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Abstract
Background: Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides
brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic
mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually
develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022
sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes
that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our
understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression
profiles using the methods mentioned above.

Results: In this work, continuous data mining revealed 66 new differentially expressed sequences that were
MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are
presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell
wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl
(encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp
(a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were
confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a
cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo
biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also
PAPS reductase.
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Conclusion: Taken together, these data show that several genes involved in cell organisation and ion metabolism/
transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur
metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by
functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets
and strategies to control PCM.

Background
The availability of great amounts of raw genomic and
transcriptome data collected from several organisms has
prompted the development of large-scale gene expression
analysis which will ultimately help to unravel the func-
tion of many genes in diverse biological contexts. Differ-
ent approaches such as cDNA microarrays [1-3], in silico
ESTs subtraction [4,5] and serial analysis of gene expres-
sion – SAGE [6,7] are widely employed to assess differen-
tial gene expression patterns leading to the discovery of a
great number of genes that are over or under expressed in
each physiological context. The successful use of the
cDNA microarray approach in fungal pathogens such as
Candida albicans [8-13], Histoplasma capsulatum [14] and
Cryptococcus neoformans [15] has resulted in the identifica-
tion of genes involved in cell viability and opened new
experimental perspectives to understand host-parasite
interactions and thus develop new therapeutic
approaches to systemic mycoses [8,11].

Paracoccidioidomycosis (PCM) is a human illness
endemic to Latin America [16]; its area of incidence
spreads non-uniformly from Mexico to Argentina [17],
being higher in Brazil, Venezuela, Colombia and Argen-
tina [18,19,16]. An estimation for Brazil points to an inci-
dence rate between 1 and 3 and a mortality rate of 1.4 per
million [20]. McEwen et al. [21] reported an overall
infected population of 10 million individuals in Latin
America, 2% of whom will eventually develop the disease.
In nature, another important mammalian host is the
armadillo Dasypus novemcinctus [22]. PCM affects the skin,
lymph nodes and various internal organs, including the
lungs – where it causes granulomatous processes – and the
central nervous system [19,23]. Its clinical presentations
range from a localised and benign disease to a progressive
and potentially lethal systemic infection [24]. The disease
is more frequent in adult males, who account for up to
90% of all cases. Healthy rural workers are the main tar-
gets, but PCM affects immunosuppressed individuals as
well [25,26], including as much as 30% of AIDS patients
[27]. All patients from whom the fungus is isolated must
be treated and, in spite of new antifungal drugs, pulmo-
nary fibrosis is still the most frequent sequel. The outcome
of infection depends on several factors, including host
responses and the virulence of the infecting isolate.

The causative agent of PCM, the thermo-regulated dimor-
phic fungus P. brasiliensis, is believed to be a free-living
mycelium saprobe that undergoes transition to the yeast
pathogenic form upon temperature change from the envi-
ronmental 24–26°C to the mammalian body temperature
of 37°C. This switch is necessary and sufficient to trigger
morphotype interconversion in vitro, which makes this
fungus an interesting model to study fungal cell differen-
tiation at the molecular level. The biochemical events reg-
ulating dimorphic transition in P. brasiliensis are yet
poorly defined, although relevant molecular-level infor-
mation on this process has been partially described in the
transcriptome analyses of two different P. brasiliensis iso-
lates [28-30].

The exact ecological niche of this pathogen is still
unknown [17], but P. brasiliensis can be retrieved from the
soil. The fungus Penicillium marneffei is greatly similar in
that it is a human opportunistic pathogen that also under-
goes thermally-controlled dimorphic transition upon
infection, can also infect a wild mammal (the bamboo
rat) and has an yet unknown natural reservoir. Genomic
data provided evidence that, in the case of P. marneffei, the
fungus may have a sexual stage as a free-living organism
[31].

Phylogenetic analysis of members of the order Onygen-
ales demonstrated a close relationship of P. brasiliensis
with the pathogenic fungi Blastomyces dermatitidis, Emmon-
sia parva and Histoplasma capsulatum [32]. P. brasiliensis
can be fitted with B. dermatitidis and E. parva in the family
Onygenacea [33]. Recently it was reported that P. brasilien-
sis is in fact a complex of at least three closely correlated
phylogenetic species [34]. So far, the sexual phase of the
ascomycete P. brasiliensis was not reported limiting our
knowledge about the mechanisms that contribute to its
dimorphism, pathogenicity, and virulence. P. brasiliensis
isolates shows chromosomal polymorphism; it contains
4–5 chromosomal DNA molecules with molecular sizes
ranging from 2–10 Mb [35,36]. The genome size was esti-
mated to be around 30 Mb [37] and DNA sequencing of
~ 50 Kb revealed a density of one gene per 3.5–4.5 Kb,
suggesting a total of 7,500–9,000 genes [38].

Recently, our group analysed the transcriptome of the
Pb01 isolate, represented by a set of 6,022 clusters. The 16
genes that were then found to be differentially expressed
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by both methods used – in silico EST subtraction and
cDNA microarray – were categorised by function. We
chose to discuss in that work those that were involved in
core metabolic pathways such as sugar metabolism [28].
Now, continued overlap analysis from raw data revealed
66 new genes that are differentially expressed in one or
other morphotype. Upon categorisation by known data-
bases we have selected two MIPS [39] classes, which were
chosen to be confirmed by northern blotting. Here we
present the result of this extended analysis, and discuss
the putative roles the differential genes – related to cell
organisation and ion metabolism and transport – play in
the corresponding morphotype of this pathogen. One of
the discussed pathways – de novo cysteine synthesis from
inorganic sulphate, a branch of sulphur metabolism – was
almost entirely up-regulated in the yeast form. The impor-
tance of sulphur metabolism to the life cycle of patho-
genic fungi has been extensively reviewed elsewhere
[40,41] and recently new data from microarray experi-
ments have arisen from work in H. capsulatum that sup-
port a role of organic sulphate in the maintenance of the
yeast phase [14]. In a previous report [42], the importance

of organic sulphates to the growth and differentiation of
P. brasiliensis was assessed. This phenomenon demanded
further investigation and prompted us to assess up- and
downregulation of sulphur metabolism genes in myc-
elium and yeast cells and also dimorphic transition in
both directions without inorganic sulphate as a sulphur
source. We have thus found that this compound is unnec-
essary for the process.

Results and discussion
Differentially expressed genes identified by in silico EST 
subtraction and cDNA microarray
Comparative gene expression profiling in dimorphic
fungi can reveal key proteins involved in commitment to
differentiation and gene regulation. From the 66 new
PbAESTs (P. brasiliensis assembled expressed sequence
tags) identified in this work, thirteen of which correspond
to up-regulated genes in mycelium and fifty four which
are differential for yeast cells (Tables 1 and 2). This set
complements the one generated previously [28], which
included 16 genes that were differential by the same over-
lap analysis and also 30 genes that were differential

Table 1: Mycelium up-regulated genes identified by in silico ESTs subtraction and cDNA microarray.

PbAEST Acession 
Numbers 
(GenBank)

Annotated function Number of reads P-valuea Fold change Accession Number/Best-
hit organism/E-value

Functional 
categories

M Y

202 CA582032 1,3-beta-glucosidase* 7 2 0.036942 12.3 AAL09828.1/C. immitis/
1.0E-132

Control of 
cell 

organization: 
Cell wall and 
membrane

2155 CA582352 Peroxisomal membrane 
protein PEX16 (peroxin-16)

7 0 0.004174 1.4 EAL88469.1/A. fumigatus/
3.0E-64

186 CA583085 HEX* 13 8 0.049272 3.4 EAL91716.1/A. fumigatus/
3.0E-66

2496 CA583518 Iron-sulphur cluster nifU-like 
protein*

5 1 0.048854 1.7 EAL90111.1/A. fumigatus/
8.0E-58

Ion transport

4179 CN245816 Potassium transporter 
protein*

0 1 -b 5.2 CAA08814.1/N. crassa/
4.0E-22

1420 CN247275 U1 small nuclear 
ribonucleoprotein

9 1 0.00526 1.6 EAL91268.1/A. fumigatus/
1.0E-60

Transcription

1029 CA582332 Methyltransferase 32 1 0.000000 2.1 EAL84975.1/A. fumigatus/
1.0E-56

Others

2096 CA581148 Unkown 20 1 0.000006 5.6 -
514 CA583322 Unkown 15 1 0.000138 23.4 -
1045 CA581951 Unkown 13 2 0.001769 24 -
1178 CN247241 Unkown 10 0 0.000535 8.5 -
1664 CN247289 Unkown 10 3 0.018648 2.5 -

a FDR = 4,8% and Q-value < 5%.
b Not significant by Audic-Claverie's method.
* Up-regulated genes confirmed by northern blotting.
** Not assayed by cDNA microarray but confirmed as up-regulated in mycelium by northern blotting.
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08 Table 2: Yeast up-regulated genes identified by in silico ESTs subtraction and cDNA microarray.

PbAEST Acession 
Numbers 
(GenBank)

Annotated function Number of reads P-valuea Fold change Accession Number/
organism/E-value

M Y

1422 CA581980 Alpha-1,2-mannosyltransferase (Alg11) 4 11 0.019803 2.0 EAL88400.1/A. fumig

4988 CN253911 Alpha 1,3-glucan synthase* - 1 - 5.7 AAV52833.1/P brasil
2162 CN238153 Putative WW domain protein (probable membrane 

protein)
4 12 0.013092 3.6 EAL85876.1/A. fumig

136 CA582283 Involved in cytoskeletal organization and cellular growth 
(verprolin)*

4 10 0.029289 4.0 NP_013441.1/S. cere

667 CA583397 Adenylylsulphate kinase 3 8 0.038949 2.1 EAL90409.1/A. fumig
48 CA582091 ATP-sulphurylase 10 18 0.023038 4.8 EAL92915.1/A. fumig

2031 CA581274 Outer mitochondrial membrane protein porin 1 14 0.000207 1.3 XP_323644.1/N. cra
2724 CA581633 P-type Cu(2+) transporting ATPase* 0 1 -b 3.8 NP_009854.1/S. cere

635 CN247312 ATP citrate lyase 1 7 0.014984 1.9 EAL88915.1/A. fumig
2016 CN242578 ATPase inhibitor; Inh1 2 14 0.000835 2.7 NP_010100.1/S. cere
563 CA583982 Cytochrome c oxidase subunit VII 11 43 0.000002 2.1 AAT77147.1/P. brasi
2398 CN240705 Disulfide isomerase 3 8 0.038949 2.1 EAL91387.1/A.fumiga
540 CN240558 Cytochrome C oxidase biogenesis protein 0 5 0.015111 1.8 XP_214182.2/R. norv

578 CA582837 Pyruvate dehydrogenase e1 component beta subunit 2 7 0.033994 1.6 EAL86696.1/A. fumig
407 CA583387 Succinyl-CoA synthetase alpha subunit 7 19 0.004468 2.6 EAL91981.1/A. fumig
284 CN239025 Ubiquinol-cytochrome C reductase complex 

ubiquinonE-binding protein QP-C
0 4 0.030475 1.5 EAL90680.1/A. fumig

378 CA580847 Argininosuccinate synthase 0 6 0.007492 1.7 NP_229577.1/T. mar

1618 CA583639 Aromatic-L-amino-acid decarboxylase 1 33 0.00000 17.2 EAL86509.1/A. fumig
125 CA583825 Glycine cleavage system h protein 4 9 0.042192 1.4 EAL90537.1/A. fumig

1674 CA583874 Aldolase 5 14 0.010368 37.9 AAL34519.2/P. brasi

42 CA581699 Phosphoglycerate kinase 1 10 0.002512 2.6 EAL90363.1/A. fumig

9 CA581893 Beta-ketoacyl synthase (Cem 1) 1 5 0.045709 2.2 EAL87667.1/A. fumig

780 CA581145 GPR/FUN34 family protein 0 11 0.000225 14.9 EAL87502.1/A. fumig
1989 CA581550 Acetyl-coenzyme A synthetase (AcetatE – CoA ligase) 

(Acyl-activating enzyme)
1 9 0.004605 2.0 EAL89682.1/A. fumig

1550 CA582818 NADH-cytochrome b5 reductase 0 6 0.007492 5.4 EAL88164.1/A. fumig

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA581980
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN253911
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA582283
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA583397
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA583387
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN239025
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA580847
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA583639
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA583825
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA583874
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA581699
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA581893
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA581145
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA581550
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA582818
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300 CA581937 Nucleoside diphosphate kinase 6 58 0.00000 1.6 AAP85295.1/A. fumig

547 CA583473 6,7-dimethyl-8-ribityllumazine synthase 0 6 0.007492 1.4 AAD55372.1/A. fum

924 CN240624 Coproporphyrinogen III oxidase 2 7 0.033994 2.7 EAL88456.1/A. fumig
867 CA580742 NADH pyrophosphatase 1 5 0.045709 5.7 EAL85969.1/A. fumig
1490 CA583063 Pyridoxamine 5'-phosphate oxidase 0 10 0.000453 3.5 AAC28862.1/S. com
447 CA580589 NADH:ubiquinone oxidoreductase B18 subunit 1 10 0.002512 1.4 EAL92195.1/A. fumig

488 CA582788 Exonuclease II 1 5 0.045709 1.9 EAL85993.1/A. fumig

165 CN241393 RNP domain protein 3 13 0.003962 1.8 EAL89070.1/A. fumig
2436 CA580512 Splicing factor u2af 35 kd subunit 2 7 0.033994 2.5 EAL86523.1/A. fumig
253 CN240426 Zinc finger, C3HC4 type 0 5 0.015111 1.4 NP_593329.1/S. cere
551 CN239696 Ribosomal protein L35** 5 10 0.044755 - AAL08563.1/P. brasi
979 CA582579 60S ribosomal protein L7/L12 precursor 1 8 0.008358 1.3 EAL89813.1/A. fumig

175 CA581863 Complex I intermediatE-associated protein CIA30 
precursor

4 15 0.003399 5.6 EAL92946.1/A. fumig

832 CN242383 Glutathione S transferase 1 7 0.014984 2.0 NP_588171.1/S. pom
2387 CA584103 Non-classical export protein (Nce1) 1 7 0.014984 55.6 EAL87256.1/A. fumig
1823 CA583903 Profilin 1 5 0.045709 1.3 NP_014765.1/S. cere

4188 CN245872 Mating type protein (MAT1–2)* 1 0 - 8.0 EAL89707.1/A. fumig

50 CA581392 Cu-Zn superoxide dismutasE-related* 0 8 0.001842 2.1 CAB97297.1/N. cras

2059 CN241260 Ribosome associated protein (Stm1) 6 31 0.000007 1.7 EAL92489.1/A. fumig
2005 CA580764 Signal peptide protein 1 6 0.026442 2.3 EAL93249.1/A. fumig
39 CA581046 Unknown 0 6 0.007492 2.2 -
33 CA582496 Unknown 0 8 0.001842 3.1 -

1442 CA581846 Unknown 3 16 0.000836 4.5 -
2399 CA581839 Unknown 1 5 0.045709 2.5 -
512 CA583749 Unknown 0 6 0.007492 4.3 -
639 CA581506 Unknown 0 7 0.003715 1.7 -
718 CN247671 Unknown 0 6 0.007492 1.8 -
765 CA581478 Unknown 0 10 0.000453 3.9 -
529 CA580398 Unknown 1 5 0.045709 18.8 -

a FDR = 4,8% and Q-value < 5%.
b Not significant by Audic-Claverie's method.
* Up-regulated genes confirmed by northern blotting.
** Not assayed by cDNA microarray but confirmed as up-regulated in yeast by northern blotting.

Table 2: Yeast up-regulated genes identified by in silico ESTs subtraction and cDNA microarray. (Continued)
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according to in silico EST subtraction alone. MIPS func-
tional categories [43] were used to classify the 66 PbAESTs
into 14 major groups (data not shown). Gene categorisa-
tion revealed some that are involved in energy production
(11%) – this was expected considering the adaptation
process that is required for the mycelium-to-yeast transi-
tion; control of cell wall organisation (10%); ion metabo-
lism and transport (8%); transcription, translation and
ribosome structure (8%); virulence and oxidative stress
(4%). Manual annotation under stringent criteria of
sequence alignment with other dimorphic fungi gene sets
allowed us to ascribe a putative biological function to
many of those genes. The genes that belonged in two cat-
egories – cell wall organisation and ion metabolism and
transport – were selected for confirmation by northern
blotting.

Mycelium and yeast up-regulated genes involved in cell 
organisation
The hex and bgl genes, which code for the hexagonal per-
oxisome protein and 1,3 β-glucosidase, respectively, were
up-regulated in mycelium cells and are categorised as
involved in cell wall, membrane and cytoskeleton organi-
sation (Figure 1a). The hexagonal peroxisome protein has
been identified in different filamentous ascomycetes such
as the plant pathogen Magnaporthe grisea [44] and in Neu-
rospora crassa [45], being the major protein of the
Woronin body, a septal pore-associated organelle [46,47].
HEX1p has been shown to seal septal pores in response to
cellular damage and is strongly implicated in cell integrity
maintenance [45]. In M. grisea, hex1 mutants present
delayed host penetration and subsequent disruption of
invasive hyphal growth in plants. Inability of these
mutants to survive under nitrogen starvation in vitro has
also been observed [44]. Deletion of hex1 in N. crassa
eliminates Woronin bodies from the cytoplasm and
results in hyphae that exhibit a cytoplasmic-bleeding mor-
photype in response to cell lysis [45]. It was thus proposed
that the Woronin body represents a new category of per-
oxisome acting in the maintenance of cellular integrity
and virulence in filamentous fungi [45]. We hypothesise
that these highly specialised vesicles are involved in the
protection of P. brasiliensis against cellular damage as well
as its survival during invasive growth and host colonisa-
tion in the process of infection. Future investigations are
required to elucidate the role of Woronin bodies/HEX1
protein in P. brasiliensis.

Another mycelium up-regulated gene codes for β-1,3-glu-
cosidase, an enzyme that hydrolyses the O-glycosidic link-
ages of β-glucan. This polysaccharide is an important cell
wall constituent in P. brasiliensis mycelium cells in con-
trast with α-glucans, which predominate in the yeast cell
wall [48]. A hypothesis formulated by Kanetsuna et al.
[49] and modified by San Blas and San Blas [50] explains

the differentiation from mycelium to yeast and vice-versa
based on a change on cell wall composition. At 37°C,
there is an increased synthesis of chitin and α-glucan, and
low levels of β-glucan, which results in the yeast form. In
contrast, at 22°C, α-glucan synthesis occurs at low rates
and long β-glucan fibrils are formed in the budding spots.
In keeping with these morphological and biochemical
events, 1,3-β-glucosidase increased levels are correlated to
the shift to the mycelium phase.

Other three genes coding for proteins from the same cate-
gory were confirmed to be up-regulated in yeast cells: ags
(α-1,3-glucan synthase), cda (chitin deacetylase) and vrp-
verprolin (Fig. 1a). The P. brasiliensis 1,3-α-glucan syn-
thase gene was first described by Pereira et al. [51].

Northern blot analysis of mycelium and yeastup-regulated genes of P. brasiliensisFigure 1
Northern blot analysis of mycelium and yeastup-reg-
ulated genes of P. brasiliensis. Total RNA samples from 
both mycelium (M) and yeast (Y) were blotted onto nylon 
membranes and hybridised against gene-specific radiolabelled 
probes: (a) Control of cell organisation: hex – Hexagonal 
peroxisome protein, bgl –1,3 beta-glucosidase, ags – alpha 
1,3-glucan synthase, cda – Chitin deacetylase, vrp – Verprolin; 
(b) Ion transporters: isc –Iron-sulphur cluster-like protein, 
ktp – Potassium transporter, pct – Putative P-type Cu(2+) 
transporting ATPase; (c) Sulphur metabolism: chs – Choline 
sulphatase, ats – ATP sulphurylase. The constitutive 60S 
ribosomal protein L34 was used as a loading control.
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Recently, it was demonstrated that it is strongly up-regu-
lated in yeast cells [28,52], which was confirmed in this
work by northern blotting analysis. Rappleye et al. [53]
silenced the 1,3-α-glucan synthase gene in H. capsulatum
and demonstrated that α-(1,3)-glucan is an important vir-
ulence factor and affects the ability of H. capsulatum to kill
macrophages and colonise murine lungs. In C. neoform-
ans, mutants for 1,3-α-glucan synthase failed to assemble
the capsule, which is an important virulence factor of this
pathogen [54]. Morphogenetic transition is the essence of
P. brasiliensis life cycle: for instance, low levels of α-1,3-
glucan in the cell wall of the yeast form have been corre-
lated with low virulence [55]. Virulent cultures of P. brasil-
iensis isolates grown i n vitro for long periods have thinner
cell walls, low α-1,3-glucan levels and are consequently
less virulent [56]. Our results suggest that α-glucan syn-
thase is involved in the dimorphic transition of P. brasil-
iensis and possibly in its virulence. The cell wall is an
essential and dynamic fungal structure that has been
implicated in several pathogenic processes. Being absent
in mammalian cells, it may be a relevant target to drug
therapies. In this context, the gene that encodes α-1,3-glu-
can synthase was demonstrated to be a virulence factor
using RNAi approaches in Cryptococcus neoformans [54]
and H. capsulatum [53], and seems to be an ideal target for
new antifungal drugs. In P. brasiliensis glucan polymers
constitute 95% of yeast cell wall [49] and thus any inter-
ference in cell wall synthesis through glucan synthases is
likely to affect virulence directly.

Chitin deacetylase enzyme (CDA) catalyses the conver-
sion of chitin to chitosan by deacetylation of N-acetyl-D-
glucosamine residues. Chitosan is a flexible, soluble poly-
mer that integrates the cell wall of some fungi, such as S.
cerevisiae [57] and C. neoformans [58]. In S. cerevisiae, chi-
tosan is only found during sporulation [59]. The molecu-
lar characterisation of two sporulation-specific chitin
deacetylase genes, CDA1 and CDA2, both of which con-
tribute to spore wall rigidity, was described previously
[59]. In S. cerevisiae, cda1 mutants present a more diffuse
chitosan layer, while their surface layer remains intact. In
cda2 mutant cells, by comparison, the chitosan layer is not
detected at all. In the spore walls of cda1 and cda2 mutants
both outer layers are missing due to defects on wall matu-
ration. However, in C. neoformans, a study reported that
chitin is present in the yeast cell wall and most of it is con-
tinually deacetylated to chitosan. Mutants for chitin
deacetylase show suppression of growth due to the lack of
chitosan and therefore have a reduced infection capability
[58]. The same study hypothesized that this constant
remodelling of the cell wall contributed to cellular integ-
rity in this fungus. In P. brasiliensis, we identified a highly
expressed cda gene in yeast cells that presents similarity to
the C. neoformans. If the C. neoformans model is closer to
what is found in P. brasiliensis, then chitin synthase and

chitin deacetylase may be potential targets to antifungal
therapy.

Verprolin is required for a fully polarised distribution of
cortical actin patches and viability at high temperature.
This is the first time that verprolin is described in P. brasil-
iensis, a pathogen that has as an intrinsic characteristic the
ability to grow at the human body temperature, 37°C. The
inability of vrp-1 mutants to grow at 37°C was reported by
Naqvi et al. [60] in the non-pathogenic yeast S. cerevisiae.
Likewise, we hypothesise that verprolin is involved in the
ability of P. brasiliensis to grow at 37°C and in cell
cytoskeleton organisation since this gene is over expressed
in yeast cells. Considering that the actin cytoskeleton
plays a crucial role on fundamental processes such as cell
growth, differentiation and migration, localised mem-
brane growth, endocytosis, and cell division [61], this
protein is likely to play a key role in cell maintenance and
viability of P. brasiliensis inside the host cell.

Mycelium and yeast up-regulated genes involved in ion 
metabolism and transport
Two genes putatively implicated in ion transport were
confirmed to be highly expressed in mycelium cells: isc
and ktp, an iron-sulphur cluster protein and a cation trans-
porter, respectively. In contrast, a putative P-type cation
pump (pct) was up-regulated in the yeast form (Figure
1b).

It has been reported that the ISC protein is responsible for
mitochondrial uptake of iron and seems to monitor the
cytoplasmic levels of this ion. In S. cerevisiae, the double
knock-out of the homologues ISU1 and ISU2 is lethal.
Defective mutants are distinguished by iron accumulation
in the mitochondrial matrix and its respective decrease in
the cytosol [62]. In C. neoformans, complementation,
cloning and sequencing of such genes has recently been
accomplished [63]. It has long been hypothesised that
iron is a limiting factor for infectivity during cryptococco-
sis as well as in other systemic mycoses, in that the host
normally provides only limited amounts of this com-
pound. Arango and Restrepo [64]demonstrated iron
availability to be essential for growth of mycelium and
yeast of P. brasiliensis; but especially for mycelium, whose
growth was totally prevented by the addition of the iron
chelator phenanthroline to the medium, an effect
observed only to a lesser extent in yeast. The effect of
phenanthroline was reversed partially in mycelium and
totally in yeast by addition of excess iron. This is in good
agreement with the overexpression of the ISC protein in
the mycelial phase. In P. brasiliensis it could be involved in
monitoring the amount of iron in the environment and in
providing a means of storage of this metal.
Page 7 of 13
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The ktp sequence from P. brasiliensis aligned best with
potassium transporter proteins of the HAK family, which
are mainly implicated in the resistance to potassium star-
vation. In N. crassa, the closest homolog of P. brasiliensis,
KTP coexists with another potassium transporter of the
TRK family [65]. It has been hypothesised that soil organ-
isms are universally equipped with a powerful K+-concen-
trating apparatus, as these organisms are faced with a very
diluted and variable environment, thus being forced to
pump potassium in against a steep gradient [65]. This is
likely to be the case of P. brasiliensis, whose ecological
niche for the mycelium form is thought to be the soil.

Another yeast up-regulated gene is pct, a putative member
of the E1-E2 (P-type) family of ATPases. These are ATP-
dependent proteins which regulate transmembrane flow
of all relevant cations, including Na+, H+, Mg2+, Ca2+,
Cd2+, Cu2+ and K+ [66]. In C. albicans, the E1-E2 ATPase
gene, CDR1, confers resistance to both copper and silver,
the latter being used as an antimicrobial agent [67]. A sim-
ilar function could be attributed to the P. brasiliensis pct
gene, although alignment data are insufficient to identify
which cation this protein transports.

Sulphur metabolism
Several enzymes from the cysteine de novo biosynthesis
pathway (Figure 2) were shown to be up-regulated in the

yeast form of P. brasiliensis. Our previous analysis [28] had
already confirmed over expression of paps reductase (the
third in the pathway). In silico EST subtraction and cDNA
microarray showed yeast up-regulation for atp sulphury-
lase and aps kinase; the former was confirmed by north-
ern blotting (Figure 1c). Thus, we can strongly suggest that
the yeast form synthesises cysteine actively from inorganic
sulphate.

In order to reinforce these data, we have evaluated the
importance of inorganic sulphate to growth and differen-
tiation. Auxotrophy of P. brasiliensis yeast for several
sources of organic sulphate – including cysteine itself and
sulphydrylic compounds – has been reported before [42].
It was concluded then that organic sulphate deprivation
suppressed growth in the yeast phase and prevented myc-
elium-to-yeast differentiation, whereas the mycelial phase
is able to grow on either inorganic or organic sulphur
[68]. Also, the saprophytic, mycelial form of H. capsulatum
is prototrophic while the pathogenic yeast form requires
cysteine [69]. It has been reported that exogenous cysteine
is required for both yeast phase growth and morphologi-
cal transition from mycelium-to-yeast of H. capsulatum
[41,70]. In this work, both mycelium and yeast cells of P.
brasiliensis were incubated in modified MVM medium
without inorganic sulphate, apart from the negligible
amounts present in the trace elements solution. Dimor-

Up-regulated genes encoding enzymes from the cysteine de novo biosynthesis pathwayFigure 2
Up-regulated genes encoding enzymes from the cysteine de novo biosynthesis pathway. Arrows indicate enzymes 
identified as up-regulated both by in silico subtraction, cDNA microarray and confirmed by northern blotting experiments. (*) 
enzyme identified as up-regulated by both in silico subtraction and cDNAs microarray but not assayed by northern blotting. (**) 
indicates an enzyme not found in the transcriptome of P. brasiliensis.
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phic transition was assessed in the mycelium to yeast
direction and in the opposite way.Sustained growth was
observed for both morphotypes (data not shown) and,
upon the corresponding temperature shifts, differentia-
tion was successfully triggered in both directions (Figure
3). Thus, inorganic sulphate seems to be unnecessary for
the transition, quite contrarily to organic sulphate. In this
context, it is interesting to consider a branch of the
cysteine biosynthetic pathway (Fig. 2). In fungi and plants
a fraction of PAPS, which is toxic to fungi if it reaches high
cytosolic levels, is used by choline sulphotransferase to
produce choline-O-sulphate [40], which serves as an
osmoprotectant and cytosolic sulphur store in these
organisms. We have not found a homologue of choline
sulphotranferase in P. brasiliensis to date, but the enzyme
choline sulphatase, which degrades its product to choline
and sulphate, is also over expressed in the yeast morpho-
type, as confirmed here (Figure 1c) and previously
reported [52]. The C. neoformans met3 mutant, which lacks
ATP sulphurylase activity, had a substantial defect in mel-
anin formation, significantly reducedgrowth rate, and
greatly increased thermotolerance. In the murine inhala-
tion infection model, the met3 mutant was avirulent and
was deficient in its ability to survive in mice [71]. In this
context, disrupting the genes encoding choline sulphatase
or ATP sulphurylase in P. brasiliensis should reveal its role

in the growth, maintenance of yeast cells and pathogenic-
ity of this fungus. It is interesting that another intracellular
pathogen of humans, the bacterium Mycobacterium tuber-
culosis, depends on sulphur compounds for expression of
its full virulence, drug resistance and overall survival
inside the macrophage. It has developed a very efficient
sulphate activation pathway (SAC) that ensures constant
synthesis of PAPS at high rates, from which sulphate may
be distributed to other synthetic pathways [72]. The SAC
includes the bacterial counterparts of ATP sulphurylase
and APS kinase, the latter of which performs PAPS synthe-
sis by coupling it with GTP hydrolysis by a GTPase that is
also present in SAC. Whether similar mechanisms are
present in pathogenic fungi such as P. brasiliensis remains
to be investigated.

Conclusion
Taken together, these data show that several genes
involved in cell organisation and ion metabolism/trans-
port are differential in their expression along dimorphic
transition, which is in accordance with the proposed
model for this process in Figure 4. While α-glucan is syn-
thesised during yeast phase due to high expression of 1,3
α-glucan synthase, β-glucan is degraded by the action of
1,3 β-glucosidase during hyphal growth. The cda gene is
probably involved in the cell wall synthesis of yeast cells,

Cell differentiation of P. brasiliensis in modified MVM medium without inorganic sulphateFigure 3
Cell differentiation of P. brasiliensis in modified MVM medium without inorganic sulphate. The fungus was grown 
in four different concentrations of sulphate salts (0, 8, 12 and 17 mM; the latter is the original concentration of MVM medium). 
(A) The appearance of yeast cells was verified daily in the transition from mycelium to yeast after temperature shift to 37°C, 
(B) The disappearance of yeast cells was verified daily in the transition from yeast to mycelium after temperature shift to 22°C. 
Triple samples were counted for each time point. The coloured boxes indicate the average of the three samples and bars rep-
resent the standard deviation of the mean. As observed, the presence or absence of inorganic sulphate did not affect transition 
in either direction.
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since it is over expressed in this phase. In addition, genes
related to septal sealing and cytoskeleton organisation
(hex and vpr) are also probably implicated in the stabilisa-
tion and maintenance of mycelium and yeast cells in the
environment and at 37°C in the human host. Also, the
differential expression pattern of genes that control
metabolism and transport of potassium, iron, copper and
sulphur ions suggests that they may influence directly the
pathogen adaptation to the host environment. Specifi-
cally, in spite of the undisturbed growth and differentia-
tion on depletion of inorganic sulphate, the over
expression of enzymes from de novo cysteine synthesis
lends support to previous findings about the importance
of this pathway to yeast metabolism. Understanding these
changes by functional analysis of such genes may lead to

a better understanding of the infective process, thus pro-
viding new targets and strategies to control PCM.

Methods
Strains and cultures
P. brasiliensis clinical isolate Pb01 (ATCC-MYA-826) was
used in this study. Cells from both mycelium and yeast
forms were grown on semi-solid Fava Neto's medium [73]
for 7 to 10 days at 22°C or 37°C, respectively.

Overlap analysis – in silico EST subtraction and cDNA 
microarrays
This work was based on the output of previous large-scale
expression analysis experiments, as outlined in reference
28. Briefly, we have constructed a λZAP II® (Invitrogen)
cDNA library from mycelium and yeast mRNA fractions
and 5'-sequenced the mass-excised cloned fragments with
the T7 vector primer. Raw sequence data were quality-
assessed by PHRED and assembled by CAP3, thus gener-
ating a set of 6,022 PbAESTs (singlets and contigs). For
functional annotation of sequences we used the nr
(NCBI) database. In silico electronic subtraction was per-
formed according to the Audic and Claverie [74] statistical
approach, with a 95% confidence rate. For cDNA microar-
ray 1,152 clones were selected and PCR-amplified for
spotting onto nylon-membranes in triple experiments.
Hybridisation against [α-33P] dCTP-labeled total RNA
from mycelium or yeast and phosphor imager signal cap-
ture were performed as in [28]. After signal quantification
and background subtraction [75], statistical analysis was
carried out with the SAM (Significance Analysis of Micro-
arrays) method [76]. Data from both experiments were
overlapped to identify differential genes, thus generating
the set of 66 sequences we used in this work.

Northern blot analysis
Total RNA (15μg) from mycelium and yeast cells of P. bra-
siliensis was separated on denaturing 1,5 % agarose gel
and blotted onto a Hybond-N membrane (GE Health-
care). Probes were radiolabeled using [α-P32]dATP by ran-
dom priming according to supplier's instructions
(Invitrogen), purified and used in overnight hybridisation
(50% formamide, 4X SSPE, 5X Denhardt's solution, 0,1%
SDS, 100μg/ml herring sperm DNA) at 42°C. The mem-
branes were then washed under stringency conditions of
2X SSPE-0.1% SDS at 65°C for 1h. Signal bands were vis-
ualised using the Typhoon 9210 Phosphor Imager (GE
HealthCare).

Dimorphic transition without inorganic sulphate
We incubated both mycelium and yeast cells on modified
versions of McVeigh and Morton's medium – MVM [77]
where ammonium and magnesium sulphate salts were
gradually replaced by their chloride counterparts, in the
following chloride concentration set points: 0, 8, 12 and

Genes involved in cell organisation (cell wall, membrane and cytoskeleton), sulphur metabolism and ion transportFigure 4
Genes involved in cell organisation (cell wall, mem-
brane and cytoskeleton), sulphur metabolism and ion 
transport. Genes that were identified as up-regulated in 
mycelium (22°C) or yeast (36°C) cells of P. brasiliensis are 
represented by black arrowheads. Electron microscopy was 
performed by Silva et al. [78].
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17 mM, where the first corresponds to the original recipe
and the last, to virtual absence of inorganic sulphate, apart
from negligible amounts in the trace elements solution (~
8 μM). Molar concentrations of both magnesium and
ammonium were thus conserved. We have also evaluated
whether dimorphic transition occurred normally in the
medium without inorganic sulphur. To achieve this, five
flasks containing 100 ml of modified MVM were inocu-
lated with comparable amounts of mycelium (100 mg wet
mass) and yeast (2.5 × 107 cells) previously grown on
standard MVM. Samples were incubated in rotating shak-
ers (120 rpm) at 36 and 22°C, respectively, thus triggering
dimorphic transition. Fungal viability and progress of
transition were assessed by serial 100 μl sampling every 24
hours (three independent samples). Each sample was col-
oured with Janus Green and the number of yeast cells was
counted in a light microscope with the aid of a Neubauer
counting chamber.

Accession numbers
The accession numbers of the EST sequences analysed in
this work are shown in the Tables 1 and 2.

Abbreviations
ags alpha 1,3-glucan synthase

aps adenosine 5'-phosphosulphate

ats ATP sulphurylase

bgl 1,3 beta-glucosidase,

BLAST basic local alignment search tool

cda chitin deacetylase

cDNA complementary DNA

chs choline sulphatase

COG clusters of orthologous groups

e-value extreme value distributionESTs

ESTs expressed sequence tags

GO gene ontology

hex hexagonal peroxisome protein

isc iron-sulphur cluster-like protein

ktp potassium transporter

MIPS Munich information center for proteins sequences

PAPS phosphoadenylyl-sulfate reductase

PbAETs P. brasiliensis assembled EST sequences

PCM paracoccidioidomycosis

pct putative P-type Cu(2+) transporting ATPase

SAGE serial analysis of gene expression

SAM significance analysis of microarrays

vrp verprolin
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