria but also in other
Actinobacteria, including the genus Corynebacterium [70-
72]. Actually, little is known about inositol synthesis in
bacteria. The known de novo pathway in mycobacteria
basically comprises the cyclization of glucose-6-phos-
phate to inositol-1-phosphate (I-1-P) and, subsequently,
the dephosphorylation of I-1-P by IMP producing inositol
[73].

Although the IMP-like proteins analysed in this study
appear to be sequence homologs phylogenetic analysis
revealed that they are significantly different as they branch
into distinct classes. Despite their amino acid conserva-
tion, they seem to form a protein family of diverse func-
tions and/or with diverse substrates. The assumption of
different substrate specificities corresponds to previously
published studies performed either in closely related
mycobacteria or in E. coli.

The E. coli CysQ homolog is required for cysteine synthe-
sis during aerobic growth. The sulfate assimilation branch
of the cysteine pathway comprises sulfate uptake, its acti-
vation by formation of adenosine 5'-phosphosulfate
(APS) and conversion to 3'-phosphoadenosine 5'-phos-
phosulfate (PAPS) by APS kinase, and its reduction to
sulfite. It has been suggested that CysQ acts on PAPS as a
target. It is proposed to help controlling the levels of
PAPS, which may be toxic to the cell in high concentra-
tions, or the generation of sulfite [53]. The actinobacterial
CysQ IMP homologs in the phylogenetic tree branch later
as compared to CysQ of E. coli, thus functional differences
between the E. coli and the actinobacterial CysQ proteins
might be possible. In C. glutamicum an APS kinase

homolog is missing and thus PAPS as an intermediate is
not formed. Sulfite is released from APS by direct reduc-
tion through APS reductase [65]. Therefore, the target sub-
strate for a PAPS CysQ protein would be missing as well.
It might be considered that CysQ in C. glutamicum and the
other actinobacterial members of this phylogenetic class
indeed does not possess a PAPS phosphatase activity, but
most likely an inositol-phosphate phosphatase activity.

Initially, impA has been proposed to encode the missing
HolPase, as it is clustered with the histidine biosynthesis
genes in the Actinobacteridae [74]. This theory has been
falsified for a M. smegmatis impA mutant. This mutant is
not auxotrophic for histidine, but exhibits altered cell
envelope permeability properties, with a notable reduc-
tion in the synthesis of phosphatidylinositol dimanno-
side, the precursor of LAM [54].

The SuhB inositol monophosphatase activity has been
characterized biochemically in M. tuberculosis. Inositol-1-
phosphate was shown to be the preferred target of SuhB
for dephosphorylation in order to provide the PI synthase
with inositol [75].

The specificity of Cg0910 (HisN) for histidinol phosphate
was experimentally proven for C. glutamicum. For all other
members of the phylogenetic IMP class labelled Cg0910
the intrinsic HolPase function could be proposed because
of the close relationship and the high sequence conserva-
tion. Furthermore, in the respective Actinobacteria a pro-
tein having the enzymatic function of histidinol
phosphate dephosphorylation was not identified.

The Cg0911 class comprises only corynebacterial mem-
bers and one Nocardioides subspecies. The fact that in all
these organisms cg0911 and cg0910 orthologs are located
next to each other leads to the assumption of a recent gene
duplication that exclusively occurred in corynebacteria or
in a common ancestor. However, the finding that the
respective proteins of cg0910 and cg0911 are members of
different IMP classes indicate that they accomplish differ-
ent functions and thus solely the cg0910 gene encodes the
HolPase activity in C. glutamicum. Additional evidence
that the unknown Cg0911 function, in contrast to
Cg0910, does not play an important role in the cell was
obtained by the inactivation of the respective gene (data
not shown). The mutant showed no obvious phenotype
under the applied growth conditions.

Conclusion
In conclusion, the random transposon system described
in this study together with the availability of the complete
genome sequence of C. glutamicum ATCC 13032 [10] rep-
resents a powerful tool for genome-scale functional anal-
yses in this type strain. Moreover, the transposon library is
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a resource of specific mutants which contribute to the
genetic understanding of this organism in the future.

The closure of the last gap in the histidine biosynthesis
pathway by identification of the hisN gene encoding a his-
tidinol-phosphate phosphatase not only complements
the knowledge of the pathway in C. glutamicum but in the
entire class of Actinobacteria as well as in several Proteo-
bacteria and Chlorobia [76]. Furthermore, with the classi-
fication of the inositol monophosphate proteins based on
sequence similarities, it could be proposed that the IMP
homologs in Actinobacteria, although generally acting on
phosphorylated metabolites, appear to have diverse sub-
strate specificities.

Methods
Bacterial strains, plasmids, oligonucleotides and culture 
conditions
Relevant bacterial strains, plasmids, the transposon vector
and oligonucleotides constructed and used in this study
are listed in Table 3. E. coli and C. glutamicum strains were
routinely grown on Tryptic Soy Broth (TSB) complex
media (Merck, Darmstadt, Germany) supplemented with
1.5% (w/v) agar (Invitrogen, Karlsruhe, Germany) at
37°C and 30°C, respectively. Antibiotics used for selec-
tion were kanamycin (50 µg ml-1 for E. coli and 25 µg ml-

1 for C. glutamicum), tetracycline (5 µg ml-1) and nalidixic
acid (50 µg ml-1). The oligonucleotides used as primers
were designed with the Clone Manager software (Scien-
tific & Educational Software, Cary, USA) and purchased
from Operon (Cologne, Germany). The optical density of
a culture in liquid medium was determined at a wave-
length of 600 nm with a BioPhotometer (Eppendorf,
Hamburg, Germany) spectralphotometer.

DNA isolation, manipulation and transfer
Plasmid DNA was extracted from E. coli and C. glutamicum
by an alkaline lysis technique using the QIAprep Spin
Miniprep Kit (Qiagen, Hilden, Germany) with a prelimi-
nary incubation for 2 h at 37°C in resuspension buffer P1
containing 50 mg ml-1 lysozyme (185,000 U mg-1; Serva,
Heidelberg, Germany) for C. glutamicum. DNA modifica-
tion, analyses by gel-electrophoresis and ligation were car-
ried out by standard procedures [77]. Restriction
endonucleases and T4 DNA ligase, together with enzyme
buffers, were purchased from Fermentas (St. Leon-Rot,
Germany) and used according to the manufacturer's
instructions. DNA restriction fragments required for clon-
ing were recovered from agarose gels by using QIAEX II gel
extraction kit (Qiagen). E. coli and corynebacterial cells
were transformed by electroporation [78] using the Bio-
Rad Gene Pulser system (Bio-Rad, Munich, Germany).

Transformation of C. glutamicum
The artificial transposon vector pAT6100 was electrotrans-
ferred into the restriction-deficient strain C. glutamicum
RES167 by means of a method previously described [79].
To force transposition, the cells were additionally incu-
bated by shaking at 200 rpm for 50 min at 37°C directly
after electroporation procedure before pelleting and
spreading them on solid complex media plates containing
25 µg ml-1 kanamycin to select transformants. Kanamycin-
resistant colonies were picked with sterile sticks, trans-
ferred to separate wells of 96-well microtiter plates
(Greiner, Solingen, Germany) containing 200 µl selective
complex medium and inoculated for 48 h at 30°C. Long-
term storage was carried out in 96-well microtiter plates
containing 10% Hogness modified freezing medium
(HMFM), composed of 87% (v/v) glycerol, 1.7 mM tri-
sodium citrate, 6.8 mM (NH4)2SO4, 0.4 mM MgSO4 · 4
H2O, 36 mM Na2HPO4 · 2 H2O, 13.2 mM KH2PO4, and
90% TSB at -80°C.

Determination of transposon integration sites
Genomic DNA from C. glutamicum transposon mutants
was extracted using the GenElute Bacterial Genomic DNA
Kit (Sigma-Aldrich, Taufkirchen, Germany). Cloning and
sequencing of insertion sites were carried out by plasmid
rescue techniques as described before [20] with the excep-
tion that the chromosomal DNA was digested with EcoRI
and XbaI to clone either side of the insertion. Sequencing
of the resulting plasmids was performed with the syn-
thetic oligonucleotide primers s6100e and s6100x for the
EcoRI and the XbaI sites, respectively, by IIT Biotech
(Bielefeld, Germany).

Sequence data/accession numbers
Nucleotide homology searches were applied against the
annotated C. glutamicum ATCC 13032 genome sequence
[GenBank:BX927147] [10,80] obtained from GenBank
[81]. Amino acid sequences of predicted inositol mono-
phosphatase proteins were obtained from the Swissprot/
TrEMBL databases [82]: Cg0910 [Swiss-Prot:Q8NS80],
Cg0911 [Swiss-Prot:Q6M6Y2], CysQ [Swiss-Prot:
Q8NS37], SuhB [Swiss-Prot:Q6M4B2] and ImpA [Swiss-
Prot:Q8NNT8]. Further protein sequence information
used for comparative analyses were retrieved from the fol-
lowing GenBank genome entries: [GenBank:AE014295]
Bifidobacterium longum NCC2705, [GenBank:BA000035]
C. efficiens YS-314, [GenBank:BX248353] C. diphtheriae
NCTC13129, [GenBank:CR931997] C. jeikeium K411,
[GenBank:U00096] Escherichia coli K-12, [Gen-
Bank:CP000249] Frankia sp. CcI3, [GenBank:AE016822]
Leifsonia xyli subsp. xyli str. CTCB07, [GenBank:AE016958]
Mycobacterium avium subsp. paratuberculosis K-10, [Gen-
Bank:AL450380] M. leprae TN, [GenBank:AL123456] M.
tuberculosis H37Rv, [GenBank:AP006618] Nocardia farci-
nica IFM 10152, [GenBank:AE017283] Propionibacterium
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acnes KPA171202, [GenBank:BA000030] Streptomyces
avermitilis MA-4680, [GenBank:AL645882] S. coelicolor
A3(2), [GenBank:CP000088] Thermobifida fusca YX, [Gen-
Bank:AAHG00000000] Arthrobacter sp. FB24, [Gen-
Bank:AAGP00000000] Brevibacterium linens BL2,
[GenBank:AAII00000000] Frankia sp. EAN1pec, [Gen-
Bank:AAMN00000000] Janibacter sp. HTCC2649, [Gen-
Bank:AAEF00000000] Kineococcus radiotolerans SRS30216,
[GenBank:AAJB00000000] Nocardioides sp. JS614, and
[GenBank:AAEB00000000] Rubrobacter xylanophilus DSM
9941.

Bioinformatic analyses and tools for interpretation of C. 
glutamicum sequences
Database searches and sequence similarity-based searches
with nucleotide and amino acid sequences were per-
formed with the BLASTN- and BLASTP- algorithms [83],
respectively. The multiple amino acid sequence alignment
of the inositol monophosphatases-family proteins was

performed with the DIALIGN2 software [84]. The phylo-
genic tree was calculated using the neighbour-joining
method [85] integrated in the CLUSTALX software pack-
age [86] and visualized as a radial tree with the interactive
phylogenetic tree plotting program TreeTool [87].
Sequence pattern searches were performed with the TEIR-
ESIAS algorithm [33] provided by the IBM Bioinformatics
Group.

Auxotrophy screening and supplementation of 
auxotrophic phenotypes
The identification of auxotrophic mutants was performed
by parallel plating on minimal media MM1 (MMYE with-
out yeast extract [88]) and TSB complex media. The auxa-
nographic characterizations were carried out by picking
the colonies on MM1 plates supplemented with growth
factors which were added as sterile filtered stock solutions
by means of the purchaser's instructions, following a plat-
ing pattern described by Holliday [34], and 25 µg ml-1

Table 3: Bacterial strains, plasmids and oligonucleotides used in this study

Strain, plasmid, oligonucleotide Relevant genotype/characteristics/information or sequence a Source/reference

E. coli
DH5αMCR F- endA1 supE44 mcrA thi-1 λ-recA1 gyrA96 relA1 deoR ∆(lacZYA-argF)U169 

(Φ80dlacZ∆M15) ∆(mrr-hsdRMS-mcrBC)
[104]

C. glutamicum
ATCC 13032 Nxr, wild-type ATCC b

RES167 Nxr, ∆(cglIMR, cglIIR) Restriction deficient mutant of C. glutamicum ATCC 13032 [79]
CG281 ∆cg0910 This study

Transposon vector
pAT6100 RP4mob, oriVE.c., Kmr

Mobilizable cloning vector pK18mob2 carrying the IS6100 insertion element
[31]

Plasmids
pK18mobsacB sacB, lacZα, mcs, Kmr/mobilizable E. coli cloning vector, allows selection for double-

crossover in C. glutamicum
[5]

pK18mobsacB-∆cg0910 pK18mobsacB with defined deletion derivative of cg0910 This study
pEC-XT99A Tcr, lacIq, mcs, Ptrc

inducible E. coli – C. glutamicum shuttle expression vector
[52]

pEC-XT99A-cg0910ex pEC-XT99A with internal cg0910 exc fragment This study

Oligonucleotides 5'-3'
IS6100x GGTACAGGTAGGTCCACTTG This study
IS6100y CGGCAGGTGAAGTATCTCAA This study
gs_trpP CACCTGCATCAAGGTCGATT This study
s6100e GCGCCTTGTGGAGAGAGCTT This study
s6100x CGGATAGCGACAATACCAGC This study
cg0910_del1 GATCTAGGATCCGATGGCACCTACAACTTCAC This study
cg0910_del2 AACGATCCAGCGTCTCATCGTCGGCAAGTTCGGCAAGTTC This study
cg0910_del3 CGATGAGACGCTGGATCGTT This study
cg0910_del4 GATCTACTCGAGAGCTCTTCCAGCGTTCCATT This study
cg0910_ex1 GATCTACAATTGAAAGGAGGACAACCATGAGCAAATATGCAGACGA This study
cg0910_ex2 GATCTAGGATCCCTATTTTAAACGATCCAGCG This study

a r superscript indicates resistance. Nx, nalidixic acid; Km, kanamycin; Tc, tetracycline.
b ATCC; American Type Culture Collection, Rockville, MD, USA.
c the postfix ex indicates genes preceded by an artificial RBS
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kanamycin. The list of growth factors comprises 20 bio-
genic L-amino acids (alanine, arginine, asparagine, aspar-
tic acid, cysteine, glutamine, glutamic acid, glycine,
histidine, isoleucine, leucine, lysine, methionine, pheny-
lalanine, proline, serine, threonine, tryptophan, tyrosine,
valine; final concentrations 1 mM each), nucleic acid
bases (adenine, cytosine, guanine, thymine, uracil; 1 mM
final cc. each), vitamins and precursors (thiamine (vita-
min B1; 500 µg l-1), riboflavin (B2; 200 µg l-1), nicotinic
acid (B3; 400 µg l-1), pantothenic acid (B5; 400 µg l-1),
pyridoxine (B6; 400 µg l-1), cobalamin (B12; 10 µg l-1),
folic acid (20 µg l-1), p-aminobenzoic acid (200 µg l-1),
inositol (20 µg l-1), ornithine (1 mM), and hypoxanthine
(1 mM)). The chemicals were purchased from VWR
(Darmstadt, Germany) and Merck.

PCR techniques and conditions
DNA fragments for deletion and complementation exper-
iments were amplified from chromosomal DNA of C.
glutamicum ATCC 13032 using Pwo DNA polymerase (Inv-
itrogen), and Taq DNA polymerase (Peqlab, Erlangen,
Germany) for the verification of chromosomal deletions.
PCR reaction conditions were as follows: initial denatura-
tion at 94°C for 2 min followed by 35 cycles of denatura-
tion for 30 s, annealing for 1 min at a primer-dependent
temperature, extension at 72°C for 2 min and a final
extension for 4 min at 72°C. PCR products were purified
using the QIAquick PCR purification kit (Qiagen).

PCR mutant screening was carried out with Eppendorf Taq
DNA polymerase (Eppendorf) with pooled transposon
mutants as templates, IS6100-specific primers IS6100x
and IS6100y for both possible orientations of the transpo-
son and a position-specific search primer gs_trpP (Table
3). The basic procedure was adapted from a method pub-
lished by Hobom et al. [44]. Iterative rounds of PCR
experiments were performed in order to identify the clone
of interest in the library. In the first round clone-pools
were examined containing all mutants in one microtiter
plate. Sequential PCR rounds were carried out with the
mutant-pools representing the clones of those individual
plates that were tested positively in prior rounds until the
exact position of the clone in the library could be deter-
mined. The bacterial cells were directly set in the PCR reac-
tion and lysed with an initial PCR step of 94°C for 10 min
to release the chromosomal DNA. PCR reaction condi-
tions were as follows: initial denaturation at 94°C for 10
min followed by 40 cycles of denaturation for 30 s,
annealing for 45 s at a primer-dependent temperature,
extension at 72°C for 2 min and a final extension for 4
min at 72°C. PCR experiments were performed with the
delivered buffers according to the manufacturer's instruc-
tions and with the use of a DNA Engine DYAD thermocy-
cler from MJ Research (Watertown, MA, USA).

Deletion and genetic complementation of cg0910
Defined chromosomal deletions within the cg0910 gene
were constructed with the pK18mobsacB vector system
which allows to identify an allelic exchange by homolo-
gous recombination [5]. The deletion was introduced into
the target gene by "gene SOEing" [51]. Therefore,
upstream and downstream regions of the gene to be
deleted were amplified by two different PCR reactions
using primer pairs cg0910_del1+2 and cg0910_del3+4
(Table 3), respectively. After purification the resulting
amplificates were used as templates for the second round
of PCR. The final products were digested with the restric-
tion enzymes BamHI and XhoI, corresponding to the
cleavage sites introduced via the PCR primers, and subse-
quently cloned into appropriately digested pK18mobsacB
vector. The ligation mixture was used to transform E. coli
DH5αMCR and the transformants were selected on TSB
plates containing 50 µg ml-1 kanamycin and 40 mg l-1 X-
Gal (5-bromo-4-chloro-indolyl-β-D-galactopyranoside).
The resulting deletion plasmid pK18mobsacB-∆cg0910 was
extracted and transformed into C. glutamicum ATCC
13032. Integration of the introduced plasmid into the
chromosome by single-crossover was selected on TSB
plates supplemented with 25 µg ml-1 kanamycin. The kan-
amycin-resistant clones were grown overnight in liquid
media and spread on TSB plates containing 10% (w/v)
sucrose. Colonies from this plates were tested for the
desired kanamycin-sensitive and sucrose-resistant pheno-
type by parallel picking. PCR experiments were used to
verify the deletion in the C. glutamicum chromosome.
Construction of plasmid pEC-XT99A-cg0910ex for in
trans-expression of the Cg0910 protein was initiated with
the amplification of the corresponding gene by PCR using
the primer pair cg0910_ex1 and cg0910_ex2 (Table 3).
Primer cg0910_ex1 was provided with a sequence of an
optimal ribosome binding site upstream from the cg0910
start codon. The resulting 821-bp DNA fragment was puri-
fied and cleaved using MunI and BamHI. Appropriate
restriction sites were added with the 5'-extension of the
PCR primers. The fragment was subsequently ligated into
the pEC-XT99A vector, which was prior cut with the corre-
sponding enzymes. The ligation mixture was used for
transformation of E. coli DH5αMCR, the transformants
were selected on TSB plates containing 5 µg ml-1 tetracy-
cline.
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