. 0)
BIVIC Genomics Biomed Centa

Research article

TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus
thuringiensis pGll plasmid is a widely distributed composite
mazE-doc TA system

Sarah Fico and Jacques Mahillon*

Address: Laboratoire de Microbiologie Alimentaire et Environnementale, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-
la-Neuve, Belgium

Email: Sarah Fico - fico@mbla.ucl.ac.be; Jacques Mahillon* - mahillon@mbla.ucl.ac.be
* Corresponding author

Published: 13 October 2006 Received: 05 July 2006
BMC Genomics 2006, 7:259  doi:10.1186/1471-2164-7-259 Accepted: |3 October 2006
This article is available from: http://www.biomedcentral.com/1471-2164/7/259

© 2006 Fico and Mahillon; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Post-segregational killing systems are present in a large variety of microorganisms.
When found on plasmids, they are described as addiction systems that act to maintain the plasmid
during the partitioning of the cell. The plasmid to be maintained through the generations harbours
a group of two genes, one coding for a stable toxin and the other coding for an unstable antitoxin
that inhibits the effects of the toxin. If, during cell division, the plasmid is lost, the toxin and antitoxin
proteins present in the cytosol cease to be newly expressed. The level of unstable antitoxin protein
then rapidly decreases, leaving the toxin free to act on the cellular target, leading to cell death.
Consequently, only cells harbouring the plasmid can survive.

Results: The pGll plasmid of Bacillus thuringiensis H1.l harbours a group of two genes, one
showing similarities with the Doc toxin of the phd-doc toxin-antitoxin system, potentially coding for
a toxin-antitoxin system. Attempts were made to clone this putative system in the Gram-negative
host Escherichia coli. The putative antitoxin tasA was easily cloned in E. coli. However, although
several combinations of DNA fragment were used in the cloning strategy, only clones containing a
mutation in the toxin gene could be recovered, suggesting a toxic activity of TasB. An exhaustive
search was carried out in order to index genes homologous to those of the putative tasA-tasB
system among microorganisms. This study revealed the presence of this system in great number
and in a large variety of microorganisms, either as tasA-tasB homologues or in association with
toxins (or antitoxins) from other TA systems.

Conclusion: In this work, we showed that the pGl| plasmid of B. thuringiensis HI.| harbours genes
resembling a toxin-antitoxin system, named tasA-tasB for thuringiensis addiction system. This system
appeared to be functional but unregulated in E. coli. Bioinformatics studies showed that the tasAB
system is present on plasmids or chromosomes of a large variety of microorganisms. Moreover,
the association between TasA antitoxin with toxins other than TasB (and vice versa) revealed the
composite and modular nature of bacterial TA systems.
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Background

Plasmids are extrachromosomal elements that carry
mostly non-essential genes. However, they often confer
advantages to their host, because of determinants such as
antibiotic-resistance or virulence genes. When a mother-
cell divides, plasmids have to be partitioned into the
daughter-cells to keep for the progeny to retain this advan-
tage. For high copy number plasmids, this process occurs
by random distribution. However, when a plasmid is
present in the cell at a low copy number, the cell has to
develop active systems in order to avoid the production of
plasmid-free progeny by loss of plasmid during partition-
ing. One strategy is to actively distribute the plasmid by a
mechanism that relies on the presence of centromere-like
functions [1,2].

Another strategy is the mechanism called post-segrega-
tional killing system or toxin-antitoxin (TA) system. The
plasmid to be maintained harbours a group of two genes,
one coding for a stable toxin, and the other one expressing
the antitoxin counterpart. This antitoxin is an unstable
protein that is continuously degraded by a protease. When
the plasmid is present in the cell, both toxin and antitoxin
are expressed and the antitoxin acts on the toxin to pre-
vent its toxic effects. If, during segregation, the plasmid is
lost, toxin and antitoxin are no longer produced and the
level of antitoxin rapidly decreases in the cell, leaving the
toxin free to act on its target and leading to the death of
the cell. Only cells harbouring the plasmid do survive.

Such systems are known to be present in a wide range of
prokaryotes [3]. Although the targets of the toxins may
differ and sequence homologies may be quite low, these
systems tend to be very similar in structure and regulation
[4]. One of these systems, phd-doc, has been described in
bacteriophage P1 as an addiction operon [5]. This temper-
ate bacteriophage is stably maintained as a plasmid
prophage in the Gram-negative bacterium Escherichia coli.
The bacteriophage harbours a group of two genes, one
coding for a toxin, doc (death on curing), and an upstream
gene coding for its antitoxin, phd (prevent host death) [5].
In host cells possessing the P1 genome, stable Doc toxin
and unstable Phd antitoxin are continuously expressed
[6]. Phd antitoxin interacts with the Doc toxin, preventing
it from carrying out its molecular action on the target,
which is unknown. It has been suggested that a trimeric
complex P,D is formed, sterically or structurally altering
the Doc toxin activity on the target by buffering free Doc
molecules within the cell [7]. Moreover, Phd is also
known to repress both its own transcription and that of
the Doc molecule by binding to an operator DNA site that
overlaps the addiction promoter [8]. It has also been sug-
gested that the Phd antitoxin might exert its action by acti-
vating another protein that neutralizes the Doc toxin [7].
The Phd antitoxin is continuously degraded in the host
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cell by the CIpXP protease system [6], composed of the
ClpP protease and the regulatory ClpX ATPase subunits
[9-11]. Phd-doc is thus an active system that ensures stable
inheritance of the P1 genome in the host cell population
by killing any segregants that are free of the P1 genome.

The actual function of TA systems had to be re-examined,
however, when chromosomal TA systems were discov-
ered. A first hypothesis proposes that chromosomal TA
systems contribute to programmed cell death (PCD) that
occurs in response to various stress signals [12-15].
Indeed, experiments carried out on the mazEF system have
shown that high levels of ppGpp, the signal molecule of
nutritional stress, repress the mazEF promoter. This
repression leads to the drop of MazE antitoxin levels and
subsequently to the death of the cell [16]. By the same
mechanism, antibiotics inhibiting transcription, such as
rifampicin, or translation, such as chloramphenicol and
spectinomycin, have been shown to induce PCD via the
activation of the mazEF system [17]. A second hypothesis
suggests that, rather than activating programmed cell
death, chromosomal TA systems may induce a reversible
bacteriostatic state to protect the cell in response to stress-
ful conditions [3]. Indeed, it was shown that the induc-
tion of the antitoxin MazE after exposition to
overproduction of the toxin MazF restored the viability of
the cell, suggesting that the toxin MazF is bacteriostatic
rather than bacteriocide.

Bacillus thuringiensis H1.1 is a member of the Bacillus
cereus group of Gram-positive bacteria. This bacterium
occurs naturally in soil and on plants and is considered to
be harmless to human. During sporulation, it produces -
endotoxins that are toxic to insects. B. thuringiensis strain
H1.1 contains at least four large plasmids (> 30 kb) and
three small plasmids: pGI1, pGI2, pGI3 [18]. The com-
plete sequences of pGI2, pGI3 and pGI1 plasmids have
been determined [18-20]. Based on the analysis of the
8254 bp pGI1 plasmid, five ORFs larger than 100 aa in
size have been identified [18]: a rep gene encoding the Rep
protein, which is responsible for the autonomous replica-
tion of the plasmid, a mob gene that enables mobilization
of the plasmid, and ORF5, which is a putative transcrip-
tional regulator. Another ORF, downstream of the mob
gene, encodes a 133-residue protein and shows a high
degree of similarity to the Doc toxin of the P1 bacteri-
ophage. The last ORF (95 aa) located upstream of the
putative toxin gene could potentially code for the anti-
toxin counterpart.

Results and discussion

TasB of pGlI from B. thuringiensis H1.I is toxic in E. coli
pGI1, the smallest plasmid of B. thuringiensis H1.1, har-
bours a pair of ORFs that are predicted to encode 95 and
133 residue proteins, respectively (Fig. 1). The second of
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these putative proteins displayed sequence similarities
(28% identity; E-value = 2e-19 in the Conserved Domain
Database) with the Doc toxin of the toxin-antitoxin sys-
tem phd-doc from phage P1. The upstream gene could
therefore code for the corresponding antitoxin. This gene
pair was tentatively named tasAB for thuringiensis addic-
tion system.

TasB, the putative toxin component of this TA system
(fragment P, Table 2) was cloned into the positive-selec-
tion vector pCR4-TOPO (KanR, AmpR). After electropora-
tion into E. coli TOP10, only a few colonies were able to
grow on LB + Kan medium. Sequencing these recom-
binants showed that they all harboured a mutation in the
toxin gene (see details below).

Since it was found to be impossible to clone the tasB toxin
gene alone in E. coli, a PCR fragment (AP) spanning the
full sequence of both genes from the start codon of the
antitoxin tasA to the stop codon of the toxin tasB was
inserted into pCR4-TOPO and transformed into E. coli.
However, as for tasB alone (P fragment), all the recom-
binant clones contained mutations in the tasB toxin gene.

An alternative was to clone the tasAB cluster with its own
promoter region into E. coli. Two constructions were
tested: pAP, containing a region of 232 bp upstream of the
start codon of antitoxin tasA, and p2AP, containing an
upstream region of 311 bp. Once again, only recom-
binants possessing a mutation in the toxin gene tasB could
be recovered on selective plates.

In order to avoid the killing effect of the TasB toxin, an E.
coli strain expressing the TasA antitoxin was constructed as
follows: the pGI1 tasA antitoxin gene was inserted into the
positive-selection vector pCR4-TOPO and electroporated
in E. coli TOP10, leading to the construct pGIF02 (see
Material and Methods). The tasA antitoxin gene was then
inserted into the pCYB10 vector downstream of the IPTG-
inducible promoter p,.and electroporated into E. coli
TOP10. Sequencing confirmed the absence of any muta-
tion in the antitoxin gene. The newly constructed vector
was named pGIF03. The A, P, AP, pAP and p2AP frag-
ments inserted into vector pCR4-TOPO (see Fig. 1 and
Table 2) were then electroporated into the E. coli TG1/
pGIFO03 strain, in the presence of 1 mM of IPTG to induce
expression of the antitoxin. Once more, no recombinants
harbouring the wild-type tasB toxin gene were obtained
from the P-, AP-, pAP- and p2AP-containing construc-
tions.

As indicated above, all the recombinant P, AP, pAP and
P2AP fragments in E. coli harboured mutations in the tasB
toxin gene. In many cases, the mutation was an early stop
codon (Fig. 3). The longest toxin protein obtained in E.
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coli lacked the last 21 amino acids. In other cases, a point
mutation leading to the modification of only one amino
acid appeared to be sufficient to inactivate the TasB pro-
tein. These point mutations were found in all part of the
protein but it is interesting to note that four of them (D28,
L72, A79 and V80) were found in particularly well con-
served regions of the protein TasB. Finally, one case of an
IS1 insertion in the tasB gene was also observed (not
shown). All these mutations are reported in the pile-up
showing tasB and its homologues found in other bacterial
genomes (see below) (Fig. 3).

These cloning experiments strongly indicated a toxic effect
of TasB when cloned into E. coli. This supports the pro-
posal that the pGI1 plasmid of B. thuringiensis H1.1
encodes a new putative toxin-antitoxin system. However,
this system appeared to be functional but unregulated in
E. coli. Indeed, the addition of a plasmid containing the
tasA gene failed to inhibit the lethal activity of TasB in E.
coli. This may be explained by an inappropriate expression
of the antitoxin in the Gram-negative background. TA sys-
tems are regulated at transcriptional level by the antitoxin
and/or the antitoxin-toxin complex, and this antitoxin is
continuously degraded by a specific protease present in
the cytosol of the bacterium. It has been shown that the
toxin/antitoxin stoichiometry influences the binding of
the complex to the promoter-operator region [21]. When
cloned into E. coli, the tasA-tasB system might be misregu-
lated by a change in the TasA/TasB ratio, as a consequence
of its dependence on a different system of proteases than
in the host B. thuringiensis. Experiments are currently
underway to determine the TasA level in this bacterium.

Homologues of the tasA-tasB genes of pGlI reveal the
existence of combinatory TA systems in a large variety of
microorganisms

Homologues of tasA-tasB from pGl| are found in a large variety of
microorganisms

The amino acid sequence of the TasB toxin was compared
to bacterial protein databases. The genomic location of
each toxin homologue was analyzed individually in order
to identify any immediately upstream ORF as putative
antitoxin. Because antitoxins are often very small proteins,
they were not always annotated in the databank. In most
cases, a small ORF was indeed present directly upstream
of the TasB homologue (Fig. 4).

In 55 cases, the ORF found upstream of the TasB homo-
logue displayed significant similarity to the TasA antitoxin
of pGI1. These loci were found in a large variety of micro-
organism including 14 firmicutes, 26 proteobacteria, 6
chlorobi, 4 cyanobacteria, 2 chlamydiae, 1 acidobacte-
rium, 1 bacteroidete and even 1 planctomycete (see Addi-
tional file 2). In this group, all putative antitoxin proteins
had about the same size as TasA. Almost all members in
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Organization of toxin and antitoxin genes frompGl| of B. thuringiensis HIl.1. A) pGlI contains a mobilization gene
(mob1), a replication gene (repl), a hypothetical transcriptional regulator (ORF5), three small cryptic ORFs (URF94, URF71,
URF88) and the putative toxin-antitoxin system tasB and tasA. TasB displays similarities with the Doc toxin of bacteriophage
PIl. The upstream ORF, tasA, could code for the antitoxin counterpart. Putative double- and single-strand origins are also indi-
cated. B) To assess the function of tasA and tasB, different parts of this putative toxin-antitoxin system have been amplified for

cloning purposes. This figure is a scaled representation of the primers and amplimers used in cloning experiments (See Table 2
for details). Amplimer names are shown in the left column.
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this group displayed a gene organization found in many
TA systems in which the stop codon of the antitoxin over-
laps the start codon of the toxin. This was however not the
case for those found in Bacillus clausii, Geobacillus kaus-
tophilus, Lactobacillus acidophilus, Lactobacillus gasseri, Nitro-
somonas europaea, Rhodospirillum rubrum,
Rhodopseudomonas palustris BisB5 and HaA2, Salinibacter
rubber, Xhanthomonas oryzae KACC10331 and MAFF
311018, Xhanthomonas campestris vesicatoria and Gloeo-
bacter violaceus (see Additional file 2). In this group, all the
TasB homologues were found on the chromosome of the
bacteria, except for Glucunobacter oxydans 621H in which
the corresponding locus is found on the plasmid pGOX2
(see Additional file 2).

The 55 TasB homologues found in this group were aligned
(Fig. 3). The pile-up showed a particularly well conserved
region, with the motif H(x);NKR(x)gF(x);N. The 55 TasA

homologues found upstream of the TasB homologues
were also aligned (Fig. 2). It was interesting to observe
that the end of the protein is particularly well conserved
in all species, with a well conserved C-terminal domain.
The GNS motif on the N-terminal part of the protein was
also very well conserved among the organisms of this

group.

These 55 loci displaying similarities with both TasA and
TasB were grouped into a family named the TasAB family
(Fig. 4 and Additional file 2). To our knowledge, the tasAB
system is the first described in this novel family.

TasB homologues can be associated with putative antitoxins
unrelated to TasA

In addition to the loci described above, the bioinformatic
analysis provided 62 more TasB homologues (E value < 1)
that were associated with upstream genes unrelated to the
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Figure 3

Putative toxins members of the TasAB family members. Multiple alignments of the putative toxins related to the TasB
toxin of pGll from B. thuringiensis HI.1. Only TasB-like proteins with obvious upstream TasA-like partners (see Fig. 4) were
included in this comparison. The left column shows the bacterial host of the protein. Fully conserved amino acids are in dark
grey while the other most conserved residues (>50%) are shown in light grey. Variations observed in the TasB mutants recov-
ered from cloning in E. coli are displayed at the top line of the alignment. Many are point mutations (square) and other are early
stops (triangle). The consensus sequence is displayed in the last line of the pile-up.

putative antitoxin TasA. These loci were also found in a
large variety of microorganisms including 35 proteobacte-
ria, 10 actinobacteria, 8 firmicutes, 4 archaea, 2 cyanobac-
terium, 1 chloroflexi, 1 chlamydiae and 1 phage (P1). All
are chromosomal loci, except for one that was found in
the pCC7120epsilon plasmid of Nostoc sp. PCC 7120 and
one found on the pKLH205 plasmid of Acinetobacter sp.
ED-4525. The upstream ORFs were compared to the Con-
served Domain Database (CDD) [22] and classified
according to their similarities with other published
sequences or with other upstream genes found in this
analysis (see Additional file 3). By this classification, 10
groups of composite TA loci were obtained (Fig. 4).

In the first group (group 1), which was composed of 5
loci, one of the TasB homologues was a confirmed toxin
from the known phd-doc TA locus of enterobacterial phage
P1 [5]. All the systems included in this group harboured
an upstream ORF similar (identity > 39%) to the Phd anti-
toxin of the phd-doc system. This group was thus com-
posed of loci displaying similarities to both the TasB/Doc

toxins and the Phd antitoxin. The 5 members of this group
were all similar in size and organization (translation cou-
pling). The second group (group 2) was composed of five
TA loci (identity > 44%) that were all found in y-proteo-
bacteria. All antitoxins of this group were very similar in
size except for the one found in Ps. aeruginosa, which was
smaller than the others. It is also interesting to note that
in the putative toxin gene of the Ps. aeruginosa TA locus,
two frameshifts give rise to a hybrid protein. Group 3 of
composite TA systems included small antitoxins (identity
> 66%). However, in two cases, Vibrio cholerae O1 eltor
N16961 and in V. cholerae V52, the putative antitoxin
seemed to be fused at its amino-terminal part with a puta-
tive acetyl-transferase (not shown). In the next 6 groups
(groups 4 to 9), all upstream proteins were similar to each
other within a group (identity > 38%), but shared no sim-
ilarities with other known proteins. The last group (group
10) was composed of 2 members (100% identical) from
the same organism delta proteobacterium MLMS-1. They
were larger than tasA and contained a domain similar to
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Figure 4

Groups of loci whose corresponding proteins show similarities with TasA and/or TasB. Schematic representation
of the genomic locations of TasB homologues and their associated upstream ORF, and genomic locations of TasA homologues
and their associated downstream ORF. Associated upstream- and downstream genes were grouped according their similarities
when blasted against the Conserved Domain Database (CDD). The number of the group (see text for details) is indicated in

the left column. The number of loci composing each group is indicated in the right column. Known domains are indicated inside

the arrow of the corresponding group.

that of ParB, which has been proposed to be a nuclease
involved in plasmid stability [23].

In addition to these 10 groups, a number of orphan
upstream genes were found (see Additional file 2). These
genes were predicted to code for proteins displaying no

similarity to TasA or to other known genes. It is possible
that new groups of antitoxins could be discovered.

Furthermore, nine TasB homologues, all originating from
the proteobacteria phylum, were found to be significantly
larger than the others (see Additional file 2). While the
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carboxy-termini of the corresponding proteins were simi-
lar to the pGI1 TasB toxin, their amino-termini displayed
similarity with the COG3943 domain. This domain is
defined in the Conserved Domain Database as related to
a virulence protein because of its similarities to RhuM.
This protein, located in the SPI-3 pathogenicity island of
S. enterica [24], is predicted to be a virulence protein
because mutants carrying a knocked out copy exhibit
diminished ability to invade epithelial cell and/or to
induce polymorphonuclear leukocyte migration in a tis-
sue culture model of mammalian enteropathogenesis
[25]. In this group, no upstream antitoxin seemed to be
associated with these putative toxins.

Finally, 10 TasB homologues were defined as "solitary
toxin" [26], since they had the same size as TasB but were
apparently not associated with an antitoxin partner (not
shown). These solitary toxins were found in a broad range
of microorganisms including 4 proteobacteria, 2 actino-
bacteria, 2 archaea, 1 fusobacterium and even 1 fungus.
The latter was found in Aspergillus fumigatus. This gene has
been annotated as a putative member of the Doc family
([GenBank:EAL85381], Nierman et al., unpublished), but
the exact function of the protein has not been demon-
strated. If this homologue were proved to be functional,
this would be the first TA locus identified in a fungal spe-
cies.

Similar cases of solitary genes have already been reported
in the study of homologues of the YdcE toxin (MazF fam-
ily) from the ycDE operon of Bacillus subtilis [27], in a
study describing a number of TA loci from the vapBC fam-
ily (vapC is a toxin containing a PIN domain) [28] and in
an exhaustive study of TA homologues [26]. This suggests
that if those solitary toxins were found to be functional,
other mechanisms of regulations specific to each species
would have to exist.

TasA homologues can be associated with either TasB homologues or
with other toxin families

As in the case of the TasB toxin, the TasA antitoxin of pGI1
was compared to potential downstream ORFs for their
similarities and putative functions. Homologues of the
TasA antitoxin found in this study were separated into
three classes: those with a TasB-like downstream gene as
described above (Fig. 2 and Fig. 4), the second including
TasA homologues with a toxin-like downstream gene (Fig.
4), and TasA homologues not associated with a putative
toxin.

Homologues of TasA associated with proteins unrelated
to TasB were found in 15 archaea, 6 proteobacteria, 4 fir-
micutes and 1 spirochaete (see Additional file 2). Down-
stream proteins of TasA homologues were grouped
according to their similarities (see Additional file 3); four
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groups of composite TA loci were obtained (see Addi-
tional file 2). The first group (group 11) was composed of
6 TA loci (identity > 27%) very similar in size, originating
from phylogenetically distant species, and all sharing sim-
ilarities with the mazF toxin of the confirmed TA locus
mazEF. This high similarity between TasB and the Doc
toxin (28% identity ; E-value = 2e-19 in the CDD), com-
bined with the similarity between TasA and the MazE anti-
toxin (23% ; E-value = 2e-3 in the CDD), indicated that
the tasA-tasB toxin-antitoxin system from pGI1 is thus a
composite mazE-doc-like system. In the second group
(group 12), 12 TA loci were found (identity > 27%). The
putative toxins downstream of the TasA-like genes were all
similar in size, except for the one originating from Pyrococ-
cus horikoshii, smaller than the others and than the TasB
toxin from pGIl. All the putative toxins found in this
group belonged to the conserved domain COG1848. Pro-
teins of this group are predicted nucleic acid-binding pro-
teins, containing a PIN domain. The PIN (PilT N-
terminus) domain was first annotated on the basis of
sequence similarity to the N-terminal domain of the pilT
protein from Myxococcus xanthus [29]. Proteins containing
such a domain can be found in the genome of a large vari-
ety of prokaryotes and eukaryotes. By analogy with
eukaryotic PIN proteins, which are ribonucleases [30],
prokaryotic PIN proteins have been predicted to be toxic
components of chromosomally encoded TA operons [31].
The wvapBC locus of Leptospirra interrogans has been
described as a toxin-antitoxin system in which the VapC
toxin contains a PIN domain [32].

Both loci of the next group (group 13) harboured a con-
served domain COG5573. This group is related to the
COG1848 group and also contains a PIN domain. The last
group (group 14) contained 3 loci of which the down-
stream proteins belonged to the pfam01850 group, also
harbouring a PIN domain. These 3 groups were thus con-
sidered to be functionally related as they all contained a
PIN domain. In addition to these groups, three orphan
cases of composite TA loci were found in which the asso-
ciated toxin showed no similarity with other toxins (see
Additional file 2).

In addition to those found above, a number of TasA
homologues were found for which no gene could be iden-
tified immediately downstream of their genomic location
(not shown). These genes were often longer than the anti-
toxin of pGI1. Only the N-part of the protein displayed a
high degree of homology with the antitoxin. These homo-
logues have been annotated as transcriptional regulator of
the AbrB- and SpoVT-family. Comparison with the CDD
(Conserved Domain Database, NCBI) showed that they
all harboured a SpoVT/AbrB-like domain [22]. The prod-
uct of the AbrB gene is an ambiactive repressor and activa-
tor of the transcription of genes expressed during the
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transition state between vegetative growth and the onset
of stationary phase and sporulation [33]. AbrB is thought
to interact directly with the transcription initiation
regions of genes under its control [34]. The product of the
B. subtilis gene spoVT is another member of this family and
is also a transcriptional regulator [35].

It has been shown that antitoxins contain motifs common
to different classes of DNA-binding proteins and can
therefore be classified according to their structural homol-
ogies: Met]/Arc superfamily and related ribbon-helix-helix
fold proteins, Phd/YefM and AbrB/MazE superfamilies
[36]. Multiple alignments of the TasA homologues
showed a highly conserved amino-terminal domain (Fig.
2). This was consistent with other studies that have used
mutational analyses to show that antitoxins bind to DNA
through their N-terminal domain [3].

Conclusion

In this work, we showed that the pGI1 plasmid of B. thur-
ingiensis H1.1 encodes a new toxin-antitoxin system,
called tasA-tasB for thuringiensis addiction system. This sys-
tem appeared to be functional in E. coli, and a single muta-
tion in the tasB gene was sufficient to inhibit the lethal
activity of the toxin in E. coli. However, the addition of a
plasmid containing the tasA gene failed to restore the via-
bility of the cells, probably due to an inappropriate
expression in the Gram-negative background.

Additionally, our study revealed a new family of TA lodi,
the TasAB family which is presently composed of at least
56 members, found in a large variety of microorganisms.
TA systems have been extensively described and their tox-
ins have been classified into superfamilies, according to
their structural homologies: the MazF/Kid/CcdB, the
RelE/ParE, the Doc and the PIN superfamilies [36]. In the
TasAB family, exhaustive protein sequence searches
showed that the TasB toxin of the tasAB system from pGI1
is similar to Doc of the phd-doc system. Interestingly, TasA
was not similar to the antitoxin Phd, but presented simi-
larities with the MazE antitoxin from the mazEF TA sys-
tem. The tasAB system and members of its family can thus
be viewed as hybrid systems between the phd-doc and the
mazEF systems. Moreover, other associations between tox-
ins and antitoxins from different families can be found, as
illustrated in our extensive protein search which showed
that TasA and TasB homologues can be found in associa-
tion with partners from other TA systems.

The present study confirmed that more than multiple TA
systems can be found in the same bacterium. In the Sul-
folobus solfataricus genome for exemple, 22 TA loci, all
from the vapBC family (vapC is a member of the PIN
domain family) have been found [28]. Interestingly,
microarray experiments have revealed the implication of
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these TA loci in the heat shock response, which involves
the modulation of their expression under stress condi-
tions [28]. Since TA system could be stress-response ele-
ments, it has been suggested that free-living organisms,
which grow slowly and are exposed to many environmen-
tal changes in comparison to host-associated organism,
would benefit from having many TA loci [26].

There seems to be a common organization within the TA
systems, featuring two genes, one coding for a toxin and
the other coding for a DNA-binding protein that functions
as an antitoxin and a transcription factor. Because com-
posite associations of different toxins and antitoxins were
found, it has been suggested that TA systems do not
descend from a common ancestor but have been assem-
bled from different proteins which can be displaced by
functional equivalents, while the operon architecture
itself is preserved [36]. Consistently with this idea, ORF of
unknown function associated with a TasB homologue
could potentially represent members of new antitoxin
families.

Methods

Bacterial strains, plasmids and growth conditions

Table 1 reports the bacterial strains used in this study,
including their origin, reference and main characteristics.
The B. thuringiensis and E. coli strains were grown on Luria-
Bertani (LB) broth, at 30°C and 37°C, respectively.

The primary cloning of the toxin and antitoxin genes was
performed using the kanamycin-resistance, positive-selec-
tion plasmid vector pCR4-TOPO (InVitrogen), and elec-
troporated into E. coli TOP10 strain. The antitoxin gene
was subsequently cloned in the ampicillin-resistance plas-
mid pCYB10 and the toxin gene in the chloramphenicol-
resistance plasmid pBAD33 (see PCR and cloning strate-
gies). Newly constructed plasmids were electroporated in
E. coli TG1 strains. The antibiotics were used at the follow-
ing concentrations: 50 pg/ml kanamycin (Kan), 100 pg/
ml ampicillin (Amp), and 15 pg/ml chloramphenicol
(Cm).

DNA preparation

Total DNA from B. thuringiensis H1.1 was prepared using
standard protocol and stored at -20°C. Plasmid DNA
preparations were obtained using the High Pure Plasmid
Kit (Roche).

PCR and cloning strategies

Cloning fragments of the toxin-antitoxin system from pGl| of B.
thuringiensis HI.I in pCR4-TOPO

Table 2 shows the oligonucleotide primers (purchased
from Sigma-Genosys) used in the PCR method for cloning
different gene fragments of the toxin-antitoxin system
from pGI1 of B. thuringiensis H1.1. One pair of primer
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Table I: Strains and plasmids. Strains and plasmids used in this study, including their origin, reference and main characteristics

Strains or plasmids Relevant features

Construction, source or reference

Strains

B. thuringiensis HI.1  Isolated from Ephestia kiihniella, Canada

IEBC (International Entomopathogenic Bacillus Center,
Pasteur Institute, Paris, France)

E. coli TOPI10 Cloning host InVitrogen
E. coli TGI Cloning host Gibson, 1984
Plasmids
pGlI Resident plasmid from B. thuringiensis H1.| Mahillon and Seurinck, 1988
pCR4-TOPO Positive-selection cloning vector, AmpR, KanR InVitrogen
pCYBI Cloning vector, AmpR, IPTG-inducible p,, promoter New England Biolabs Inc.
pCYBIO pCYBI deleted of intein gene J. Mahillon and F. Bilocq unpubl. results
pBAD33 Cloning vector, CmR, arabinose-inducible promoter pgap Guzman et al., 1995
pGIF02 PCR fragment containing antitoxin gene of pGlI cloned into This study
pCR4-TOPO
pGIF03 Ndel-Sall pGIF02 fragment containing the antitoxin gene A This study
cloned into pCYBIO
pGIF04Mx PCR fragment containing the toxin gene P cloned into pCR4- This study
TOPO, 4 clones obtained M| — M4
pGIF06Mx PCR fragment containing the antitoxin-toxin locus AP cloned This study
into pCR4-TOPO, 4 clones obtained M| — M4
pGIFO8MI PCR fragment containing the antitoxin-toxin locus pAP cloned This study
into pCR4-TOPO
pGIFIOMx PCR fragment containing the antitoxin-toxin locus p2AP cloned  This study

into pCR4-TOPO, |5 clones obtained Ml — MI5

amplified the toxin gene only (P), while another pair
amplified a region from the start of the antitoxin gene to
the stop of the toxin gene (AP). A third pair flanked the
toxin and antitoxin genes with an upstream region
thought to contain the promoter region (pAP). Finally,
the last pair of primers amplified an additional 78 bp
region upstream of the antitoxin gene (p,AP) (Fig. 1B).
One pl of total DNA (50-fold dilution) of B. thuringiensis
H1.1 was used for the amplification of the gene fragments

in a 50 pl mixture containing 1 pl of DyNAzyme I DNA
polymerase (FINNZYME), 5 pl of the 10 x standard
buffer, 0,5 ul ANTP (20 mM) and 5 pl primers (10 uM).
The reaction was performed in a Perkin Elmer GeneAmp
PCR System 9600 thermal cycler using the following pro-
gram: initial denaturation at 96°C for 10 min, 30 cycles of
denaturation at 92°C for 1 min, annealing for 1 min at
50°C and extension at 72°C for 1 min 30 sec. An addi-

Table 2: Oligonucleotide primers. Oligonucleotide primers used in PCR assays to clone different segments of the toxin-antitoxin

system from pGl|I.

Segment Region amplified (Accession Oligonucleotide primersP Primer Length (bp) of amplified region
number : AY138809)2 names

A (304-629)C 5-TTAGGCATATGACAGCAAACACTCGCCACATGG-3' DOTF 345 bp
5-AATATGTCGACTCATTTCGGTTTTCCTACTTTCCTCC-3' DOTR2

P (8147-8254,1-332)¢ 5-GGCCCGGTACCGTGGAGGAAAGTAGGAAAACCG-3' pOIf 459 bp
5'-CCCGTCGACCCCACGTCTTTTTTTAATTTAAAGG-3' pOlIr

AP (8147-8254,1-629)C 5'-TTAGGCATATGACAGCAAACACTCGCCACATGG-3' DOTF 754 bp
5'-CCCGTCGACCCCACGTCTTTTTTTAATTTAAAGG-3' pOlr

pAP (8147-8254,1-861)C 5-AACGGTTAATACGTTCTAACTG-3' ValC 978 bp
5'-CCCGTCGACCCCACGTCTTTTTTTAATTTAAAGG-3' pOIr

p,AP (8147-8254,1-939)C 5'-GGCTCTAGAATCTTCCCTATC-3' ValC2 1056 bp
5'-CCCGTCGACCCCACGTCTTTTTTTAATTTAAAGG-3' pOlIr

RTA (370...630)< 5'-AATGACAGCAAACACTCGCC-3' RTAf 261 bp
5'-GCACCGTCAAATTTATTGATGG-3' RTAr

RTP (8249-8254,1-228)C 5'-GAGGTGTTAAAGATACAGG-3' RTPf 234 bp
5'-AATCTGAAGCTTCTTGTTCGG-3' RTPr

RTAP (8249-8254,1-630)< 5'-AATGACAGCAAACACTCGCC-3' RTAf 636 bp
5'-AATCTGAAGCTTCTTGTTCGG-3' RTPr

a: C indicates complementary sequences.
b: Letters in bold refer to restriction sites.
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tional extension step for 10 min at 72°C ends the ampli-
fication program.

The PCR products were ligated into the plasmid vector
pCR4-TOPO using the protocol described in the TOPO TA
cloning Kit for sequencing (InVitrogen) and transformed
by electroporation into E. coli TOP10. Inserts from the
KanR recombinants were sequenced by Genome Express
(France) using the M13 universal primers.

Cloning of the antitoxin gene in pCYBI0

The pCR4-TOPO plasmid containing the A fragment (Fig.
1B), obtained as described above, was sequenced to assess
the absence of any mutation, and called pGIF02. Both
pGIF02 (KanR, AmpR) and pCYB10 plasmids (AmpR)
were restricted by Ndel and Sall enzymes. After extraction
on gel using Quantum Prep Freeze'N Squeeze DNA Gel
Extraction Spin Column (Biorad), the restricted fragments
were ligated using 2 units of T4 DNA ligase (Fermentas, T4
DNA ligase Rapid ligation kit). The newly constructed
plasmid, pGIFO3 obtained in E. coli TG1 was sequenced
by Genome Express (France).

Bioinformatics

Search for TasA and TasB homologues

The amino acid sequence of the putative TasB toxin was
compared using standard BLASTP http://
www.ncbi.nlm.nih.gov/BLAST. The cut-off E-value used
in this analysis was 1. The genomic regions carrying
potential toxin homologues were analyzed individually
using DS Gene 1.5 (Accelrys), in order to find any
upstream ORF. The same method was applied to the TasA
antitoxin of pGI1 from B. thuringiensis H1.1, to find
potential downstream partners. All the loci found in this
computational study are listed in the Additional file 1.

Classification of putative toxins and antitoxin partners

Each immediate upstream ORF of TasB homologue, and
downstream ORF of TasA homologue were translated in
silico, using DS Gene 1.5, and compared to the Conserved
Domain Database [22] in order to search for similarity
with other known antitoxins/toxins from TA systems or
with other known proteins. Identity percentages were cal-
culated within a group by wusing NCBI/BLAST/
align2sequences.
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Additional material

Additional File 1

Accession numbers. Accession number of all proteins (TasB homologues,
TasA homologues, and their associated proteins) are listed in this table.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-259-S1.pdf]

Additional File 2

Genetic organization of genomic loci whose corresponding proteins
show similarities with TasA and/or TasB. Detailed and scaled represen-
tation of genomic loci harbouring a tasA and/or a tasB homologue. The
bacterial hosts of the loci are indicated in the right column, together with
the taxonomic groups they belong to. On the left, "P" indicates that the
locus is found on a plasmid; others are chromosomal loci. Genes whose
corresponding proteins show similarities with both TasA antitoxin and
TasB toxin of pGI1 are shown in green and pink, respectively. The upper
part of the scheme shows a scaled representation of the genomic locations
of TasB homologues (in pink) and their associated upstream ORF. Based
on their putative antitoxin similarities, these TA loci could be classified
into 10 groups shown with distinct colours. Genes in white are orphan
genes whose corresponding proteins share no similarity with other known
proteins. In several cases, larger genes encode proteins whose C-terminal
ends are unrelated to the TasA antitoxin, but display similarities with a
putative virulence protein (grey). The dashed red box in the toxin of Ps.
aeruginosa refers to a double frameshift (see text for details). The middle
part of the picture indexes all members of the TasAB family, where all loci
harbour homologies with both TasA and TasB. The lower part of the figure
shows a scaled representation of the genetic organization of tasA homo-
logues and their associated downstream ORF. These putative TA systems
are displayed as 4 groups on the basis of their putative toxins. Genes in
white are orphan genes whose corresponding proteins do not share signif-
icant similarities with other proteins.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-259-82.pdf]

Additional File 3

Alignments of groups of upstream- and downstream proteins of TasB
and TasA homologues. Bioinformatics analyses yielded 10 groups of
upstream proteins and 4 groups of downstream proteins (see text for
detail). Alignments of each group (1 to 14) are represented in this figure.
The names of the strains where these loci were found are indicated in the
left column. The consensus sequence is displayed in the last line. Fully con-
served amino acids are in dark grey while the other most conserved resi-
dues (>50%) are shown in light grey.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-259-83.pdf]
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