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Abstract

Background: The multi-step process of carcinogenesis can be more fully understood by
characterizing gene expression changes induced in cells by carcinogens. In this study, expression
microarrays were used to monitor the activity of 18,224 cDNA clones in MCF-7 and HepG2 cells
exposed to the carcinogen benzo(a)pyrene (BaP) or its non-carcinogenic isomer benzo(e)pyrene
(BeP). Time and concentration gene expression effects of BaP exposure have been assessed and
linked to other measures of cellular stress to aid in the identification of novel genes/pathways
involved in the cellular response to genotoxic carcinogens.

Results: BaP (0.25-5.0 uM; 6—48 h exposure) modulated 202 clones in MCF-7 cells and 127 in
HepG2 cells, including 27 that were altered in both. In contrast, BeP did not induce consistent gene
expression changes at the same concentrations. Significant time- and concentration-dependent
responses to BaP were seen in both cell lines. Expression changes observed in both cell lines
included genes involved in xenobiotic metabolism (e.g., CYPIBI, NQOI, MGSTI, AKRICI,
AKRIC3,CPM), cell cycle regulation (e.g., CDKNIA), apoptosis/anti-apoptosis (e.g., BAX, IER3),
chromatin assembly (e.g., histone genes), and oxidative stress response (e.g., TXNRD[). RTqPCR
was used to validate microarray data. Phenotypic anchoring of the expression data to DNA adduct
levels detected by 32P-postlabelling, cell cycle data and p53 protein expression identified a number
of genes that are linked to these biological outcomes, thereby strengthening the identification of
target genes. The overall response to BaP consisted of up-regulation of tumour suppressor genes
and down-regulation of oncogenes promoting cell cycle arrest and apoptosis. Anti-apoptotic
signalling that may increase cell survival and promote tumourigenesis was also evident.

Conclusion: This study has further characterised the gene expression response of human cells
after genotoxic insult, induced after exposure to concentrations of BaP that result in minimal
cytotoxicity. We have demonstrated that investigating the time and concentration effect of a
carcinogen on gene expression related to other biological end-points gives greater insight into
cellular responses to such compounds and strengthens the identification of target genes.
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Background

The DNA damage that is caused by chemical carcinogens
is important in the initiation of carcinogenesis. For pro-
motion and progression of an initiated cell to occur, how-
ever, other events within the cell need to take place and
such events are likely to involve gene expression changes
induced by the carcinogen. A broader understanding of
the impact of carcinogen treatment in specific cells can be
mechanistically informative and may enlarge the number
of candidate genes contributing to variations in individual
susceptibility to carcinogens. Microarray technology
offers an attractive method by which to look globally at
the extent to which gene expression is affected by carcino-
gen exposure and may give key insights into its carcino-
genic effects [1-3].

The prime aim of this study was to look at early gene
expression changes induced by the environmental carci-
nogenic polycyclic aromatic hydrocarbon (PAH),
benzo(a)pyrene (BaP) [4,5], at non-cytotoxic doses, in
order to identify novel genes/pathways involved in the
cellular response to genotoxic carcinogens. We also
wanted to investigate if the gene expression data could be
correlated with other cellular effects of carcinogen expo-
sure. To date, reports concerning expression profiling in
mammalian tissues and cells following exposure to BaP or
its metabolites [3,6-11] have been limited by several fac-
tors, including the use of only one concentration or expo-
sure time, investigation of only one cell type, and in many
cases only small, targeted array-sets have been used, which
can restrict the number of novel candidate genes that can
be identified in such carcinogen-exposure experiments.
The cellular response to genotoxic stress may depend on
the cell type being insulted, compound concentration and
duration of exposure and it is important to understand the
common and specific pathways of such responses. In this
study we have analysed the transcriptomes of two distinct
human cell lines, MCF-7 derived from a breast carcinoma
and HepG2 originating from a hepatocellular carcinoma,
after exposure to multiple concentrations of BaP and for
different lengths of time to identify the relationship
between these variables and gene expression modulation.
Both cell lines are known to be metabolically competent
in bioactivating carcinogens such as BaP [3,6] and contain
wild-type p53 alleles [12,13]. In order to gain as much
mechanistic insight as possible and to get a global picture
of gene expression we have used large cDNA microarrays
allowing us to analyse a total of 18,224 known human
genes and expressed sequence tags (ESTs). Phenotypically
anchoring carcinogen-induced gene expression profiles to
other measures of toxic/genotoxic insult can aid in the
identification of target genes [11]. Gene expression data
have therefore been related to a number of other pheno-
typic measures, including DNA adduct formation, cell
cycle effects and p53 protein activation. By linking the
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gene expression changes to these biological outcomes we
aim to strengthen the process of identifying target genes
involved in the cellular response to BaP exposure. Cells
were also exposed to the non-carcinogenic isomer of BaP,
benzo(e)pyrene (BeP), to try to distinguish between the
genotoxic and toxic gene expression responses to BaP.

Profiles of transcription signatures generated for HepG2
and MCF-7 cells were used to compare overall patterns of
gene expression and to identify differentially expressed
genes. Here we report on a number of BaP-induced gene
expression changes identified as unique to each cell line,
but also on a sub-set common to both cell lines. Our
results suggest a complex gene expression response to BaP
exposure in human cells; nevertheless, some clear time-
and concentration-dependent gene expression responses
were observed, highlighting the importance of using mul-
tiple concentrations and time-points in carcinogen-expo-
sure gene expression studies. We have also shown that
relating the expression data to other measures of cellular
stress can give greater understanding of molecular mecha-
nisms involved in the cellular response to carcinogen
exposure.

Results

DNA adduct analysis

DNA adducts were measured in cells exposed to BaP for
up to 48 h (Figure 1) in order to establish biologically sig-
nificant concentrations to be used for the microarray
experiments and to enable gene expression changes to be
related to DNA damage levels. As shown in Figure 1, in
MCE-7 cells BaP exposure resulted in a time- and concen-
tration-dependent response in DNA adduct formation via
the reactive metabolite anti-benzo(a)pyrene-trans-7,8-
dihydrodiol-9,10-epoxide (BPDE) bonded to the N2 posi-
tion of guanine. A low level of DNA adduct formation was
observed in MCF-7 cells after 6 h exposure relative to 24
and 48 h exposure. After 24 and 48 h exposure, DNA
adduct levels increased with BaP concentration up to 1
UM at 24 h and to 2.5 uM at 48 h, after which a plateau
was reached in this cell line. A concentration-dependent
increase in adduct formation was also detected in HepG2
cells exposed to BaP (Figure 1), however, similar adduct
levels were detected at each time-point. Adduct levels were
generally lower in HepG2 cells than in MCF-7 cells,
although the numbers of adducts in both cell lines did fall
within the same order of magnitude. DNA adducts were
not detected in MCF-7 or HepG2 control cells. Exposure
of cells to 2.5 and 5.0 uM of BeP did not result in loss of
cell viability or DNA adduct formation (data not shown).

BaP concentrations (0.25, 1.00, 2.50, 5.00 uM) were then
chosen for the microarray experiments that resulted in
low to high DNA adduct formation. A principle aim of
this study was to identify gene expression changes related
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DNA adduct formation measured by 32P-postlabelling in MCF-7 cells and HepG2 cells after BaP exposure. The values are the
log!'®mean + S.D. of duplicate determinations of 2 independent experiments.

to carcinogenesis rather than toxicity. Therefore exposure
times of up to 48 h were used as limited cytotoxicity was
observed up to this time-point (Figure 2).

Gene expression profiling of treated cells

Filtering of Lowess normalised gene expression data in
GeneSpring software identified 202 and 127 cDNA clones
(See Additional file 1) that were modulated by at least 1.4-
fold and that had a significant t-test p-value (< 0.05) in at
least one sample of the MCF-7 and HepG2 cells, respec-
tively. A number of altered genes were represented on
both the 15 K and 6 K microarray systems and their con-
sistent induction or repression on both arrays gives confi-
dence in the reproducibility of the two systems. 2-Way
ANOVA was performed on these gene lists in order to
identify gene alterations dependent on BaP concentration
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or exposure time or both (Table 1 and Additional files 2
and 3). In both cell lines genes were altered in a time- and
concentration-dependent manner and such expression
changes are likely to be a true effect of BaP exposure. Fur-
ther to this, the overall effect of time and concentration on
BaP gene expression modulation in the two cell lines was
analysed (Figure 3 and 4). Exposure of the MCF-7 cells to
the lower concentrations of 0.25 and 1 UM BaP appears to
result in initial induction or repression of gene expression
after 24 h exposure followed by recovery to normal
expression levels after 48 h (Figure 3). There is little effect
on gene expression in the MCF-7 cells after 6 h exposure
to the higher concentrations of 2.5 and 5 uM BaP, fol-
lowed by induction after 24 and 48 h with greatest levels
being reached at 48 h. For a number of genes affected by
BaP in this cell line there is an increase in expression with
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Effects of BaP on MCF-7 and HepG2 cell viability relative to controls. The values are the mean + S.D. of two independent

experiments.
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Table I: Numbers of genes identified by 2-Way ANOVA from the 15 K and 6 K microarray data as being differentially expressed as an
effect of BaP or BeP exposure time or concentration in MCF-7 and HepG2 cells

2-Way ANOVA Parameters

Number of gene expression changes

Time
Concentration
Time and concentration overlap

MCEF-7 HepG2
BaP BeP BaP BeP
130 12 68 0
74 2 55 0
67 | 39 0

concentration after 24 and 48 h exposure with a plateau
being reached at 1 uM after 24 h and 2.5 uM after 48 h,
examples of which can be seen in Figure 4. This response
mirrors the DNA adduct formation response observed in
the MCEF-7 cells (Figure 1). In Figure 3 it can be seen that
clear induction of expression in the HepG2 cells is only
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Figure 3

evident for 5 UM exposure at 48 h. For the lower concen-
trations the general pattern looks to be initial induction or
repression at the earlier time-points of 6 and 24 h fol-
lowed by recovery to normal expression at 48 h (Figure 3).
Expression levels of a number of genes in this cell line
increase with concentration although a plateau is reached
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Average gene expression profiles for time- and concentration-dependent MCF-7 up-regulated genes and down-regulated genes
and HepG2 up-regulated genes and down-regulated genesidentified from the 15 K microarray experiments after BaP exposure
(0.25-5 uM). Each gene profile has been re-scaled so that its mean is equal to 0 with a variance of |. These profiles represent
the average shape of the gene expression profiles and error bars represent the S.E. of the mean.
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at 2.5 uM for some of the genes, examples of which can be
seen in Figure 4. The HepG2 gene expression response
does not correlate so well with the DNA adduct response
although the earlier expression response in the HepG2
cells is consistent with the higher adduct formation that
occurs after 6 h BaP exposure in this cell line relative to
MCEF-7 cells. In both cell lines the degree of gene modula-
tion was small with fold-changes rarely exceeding 3-fold.
The number of changes identified was also relatively low
with less than 1% of the arrays being modulated and this
is consistent with other microarray studies that have
looked at the effects of BaP [6,14].

MCEF-7 and HepG2 cells were also exposed to the non-car-
cinogenic isomer of BaP, BeP, which does not form DNA
adducts, in order to distinguish genotoxic from toxic
responses induced by BaP. MCF-7 cells were exposed to
up to 2.5 uM BeP for 6, 24 and 48 h and HepG2 cells to 5
UM for 6 and 24 h. Gene expression changes induced by
BeP were analysed using the 15 K cDNA microarray. In
both cell lines few genes were significantly altered over
1.4-fold by BeP (Additional file 4) and comparison of the
BaP and BeP expression data did not identify any com-
mon significant or consistent gene changes. Figure 5 illus-
trates that the BaP and BeP gene expression responses are
clearly different.

In this report we have concentrated on those genes whose
expression was altered according to time or concentration
and also on those common between the two cell lines as
these are more likely to be linked to carcinogenesis. EASE
analysis [15] was performed on genes identified by 2-Way
ANOVA as affected by time and concentration to find bio-
logical processes significantly over-represented in these
gene lists for the two cell lines in order to identify any bio-
logical themes that occur in response to BaP. Biological
processes significantly affected (Fisher exact test p value <
0.05) by BaP are listed in Tables 2, 3, 4 and Additional file
5. In both cell lines BaP down-regulated a number of
processes related to nucleosome assembly and chromatin
structure organisation. In the HepG2 cells these processes
were both up-regulated and down-regulated. Over-repre-
sented themes among the up-regulated genes in both cell
lines included oncogenesis and cell cycle progression
from G2 to M phase.

Comparison of the MCF-7 and HepG2 BaP gene lists iden-
tified 27 genes as being modulated in both cell lines
(Table 5). All genes were modulated in the same direction
in both cell lines with the exception of CRADD. Also, in
the HepG2 cells, five histone genes that function in nucle-
osome assembly, together with TAF6L and UNC84A, were
repressed at 6 h, then induced at 24 h. In comparison,
these genes were repressed, but not induced, in the MCF-
7 cells and only after 48 h BaP exposure. The relationship
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between the MCF-7 and HepG2 cells' expression signa-
tures was visualised by Principal Components Analysis
(PCA) (Figure 6). This illustrates that there is greater sim-
ilarity between the expression profiles of the two cell lines
than there is between technical differences in the experi-
ment (i.e. the two different microarray formats). DNA
adduct levels were correlated with the expression changes
of the 27 common genes (Table 5). In the MCF-7 cells 21/
27 genes significantly correlated with DNA adduct levels
and only 8/27 did so in the HepG2 cells. A number of
genes correlated negatively with DNA adduct levels in the
MCE-7 cells, including the five histone genes involved in
nucleosome assembly.

RTqPCR

RTqPCR, a more sensitive and specific measure of gene
expression, was carried out to validate a number of inter-
esting expression changes and to determine the reliability
of the microarrays. Eight well-established and relevant
genes were selected to be measured by RTqPCR. Seven
genes that were up-regulated on the microarrays were ana-
lysed in this way (CYP1B1, NQOI1, AKR1C3, BAX, PCNA,
CDKNI1A and IER3) along with one down-regulated gene
(HIST1H3D). In the majority of cases the RTqPCR data
confirmed, and correlated significantly with, the microar-
ray data (Table 6) although expression ratios were gener-
ally underestimated by the microarrays relative to the
RTqPCR (Additional file 6). For CYP1B1, however, corre-
lation between the two methods was very low for both cell
lines. In the HepG2 cells no change in this transcript was
clearly evident from the microarrays, whereas RTqPCR
identified strong induction. RTqPCR was also used to
measure the expression of two genes, CYP1A1 and AHR,
encoding proteins widely known to be involved in the cel-
lular response to BaP, but not present on the microarrays.
RTQPCR results displayed strong induction of CYP1A1 in
both cell lines while the expression of AHR was not
altered (Additional file 6). Pearson correlation analysis of
DNA adduct levels with the microarray and RTqPCR data
shows that RTqPCR measurement of gene expression gen-
erally correlates better with the adduct levels, confirming
its utility as a more sensitive measure of gene expression.
RTQPCR was also used to measure the expression of
CDKN1A, CYP1A1, CYP1B1, HIST1H3D and IER3 in BeP-
treated MCF-7 and HepG2 cells. This method confirmed
the microarray results showing that this PAH did not alter
the expression of these genes (data not shown).

P53 protein expression

A number of p53-regulated genes were modulated in
response to BaP exposure (CDKNIA and BAX in both
MCEF-7 and HepG2 cells and also BTG2, PA26, CCNGI,
and DDB2 in MCEF-7 cells). As expected, induction of p53
gene expression was not observed on the microarrays and
this was confirmed by RTq-PCR (Additional file 6). p53
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Principal component analysis of MCF-7 cells exposed to BaP and BeP using the 165 BaP-modulated genes from the 15 K micro-
array analysis. Black represents BaP samples and grey, BeP samples.

protein levels were assessed by Western blot in order to
confirm accumulation of this tumour suppressor in
response to the BaP concentrations used in this study (Fig-
ure 7). Protein levels were analysed in MCF-7 and HepG2
cells incubated with 1 and 5 uM BaP or 5 uM BeP for 6, 24
and 48 h and compared to control cells exposed to DMSO
alone. An increase in p53 protein was observed in MCF-7
cells after exposure to 1 and 5 uM BaP for 24 and 48 h but
not 6 h, with higher levels being observed after 1 uM
exposure. Induction of p53 protein was observed in the
HepG2 cells only after incubation with 5 uM at 24 and 48
h. These profiles of p53 protein activation agree with the
expression patterns of the p53-regulated genes in the two
cell lines, examples of which can be seen in Figure 8. In
the MCF-7 cells induction of these genes was observed
after 24 and 48 h but not 6 h, with expression increasing
with time and lower levels of induction observed after 5
UM exposure relative to 1 uM. Induction of CDKN1A in
the HepG2 cells was only observed after 5 UM treatment,
in agreement with p53 protein accumulation in this cell
line, although up-regulation of this gene occurred at all

time-points, whereas protein accumulation was only seen
at 24 and 48 h. No increase in p53 protein was observed
after exposure to 5 UM BeP in either cell line.

Cell-cycle analysis of MCF-7 and HepG2 cells exposed to
BaP

The identification of altered expression of transcripts that
may effect cell cycle regulation and genes whose expres-
sion is tightly coupled with DNA synthesis on the micro-
arrays prompted the investigation of the effects of BaP on
the cell cycle parameters of MCF-7 and HepG2 cells. Data
representing the mean of two independent experiments
are collated in Table 7. Over time, both DMSO- and BaP-
treated cells appear to accumulate in the G1 phase with a
corresponding decrease in the number of cells in S phase,
which is indicative of cells reaching confluence. This is in
agreement with the detection of increasing numbers of
cells over time to form a confluent monolayer in the
medium (data not shown). In both cell systems, there was
marginal accumulation of cells in the S phase of the cell
cycle after 24 and 48 h exposure to 2.5 uM BaP as com-
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Table 2: Biological processes significantly affected (Fisher exact test p value < 0.05) by BaP in MCF-7 cells as determined by EASE

MCEF-7 time and concentration down-regulated genes

MCF-7 time and concentration up-regulated genes

Biological Process

regulation of actin filament length

actin cytoskeleton organization and biogenesis
actin filament-based process

regulation of actin polymerization and/or depolymerization
one-carbon compound metabolism

cell organization and biogenesis

nucleosome assembly

carboxylic acid metabolism

organic acid metabolism

actin polymerization and/or depolymerization

amine metabolism

establishment and/or maintenance of chromatin architecture

DNA packaging

chromatin assembly/disassembly

amino acid metabolism

cytoskeleton organization and biogenesis
chromosome organization and biogenesis (sensu Eukarya)
muscle maintenance

negative regulation of actin filament polymerization
anion homeostasis

monovalent inorganic anion homeostasis
asparagine metabolism

sequestering of actin monomers

asparagine biosynthesis

nuclear organization and biogenesis

amino acid and derivative metabolism

cell growth

myelination

isoleucyl-tRNA aminoacylation

threonyl-tRNA aminoacylation

regulation of actin filament polymerization
organelle organization and biogenesis

salivary gland morphogenesis

Probability
4.9E-06
| .8E-04
2.4E-04
4.0E-04
4.6E-04
8.2E-04
9.0E-04
| .5E-03
|.6E-03
2.2E-03
2.4E-03
3.2E-03
4.3E-03
4.7E-03
4.7E-03
5.8E-03
6.4E-03
6.5E-03
6.5E-03
6.5E-03
6.5E-03
6.5E-03
6.5E-03
6.5E-03
6.8E-03
7.8E-03
1.0E-02
I.3E-02
1.3E-02
I.3E-02
1.3E-02
|.7E-02

|.9E-02

Biological Process

water-soluble vitamin metabolism
sodium\:calcium exchange
pentose-phosphate shunt, oxidative branch
glyoxylate cycle

glyoxylate metabolism

vitamin metabolism

amino acid transport

thiamin and derivative metabolism
embryonic eye morphogenesis

solute, solute exchange

thiamin metabolism

internal protein amino acid acetylation
eye morphogenesis (sensu Vertebrata)
eye morphogenesis (sensu Mammalia)
isocitrate metabolism
amine/polyamine transport

regulation of CDK activity

negative regulation of cell proliferation
GPI anchor biosynthesis

GPI anchor metabolism

regulation of survival gene product activity

negative regulation of survival gene product activity

G2/M transition of mitotic cell cycle
carboxylic acid transport

organic acid transport

apoptotic mitochondrial changes
germ-cell development

protein amino acid acetylation

GI1/S transition of mitotic cell cycle
NADPH metabolism

NADPH regeneration

CTP biosynthesis

UTP metabolism

Probability
3.7E-03
6.2E-03
6.2E-03
6.2E-03
6.2E-03
8.6E-03
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.2E-02
1.3E-02
| .4E-02
1.6E-02
|.8E-02
1.8E-02
1.8E-02
|.8E-02
|.9E-02
2.1E-02
2.1E-02
2.4E-02
2.4E-02
2.4E-02
2.5E-02
3.0E-02
3.0E-02
3.0E-02

3.0E-02
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Table 2: Biological processes significantly affected (Fisher exact test p value < 0.05) by BaP in MCF-7 cells as determined by EASE

salivary gland development 1.9E-02 UTP biosynthesis 3.0E-02
folic acid and derivative biosynthesis 2.6E-02 pentose-phosphate shunt 3.0E-02
glycine metabolism 2.6E-02 CTP metabolism 3.0E-02
cytoplasm organization and biogenesis 2.6E-02 synaptic transmission), cholinergic 3.0E-02
actin filament polymerization 3.2E-02 eye morphogenesis 3.0E-02
folic acid and derivative metabolism 3.2E-02 pyrimidine ribonucleoside triphosphate metabolism  3.0E-02
regulation of cell growth 3.8E-02 pyrimidine ribonucleoside triphosphate biosynthesis  3.0E-02
aspartate family amino acid biosynthesis 3.8E-02 pyrimidine ribonucleotide biosynthesis 3.6E-02
L-serine metabolism 3.8E-02 GTP metabolism 3.6E-02
nerve ensheathment 4.4E-02 GTP biosynthesis 3.6E-02
negative regulation of cell adhesion 4.4E-02 pyrimidine ribonucleotide metabolism 3.6E-02
nerve maturation 4.4E-02 nicotinamide metabolism 3.6E-02
glycosphingolipid biosynthesis 4.4E-02 pyrimidine nucleoside triphosphate metabolism 3.6E-02
tRNA aminoacylation for protein translation 4.6E-02 phosphoinositide biosynthesis 3.6E-02
tRNA aminoacylation 4.6E-02 oncogenesis 3.8E-02
amino acid activation 4.6E-02 DNA repair 4.2E-02
tRNA modification 4.7E-02 covalent chromatin modification 4.2E-02
phosphoinositide metabolism 4.2E-02
histone deacetylation 4.2E-02
pyridine nucleotide metabolism 4.2E-02
heavy metal sensitivity/resistance 4.2E-02
nerve-nerve synaptic transmission 4.2E-02
histone modification 4.2E-02
aldehyde metabolism 4.2E-02
protein modification 4.3E-02
main pathways of carbohydrate metabolism 4.5E-02
obsolete biological process 4.7E-02
prostanoid metabolism 4.8E-02
embryonic development (sensu Vertebrata) 4.8E-02
lipoprotein biosynthesis 4.8E-02
insulin receptor signaling pathway 4.8E-02
prostaglandin metabolism 4.8E-02
embryonic development (sensu Mammalia) 4.8E-02
protein lipidation 4.8E-02
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Table 3: Biological processes significantly affected (Fisher exact test p value < 0.05) by BaP in HepG2 cells as determined by EASE

HepG2 time and concentration down-regulated genes

HepG2 time and concentration up-regulated genes

Biological Process
nucleosome assembly

establishment and/or maintenance of chromatin architecture

DNA packaging

chromosome organization and biogenesis (sensu Eukarya)

nuclear organization and biogenesis
chromatin assembly/disassembly
complement activation, classical pathway
complement activation

vacuolar protein catabolism

DNA metabolism

blood coagulation

transcription from Pol Il promoter
hemostasis

morphogenesis

humoral defense mechanism (sensu Vertebrata)
FGF receptor signaling pathway

skeletal development

Probability
2.0E-04

4.7E-04
6.4E-04
9.7E-04
1.0E-03
1.1E-03
4.5E-03
6.0E-03
7.8E-03
9.5E-03
2.3E-02
2.7E-02
2.7E-02
3.6E-02
3.7E-02
3.8E-02
4.7E-02

Biological Procees Probability
nucleosome assembly 4.5E-04
prostaglandin metabolism 6.9E-04
prostanoid metabolism 6.9E-04
establishment and/or maintenance of chromatin architecture 1.3E-03
DNA packaging 1.8E-03
chromatin assembly/disassembly 2.4E-03
chromosome organization and biogenesis (sensu Eukarya) 2.7E-03
nuclear organization and biogenesis 2.9E-03
icosanoid metabolism 3.3E-03
blood coagulation 3.6E-03
hemostasis 4.5E-03
glucuronate metabolism 5.1E-03
uronic acid metabolism 5.1E-03
UDP-glucuronate biosynthesis 5.1E-03
glucuronate biosynthesis 5.1E-03
UDP-glucuronate metabolism 5.1E-03
obsolete biological process 5.3E-03
DNA metabolism 7.1E-03
xenobiotic metabolism 9.4E-03
response to xenobiotic stimulus 1.0E-02
keratinocyte differentiation 1.0E-02
endothelial cell differentiation 1.0E-02
UDP-glucose metabolism 1.0E-02
myoblast differentiation 1.0E-02
cell growth and/or maintenance 1.1E-02
G2/M transition of mitotic cell cycle 1.4E-02
cellular process 1.4E-02
cell organization and biogenesis 1.4E-02
lipid transport 1.5E-02
cysteine metabolism 1.5E-02
embryogenesis and morphogenesis 2.3E-02
synaptic transmission, cholinergic 2.5E-02
actin filament polymerization 2.5E-02
oncogenesis 2.7E-02
response to chemical substance 2.9E-02
electron transport 2.9E-02
regulation of cell migration 3.0E-02
glycosaminoglycan biosynthesis 3.0E-02
regulation of DNA replication 3.5E-02
N signaling pathway 3.5E-02
heavy metal sensitivity/resistance 3.5E-02
nerve-nerve synaptic transmission 3.5E-02
aminoglycan biosynthesis 3.5E-02
glutathione biosynthesis 3.5E-02
regulation of apoptosis 4.0E-02
glutathione metabolism 4.0E-02
nucleotide-sugar metabolism 4.0E-02
negative regulation of apoptosis 4.5E-02
anti-apoptosis 4.5E-02
carboxylic acid metabolism 4.7E-02
organic acid metabolism 4.8E-02
lipoprotein metabolism 5.0E-02
nitric oxide metabolism 5.0E-02
nitric oxide biosynthesis 5.0E-02

pared to DMSO-treated cells. By 72 h the cells had
resumed moving through S phase with a marginal accu-

mulation in G1 occurring in the MCF-7 cells and an accu-
mulation in G2 occurring in HepG2 cells. Arrest of the
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Table 4: Biological processes significantly affected by BaP in both MCF-7 and HepG2 cells

Time and concentration down-regulated genes

Time and concentration up-regulated genes

nucleosome assembly

establishment and or maintenance of chromatin architecture
DNA packaging

chromosome organization and biogenesis (sensu Eukarya)
nuclear organization and biogenesis

chromatin assembly/disassembly

G2/M transition of mitotic cell cycle
heavy metal sensitivity/resistance
nerve-nerve synaptic transmission
obsolete biological process
oncogenesis

prostaglandin metabolism
prostanoid metabolism

synaptic transmission, cholinergic

cells in the S phase of the cell cycle implies that DNA syn-
thesis is being inhibited in both cell lines in response to
BaP exposure.

Discussion

Chemical carcinogenesis is a multi-step process still not
fully understood and the identification of environmental
factors that influence this process and insight into their

Principal Component 2

0 QU ~ - 0.0 D340 040

- ==

Figure 6

mechanistic action will help our understanding of cancer
and its causes, and ultimately how it can be prevented.
Studies have shown that microarray technology is a pow-
erful tool for identifying gene expression patterns that are
reflective of a cell's response to chemical exposure [3,7,16]
and can give insight into mechanism of action [1,17]. The
aim of this study was to evaluate the use of this technology
to elucidate the cellular response to a carcinogenic PAH,

oy
m
L

0.50 060 070, .- .48 090 1,00

Principal Component 1

Principal component analysis of MCF-7 and HepG2 cells exposed to BaP using the total BaP-modulated genes in both cell lines
from the 15 K and 6 K microarray analysis (302 genes). Black represents MCF-7 samples and grey, HepG2 samples. Samples
grouped by the solid line are 6 K samples and those by the dashed line are 15 K samples.
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Table 5: Genes that were significantly altered by at least 1.4-fold in response to BaP in both MCF-7 and HepG2 cells

IMAGE Clone ID Gene Symbol Genbank

Accession Number

Gene Title Pearson correlation

with DNA adducts

Biological Process Direction of expres-

sion alteration?
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MCF-7 HepG2 MCF-7 HepG2
1473304 AKRIC3 BQ939577 Aldo-keto reductase family |, member C3 (3-alpha cell proliferation; prostaglandin metabolism T 0 0.261 -0.065
hydroxysteroid dehydrogenase, type Il)
810724 IER3 BM994398 Immediate early response 3 anti-apoptosis; cell growth and/or maintenance; T T 0.192 0.805'
embryogenesis and morphogenesis; morphogenesis
789376 TXNRDI NM_003330 Thioredoxin reductase | electron transport; heavy metal sensitivity/resistance; T T 0.849 0.253
signal transduction
768443 MGSTI AK 123482 Microsomal glutathione S-transferase | prostaglandin metabolism T 0 0.599 0.815
196992 AKRICI AK095239 Aldo-keto reductase family |, member CI (dihydrodiol xenobiotic metabolism T T 0.383 0.078
dehydrogenase |; 20-alpha (3-alpha)-hydroxysteroid
dehydrogenase)
214006 HISTIH2BG NM_003518 Histone |, H2bg nucleosome assembly; regulation of transcription\, 2 1 -0.780 -0.201
DNA-dependent
1842170 HISTIH4B BX102654 Histone |, H4b nucleosome assembly; regulation of transcription\, l " -0.620 -0.173
DNA-dependent
129467 HISTIH2B) BF983642 Histone |, H2bj nucleosome assembly; regulation of transcription\, l " -0.709 -0.193
DNA-dependent
268891 HISTIH3D BQO051491 Histone I, H3d embryogenesis and morphogenesis; nucleosome 2 1 -0.896 -0.214
assembly
263087 CRYI AKI125915 Cryptochrome | (photolyase-like) DNA repair; circadian rhythm; vision T 0 0.805 0.215
140997 GDFI5 BO883534 Growth differentiation factor 15 signal transduction T ™ 0.940 0.716
273392 PIGF BM558246 Phosphatidylinositol glycan, class F GPI anchor biosynthesis T T 0.908 0.847
376772 RPS27L BC047648 Ribosomal protein $27-like cell proliferation; protein biosynthesis; signal T T 0.944 0.380
transduction
1461138 HISTIH4C CD048335 Histone |, H4c nucleosome assembly; regulation of transcription\, l " -0.706 -0.156
DNA-dependent
205819 CPM NM 001874 Carboxypeptidase M aromatic compound metabolism; morphogenesis; T 0 0.930 0.768
proteolysis and peptidolysis
1673711 GOLGAI us51587 Golgi autoantigen, golgin subfamily a, | ™ T 0.194 -0.206
166273 CDKNIA NM 078467 Cyclin-dependent kinase inhibitor |A (p21, Cipl) cell cycle arrest; induction of apoptosis by intracellular T 0 0.947 0.713
signals; negative regulation of cell proliferation;
oncogenesis; regulation of CDK activity
324356 NQOI NM 9 NAD(P)H dehydrogenase, quinone | electron transport; nitric oxide biosynthesis; response T 0 0.884 -0.023
to toxin; synaptic transmission\, cholinergic; xenobiotic
metabolism
49442 TXNRDI NM 003330 Thioredoxin reductase | electron transport; heavy metal sensitivity/resistance; T T 0.866 0.003
signal transduction
233273 STOM NM 004099 Stomatin T T 0.925 0.886
25398 UNCS84A BX640866 Unc-84 homolog A (C. elegans) { " -0.662 -0.097
731750 TAF6L BC008785 TAF6-like RNA polymerase Il, p300/CBP-associated factor chromatin remodeling; regulation of transcription from \2 1 -0.802 -0.210
(PCAF)-associated factor, 65kDa Pol Il promoter; transcription initiation
381786 MAK NM 005906 Male germ cell-associated kinase protein amino acid phosphorylation; spermatogenesis T T 0.869 0.493
323511 C70RF36 BX648555 Chromosome 7 open reading frame 36 T T 0917 0.567
760246 BLOCIS2 NM 001001342 Biogenesis of lysosome-related organelles complex-1, subunit 2 T 0 0.971 0.886
233279 SCD NM 005063 Stearoyl-CoA desaturase (delta-9-desaturase) fatty acid biosynthesis l d -0.372 -0.482
24032 CRADD AL832705 CASP2 and RIPK| domain containing adaptor with death induction of apoptosis via death domain receptors; signal T N 0.359 0.420

domain

transduction

'Values in bold are significant Pearson correlations (p < 0.05).
2Genes with arrows in both directions represent those that were down-regulated at one time-point and then up-regulated at another or vice versa.
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Table 6: Pearson correlation analysis of selected gene expression changes measured by microarray and RTqPCR with DNA adduct

levels
Gene Cell line Microarray and RTq-PCR Microarray and DNA adducts RTq-PCR and DNA adducts
Pearson Correlation Coefficient
AKRIC3 MCF-7 0.723 0.298 0.452
HepG2 0.765 0.138 -0.481
BAX MCF-7 0.828 0.783 0.976
HepG2 0.704 0.302 0.144
CDKNIA MCEF-7 0.947 0.953 0.968
HepG2 0.634 0.694 0.791
HISTHI3D MCF-7 0.967 -0.905 -0.983
HepG2 0.762 -0.240 0.082
IER3 MCEF-7 -0.225 0.243 -0.921
HepG2 0.879 0.764 0.633
PCNA MCF-7 0.882 -0.520 -0.272
HepG2 0.784 0.092 -0.048
NQOI MCEF-7 0.879 0.923 0.980
HepG2 0.419 -0.433 0.617
CYPIBI MCF-7 0.125 -0.045 -0.204
HepG2 -0.308 -0.537 0.251

'Values in bold are significant Pearson correlation coefficients (p < 0.05).

BaP, in mammalian cells, in order to identify genes/path-
ways involved in the carcinogenic process and to assess
how such expression profiles relate to other phenotypic
measures of BaP exposure.

Several studies have now looked at the effects of BaP or its
metabolites on mammalian gene expression [6-10]; they
have been limited, however, by the use of only one time-
point or exposure concentration, have investigated only
one cell type or have used DNA microarrays with a limited
number of genes. To gain a more complete picture of the
BaP gene expression response we have used multiple
exposure times and concentrations, assessed two different
cell systems, and used large genome-wide microarrays
containing 18,224 cDNA clones. In addition, the gene
expression profiles have been anchored to other pheno-
typic measures of BaP exposure. DNA adduct measure-
ments, cell cycle analysis and p53 protein expression have
been investigated and gene expression changes have been
linked to these biological outcomes. The combining of
data from these different measures permits a more com-
plete understanding of the biological effects of BaP on
human cells. MCF-7 and HepG2 cells have been used in
this study based on their widespread use in toxicity studies
and/or gene expression studies [3,6,18]. Although these
are not normal cells they have the advantage of being easy
to maintain, are well-characterised, and have normal p53
function. In addition, regulation of xenobiotic metabolis-
ing genes has been shown to be similar in HepG2 and pri-
mary human hepatocytes [19], suggesting that the former
are a suitable tool to study gene regulation in liver cells.

A number of time- and concentration-dependent gene
expression changes were identified in both cell lines in
response to BaP exposure (Table 1), although the effect of
these parameters on the gene expression profiles differed
between the MCF-7 and HepG2 cells (Figure 3 and 4).
Genes altered in a time- and/or concentration-dependent
manner are likely to be true effects of BaP exposure. A
select list of genes identified by Mahadevan et al. [6] as
altered by BaP in MCF-7 cells, using the Affymetrix oligo-
nucleotide U133A human genome array representing over
22,000 genes, showed overlap with the MCF-7 gene
expression changes identified in this study, including
CYP1B1, AKR1C1, CDKN1A, BAX, DDB2 and NQO1. This
increases confidence to our conclusions and that the effect
is strong enough to be picked up with multiple tech-
niques.

Although the majority of expression changes identified
were cell type specific, 27 genes were identified as altered
in both cell lines (Table 5), indicating that BaP induces a
general gene expression response in different cell types,
although the timing of modulation is different. These
common genes had functions that include xenobiotic
metabolism (MGST1, NQO1, AKR1C1, AKR1C3 and
CPM), cell cycle regulation (CDKN1A), nucleosome
assembly  (HIST1H2BG, HIST1H4B, HIST1H2B],
HIST1H3D and HIST1H4C), anti-apoptosis (IER3) and
oxidative stress response (TXNRD1). Since phenotypic
measures such as DNA adduct levels and cell viability
were similar in both cell lines it is likely that these com-
mon gene expression changes are related to carcinogenesis
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Changes in p53 protein level in MCF-7 cells and HepG2 cells in response to BaP and BeP detected by Western blot. B-actin
antibody was used to detect [-actin protein expression, which was used as loading control.

and may represent potential biomarkers of genotoxic
insult.

We hypothesised that comparing the expression pattern of
BaP to a non-carcinogen would aid in the identification of
genes involved in carcinogenesis. Exposure of cells to
equimolar concentrations of the non-carcinogenic PAH,
BeP, had only a modest effect on gene expression in both
cell lines and no consistent or significant gene alterations
in common with BaP could be identified at the time-
points and concentrations used in this study. This com-
pound has low binding affinity to the AhR [20] and this
may explain the lack of expression changes observed. No
genes induced by BaP on the microarrays could therefore

be eliminated from being potentially linked to carcino-
genesis.

DNA adducts and gene expression

In both MCF-7 and HepG2 cells, BaP-DNA adduct levels
were similar, although time- and concentration effects
were different (Figure 1). The recovery of gene expression
identified in both cell lines is likely to be associated with
levels of DNA damage. This indicates that concentration
thresholds occur, below which gene expression levels
return to normal after initial alteration. This threshold
appears to be lower in the MCF-7 cells with recovery of
gene expression occurring only after exposure to the lower
concentrations of BaP (0.25 and 1 uM) (Figure 3). This
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Gene expression profiles of a selection of p53-regulated genes induced in MCF-7 cells and HepG2 cells.

reflects differences in the metabolic capabilities of the two
cell lines to produce the ultimate carcinogenic metabolite
of BaP, BPDE, and also suggests that HepG2 cells are more
efficient at DNA repair.

A large number of the 27 gene expression changes com-
mon to both cell lines significantly correlated with DNA
adduct levels in the MCF-7 cells (Table 5) indicating a
direct link between their expression and DNA damage in
this cell line. A number of these genes are likely to be
directly linked to DNA adduct formation such as the xeno-
biotic metabolism genes whilst a number of expression
changes are a direct result of the DNA damage, such as the
p53-regulated gene CDKNI1A. In the HepG2 cells fewer
genes correlated well with DNA adduct levels suggesting
that other mechanisms are regulating this response. If
HepG2 cells are more efficient at detoxifying BaP and/or

repairing the DNA damage, these processes could affect
the relationship between DNA adduct levels and gene
expression in this cell line. The time and concentration
response of gene expression and DNA adduct formation
coupled with the strong correlation of a number of genes
with DNA adducts over time and concentration in both
cell lines suggests that such genes could be useful biomar-
kers of the level of genotoxic compound exposure.

Although DNA adducts were detected in the cells after
exposure to 0.25 uM BaP, few expression changes
occurred in either cell line at this concentration. DNA
adducts therefore still represent a more robust measure of
carcinogen exposure at low dose levels. Similar results
were observed by Akerman et al. [ 10] who analysed BPDE-
induced gene expression changes and DNA adduct forma-
tion in TKG6 cells.
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Table 7: Mean percentages of the MCF-7 and HepG2 cell cycle
parameters after 2.5 UM BaP treatment versus control

MCF-7
% Gl % S % G2
Time (h) DMSO BaP DMSO BaP DMSO BaP
24 66.2 638 24.8 29.1 9 72
48 743 75.1 12.6 18.8 13.3 6.2
72 75.5 81.1 14.6 13.7 10 5.2
HepG2
% Gl % S % G2
Time (h) DMSO BaP DMSO BaP DMSO BaP
24 73.7 63.2 15.8 27 10.6 9.9
48 74.4 70.4 13 19.4 127 10.3
72 76.2 715 14.3 134 9.6 15.2

The values are representative of two independent experiments for
which the standard deviation was never greater than 5%. Bold values
indicate a significant difference (p < 0.05) between the BaP- and
DMSO-treated cells.

RTqPCR

RTqPCR was used to verify the microarray data for eight
modulated genes and a good correlation between the two
measures of expression was observed for both cell lines in
the majority of cases (R > 0.634). An exception was
CYP1B1, for which low correlations were observed for
both the MCF-7 (R =0.125) and HepG2 (R=-0.308) cells.
Low correlation in the MCF-7 cells could be explained by
its constant high induction across all time-points, meas-
ured by both the microarrays and RTqPCR. Pearson corre-
lation looks for similar shapes in the two data-sets and in
this case it is probably correlating on noise within the
data. In HepG2 cells induction of CYP1B1 was observed
only by RTqPCR and not by the micorarrays. CYP1B1
induction was also not observed in a microarray study by
Staal et al. [9] who also analysed the effects of BaP expo-
sure on gene expression in HepG2 cells. The failure of the
microarrays to identify this gene expression change may
be a result of very low basal levels of this transcript in this
cell line, such that even if increased 40-fold, the microar-
rays are not sensitive enough to detect it. In this study
CYP1B1 mRNA levels were much lower in HepG2 cells
relative to MCF-7 cells as identified from the RTqPCR
results. Overall RTqPCR analysis suggested that gene
expression is underestimated on the microarrays, which
may lead to some false negatives.

Xenobiotic metabolism genes
A number of genes involved in xenobiotic metabolism
and transcriptionally activated via the aryl hydrocarbon

http://www.biomedcentral.com/1471-2164/7/260

receptor (AHR) were up-regulated in both cell lines
including NQO1, AKR1C3, AKR1C1, MGST1 and CPM.
Detoxification of PAH quinone metabolites is carried out
by the quinone oxidoreductase encoded by NQO1 [9,21],
which is also required for p53 stabilisation in response to
DNA damage [22]. The glutathione S-transferase MGST1
is also involved in cellular defence against toxic and carci-
nogenic electrophilic compounds by conjugation of
reduced glutathione to hydrophobic electrophiles [23], so
it is no surprise that this gene is up-regulated in response
to BaP exposure. AKR1C1 and AKR1C3 both encode aldo-
keto reductases capable of metabolising the PAH proxi-
mate carcinogens trans-dihydrodiols to o-quinones,
which can lead to DNA damage directly through DNA
adduct formation or indirectly through production of
reactive oxygen species (ROS) [24]. Little is known about
the function of the gene CPM, which encodes a carbox-
ypeptidase; however, it is implicated in aromatic com-
pound metabolism [25] and this may explain its up-
regulation in response to BaP. As already discussed,
CYP1B1 was strongly up-regulated by BaP in the MCF-7
cells at all time-points and concentrations on the microar-
rays but in HepG2 cells by RTqPCR analysis alone. This
gene encodes a member of the cytochrome P450 super-
family of monooxygenases and is involved in the meta-
bolic activation of PAHs including BaP [26,27].
Expression of this gene is inducible through the AHR for
which BaP is a known ligand [28]. Enhanced expression
of this protein has been observed in a number of cancers
[29,30] and it has been demonstrated using CYP1B1-null
mice that this enzyme enhances the carcinogenicity of the
PAH 7,12-dimethylbenz(a)anthracene [31]. CYP1B1 has
also been found to be consistently up-regulated in a panel
of primary normal human mammary epithelial cells
exposed to BaP [14] highlighting the importance of this
enzyme in BaP metabolism in this tissue. Additional
metabolising genes up-regulated in the HepG2 cells
included UGDH and GCLM. UGDH encodes a glucose
dehydrogenase needed for the glucuronidation reaction
of xenobiotics that can decrease their mutagenicity [32].
GCLM encodes the modifier subunit of glutamate-
cysteine ligase, an enzyme needed for glutathione synthe-
sis, which is required for the detoxification of PAHs by
enzymes such a MGST1 [33]. The greater number of
detoxification genes induced in HepG2 cells implies that,
as suggested above, this cell line is more efficient at detoxi-
fying, as opposed to bioactivating, BaP than MCF-7 cells.

Cell cycle regulationl/proliferation genes

A number of genes involved in cell cycle regulation and
proliferation were modulated in both cell lines, including
CDKN1A and MAK. CDKNI1A is a potent cell cycle inhib-
itor, regulating cell cycle progression at the G1 and G2
check-points in response to a variety of stress stimuli
[34,35]. Transcriptional induction of this gene has been
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shown previously in human cells exposed to BaP [6,36].
The male germ cell-associated kinase MAK has been
implicated in cell cycle regulation due to the similarity of
its serine/threonine kinase protein product to kinases
involved in cell cycle regulation [37]. In the MCF-7 cells,
other up-regulated genes linked to cell cycle regulation
included BTG2, CCNGI1, PA26, and SLC3A2 and the
down-regulated genes included CCND1, AREG, BMP7,
NET1, MYB, and IGFBP5. BTG2 is also involved in G1
arrest of the cell cycle in response to DNA damage [38]
and CCNGI encodes cyclin G1, which has growth inhibi-
tory activity [39]. Little is known, however, about the
involvement of PA26 and SLC3A2 in cell cycle regulation.
Down-regulated cell cycle genes in the MCF-7 cells
included CCND1, which encodes the oncogene cyclin D1
whose expression is needed for G1 to S phase transition of
the cell cycle [40]. This gene is frequently mutated, ampli-
fied or overexpressed in a number of different tumour
types [40] and is likely to be involved in their pathogene-
sis [41]. Polymorphisms within this gene have been asso-
ciated with lung cancer in a Chinese population study
[42]. AREG, a member of the epidermal growth factor
family, and BMP7, a bone morphogenic protein, are both
linked to cell proliferation. These two genes were down-
regulated in response to BaP along with NET1, which was
originally cloned as a transforming gene in a screen for
novel oncogenes in NIH 3T3 cells [43]. It was interesting
to see the down-regulation of the protooncogene MYB.
This gene encodes a transcription factor that controls dif-
ferentiation and proliferation of a number of cell types
[44] and has been linked to cell cycle control in haemat-
opoietic progenitor cells [45]. Transcriptional down-regu-
lation of this gene is another indication of cell-cycle arrest
in response to BaP. Studies on the effect of IGFBP5 on cell
growth suggest that its function as a promoter of growth
inhibition or stimulation is cell-type specific [46,47],
although a study by Butt et al. [48] demonstrated that in
human breast cancer cells over-expression of this gene
results in inhibition of cell growth and induction of apop-
tosis. Down-regulation of this gene cannot therefore be
completely explained and may indicate that there are cell
proliferation mechanisms acting against the cell-cycle
arrest pathways. In the HepG2 cells other modulated
genes involved in cell-cycle regulation and proliferation
included OKL38, IGFBP1, CTGF and FGG. OKL38, the
pregnancy-induced growth factor and IGFBP1, which has
been shown to reduce the growth of prostate cancer cells
in culture [49] were both induced in response to BaP. FGG
and CTGF were both down-regulated in the HepG2 cells
after BaP exposure. The down-regulation of CTGF in
response to BaP was shown by Mahadevan et al. [6] in
MCEF-7 cells, although its repression in this cell line was
not observed in this study. The involvement of CTGF and
FGG in cell cycle regulation is not well understood,
although there is direct evidence of the role of CTGF in the
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angiogenic mechanism [50] and FGG encodes the gamma
component of fibrinogen which has also been shown to
play a part in angiogenesis [51].

Cell cycle analysis and gene expression

In both MCF-7 and HepG2 cells BaP exposure resulted in
an arrest of the cells in S phase of the cell cycle (Table 7),
indicative of DNA synthesis being interrupted. This is in
agreement with other studies that have shown the inhibi-
tion of DNA synthesis in response to BaP [52,53]. This
pause in DNA synthesis is probably to allow repair
enzymes to recognize the damaged DNA and correct it
[54]. Interestingly, in both cell lines a number of histone
genes were down-regulated, the synthesis of which is
tightly coupled with DNA synthesis during S phase of the
cell cycle [55] and their down-regulation has been seen in
response to ionising radiation-induced DNA damage
[55]. It is therefore likely that down-regulation of histone
genes in response to BaP is linked to DNA synthesis inhi-
bition in these two cell lines. These genes showed signifi-
cant negative correlation with DNA adduct levels in the
MCEF-7 cells but this was not the case for the HepG2 cells.
The increasing down-regulation of the histone genes in
MCEF-7 cells exposed to BaP for 24 and 48 h is coupled to
the arrest of these cells in S phase at 24 and 48 h. In
HepG2 cells, however, this association was not so clearly
observed. After down-regulation at 6 h, these genes were
then up-regulated at 24 h and then their expression
returned to normal after 48 h, whereas arrest of the
HepG2 cells in S phase was observed at both 24 and 48 h.
The initial repression followed by induction of these
genes in the HepG2 cells indicates that DNA synthesis is
only temporarily inhibited in HepG2 cells, again suggest-
ing that these cells are better at repairing the DNA dam-
age.

Over-represented biological processes in the data
included G2/M regulation in both cell lines and G1/S reg-
ulation also in the MCF-7 cells through induction of cell
cycle inhibitor genes such as CDKN1A. Although there
was no strong accumulation of the cells in G1 or G2 in
response to BaP it may be that these effects are seen at later
time-points than those analysed here as indicated by the
minor effects seen at 72 h.

p53-regulated genes

In both cell lines, the expression of genes that are known
direct targets of the tumour suppressor protein p53 were
induced, including CDKN1A, BTG2, PA26, CCNG1, BAX
and DDB?2 in the MCF-7 cells and CDKN1A and BAX in
the HepG2 cells. The larger p53 response in the MCF-7
cells (Figure 7) again reflects the higher DNA adduct levels
detected in this cell line. Increased cellular p53 protein
levels in response to various genotoxic agents are due
mainly to an increase in p53 protein stability by post-

Page 17 of 23

(page number not for citation purposes)



BMC Genomics 2006, 7:260

translational modification rather than an increase in
steady-state p53 mRNA levels [56] and this would explain
why up-regulation of this transcript was not observed on
the microarrays. Comparison of the p53 protein levels
with gene expression profiles of p53-regulated genes
showed that protein and gene induction occurred in a
similar manner (Figure 7 and 8).

Apoptosis/anti-apoptosis genes

In addition to a cell cycle response to BaP, apoptotic sig-
nalling was also evident in the cells. Induction of the pro-
apoptotic gene,BAX, in MCF-7 cells by BaP was shown by
microarray analysis and by RTqPCR. In the HepG2 cells
induction of this gene was detected by RTqPCR but was
not identified as a significant expression change on the
microarrays. This gene is regulated by p53 and its
increased expression in response to BaP has been shown
previously [3]. The immediate early response gene IER3
was also up-regulated by BaP in both cell lines. The pro-
tein encoded by this gene can be either an inducer or
inhibitor of apoptosis [57-59]. Enhanced expression of
this gene may therefore result in deficient apoptosis,
which may contribute to malignant transformation by
increased cell survival allowing for tumour promotion
and progression. Further studies, however, are needed to
determine the apoptotic function of this gene in response
to BaP. Another gene linked to anti-apoptotic signalling is
BIRCS5 (survivin), a member of the inhibitor of apoptosis
(TAP) gene family, and this was up-regulated in HepG2
cells. This gene prevents apoptotic cell death [60] and is
over-expressed in a number of different cancers [61]. It is
interesting that although apoptotic signalling is occurring
which would prevent mutagenesis, anti-apoptotic signal-
ling also occurs in response to BaP that potentially
enhances survival of mutated cells [62].

DNA repair genes

There was no great response in nucleotide excision repair
genes on the microarrays in response to BaP and this is
consistent with other microarray studies that have looked
at the effects of BaP or its metabolites [3,8,10]. This is
likely to be due to low constitutive expression of these
important defence genes. Exceptions included the p53-
regulated DDB2 gene, which encodes a DNA-damage rec-
ognition protein needed for NER [63,64] and whose
expression was enhanced in the MCF-7 cells but not
HepG2. CRY1, modulated by BaP in both cell lines,
encodes an enzyme implicated in the repair of cyclobutyl
pyrimidine dimers, although its exact function is not fully
understood and its relevance in the BaP response is not
immediately apparent. PCNA, which encodes a protein
involved in both replication and repair [65], was up-regu-
lated in the HepG2 cells after exposure to 5 UM BaP but
not in MCF-7 cells.
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Other genes and effects

Other interesting expression changes that were common
to both cell lines included the down-regulation of SCD.
Loss of expression of this stearoyl-CoA desaturase
enzyme, which is involved in fatty acid metabolism, is a
frequent event in prostate carcinoma [66]. GDF15, impli-
cated in signal transduction, was strongly and consistently
induced in both cell lines. Transcription of this member of
the TGF-B superfamily can be p53-dependent or -inde-
pendent and has been shown to have anti-tumourigenic
and pro-apoptotic activity in cells derived from a human
colorectal adenocarcinoma [67]. Interestingly, this gene
has been identified as up-regulated in a number of differ-
ent cancer types [68]. Evidence of oxidative damage
within the cells could also be seen from the BaP expres-
sion patterns. TXNRD]1 is involved in protecting cells from
oxidative stress [69,70], indicating the generation of reac-
tive oxygen species after BaP exposure, which may con-
tribute to the DNA damage burden caused by this
compound.

Conclusion

This study has shown alterations of gene expression in
human cells treated with BaP at concentrations at which
DNA adduct formation occurs, with minimal cytotoxicity,
giving greater insight into the cellular response to carcin-
ogen exposure. By linking gene expression data to other
phenotypic measures, such as DNA damage levels, cell
cycle analysis, and p53 protein expression, we have fur-
ther elucidated the roles of environment and gene interac-
tions, which may be important in the multi-step process
of carcinogenesis. Overall, the response consisted of up-
regulation of tumour suppressor genes and down-regula-
tion of oncogenes promoting cell cycle arrest and apopto-
sis that would aid in protecting the cells from mutagenic
transformation by the carcinogen. Anti-apoptotic signal-
ling was also identified, however, which may increase cell
survival and promote tumourigenesis. A number of the
genes identified have been induced in normal human
cells by BaP (e.g. CYP1B1 and NQO1) [14] and this gives
promise that the expression changes we are observing in
these two cell systems are not likely to be artefacts of their
cancer phenotype. As tumour cell lines have been used in
this study it will be necessary to extend the analysis to pri-
mary cells to refine the determination of the critical events
in carcinogen-induced gene regulation. Investigations are
in progress to further characterise the BaP-expression
response and to determine which BaP-expression changes
result from AHR-activation and which result from DNA
damage.

Methods

Cell culture and chemical treatment
MCEF-7 human breast carcinoma cells and HepG2 human
hepatocarcinoma cells were purchased from the European
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Collection of Cell Cultures (ECACC, Salisbury, UK). The
cells were grown as adherent monolayers and maintained
in Eagle's MEM supplemented with 2 mM L-glutamine, 1
mM sodium pyruvate, 1% non-essential amino acids,
10% foetal bovine serum, 100 U penicillin/ml and 100 pug
streptomycin/ml. All media were purchased from Sigma
Aldrich, UK. Sub-culturing was performed every 72 h
when the cells were 80% confluent and incubated in a
humidified 5% CO, atmosphere at 37°C. BaP and BeP
were both obtained from Sigma Aldrich. For chemical
exposure, T75 flasks were seeded at 0.13 x 10° MCF-7
cells/ml or 0.27 x 10° HepG2 cells/ml in a total volume of
15 ml and after 48 h the appropriate concentrations of
BaP or BeP dissolved in DMSO (Sigma Aldrich) were
added. DMSO alone was added to control cultures and its
volume was kept at 0.2% of the total culture medium. All
cell incubations for the different experimental applica-
tions were carried out in duplicate and cells were har-
vested by trypsinisation and then washed with PBS.

Cell viability and DNA adduct measurement

Cells were exposed to BaP (0.01, 0.10, 0.25, 0.50, 1.00,
2.50, or 5.00 uM), BeP (2.50 or 5.00 uM) or DMSO alone
and cell viability and DNA adducts were measured. Cell
viability was measured using a Vi-Cell Cell Viability Ana-
lyzer (Beckman Coulter, UK) after exposure to the com-
pounds for up to 96 h. Numbers of DMSO-exposed
control cells were taken to be 100% viable and from this,
percentage viability was calculated for exposed cells. Cells
were spun down, and from each pellet DNA was isolated
by a standard phenol chloroform extraction method and
DNA adducts were measured for each DNA sample using
the nuclease P1 enrichment version of the 32P-postlabel-
ling method as described previously with minor modifica-
tions [71] after exposure of the compounds for up to 48 h.
Solvent conditions for the resolution of 32P-labelled
adducts on polyethyleneimine-cellulose TLC were: D1,
1.0 M sodium phosphate, pH 6.0; D3, 3.5 M lithium for-
mate, 8.5 M urea, pH 3.5; D4, 0.8 M lithium chloride, 0.5
M Tris, 8.5 M urea, pH 8.0. DNA adduct levels (RAL, rela-
tive adduct labelling) were calculated from the adduct
cpm, the specific activity of [y-32P]ATP and the amount of
DNA (pmol of DNA-P) used. Results were expressed as
DNA adducts/108 nucleotides. An external BPDE-DNA
standard [72] was employed for identification of adducts
in experimental samples.

RNA extraction and cDNA synthesis for microarray
analysis

Cells were treated with 0.25, 1.00, 2.50 or 5.00 uM BaP or
DMSO as vehicle control. MCF-7 cells were also treated
with equimolar concentrations (0.25 - 2.5 uM) of BeP
and HepG2 cells were treated with 5.00 uM BeP. Cells
were exposed for 6, 24 and 48 h, cell pellets collected and
total RNA extracted using the Qiagen RNeasy Mini Kit
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protocol (RNeasy Mini Handbook, Qiagen, UK). After
addition of lysis buffer (RLT, Qiagen) samples were
homogenized using QIAshredders (Qiagen). RNA was
quantified spectrophotometrically, and integrity was
determined using a 2100 Bioanalyzer (Agilent Technolo-
gies, UK). RNA that had an rRNA 28S/18S ratio >1.5 was
used for microarray analysis to achieve optimal labelling
with the fluorophores.

Total RNA (4 ug) was reversed transcribed into cDNA and
fluorescently labelled with Cy3 or Cy5 mono-reactive
dyes (Amersham Biosciences, UK) using the Invitrogen
Indirect cDNA Labelling Kit protocol (Invitrogen, UK)
according to the manufacturer's instructions. After label-
ling, repetitive sequences within the cDNA samples were
blocked with 16 pug Human Cot-1 DNA (Invitrogen, UK)
to prevent non-specific sequences binding to the cDNA
probes.

cDNA microarray hybridisations

Gene expression analysis was carried out using the Cancer
Research UK DNA Microarray Facility (CRUKDMF)
Human 15 K Genome-Wide Array v 1.1.0 and the Human
6 K Genome-wide Array v1.0.0. Full probe lists for these
arrays can be found at the CRUKDMF Microarray Publica-
tions website [73]. Only the 2.5 and 5 uM BaP-treated
samples were analysed on the 6 K array. The majority of
the clones have been sequence verified and are 800-2,000
bp in length. The arrays were gridded onto either poly-L-
lysine coated slides or Type 7* silanised slides (GE Health-
care, UK). To prepare the poly-L-lysine slides, Gold Seal
glass slides (Merck Eurolab Ltd, Poole, UK) were washed
and coated with poly-L-lysine (Invitrogen, UK) and after
gridding free poly-L-lysine molecules were blocked, all as
previously described [74]. The gridded poly-L-lysine slides
were washed prior to hybridisation by denaturing in 70%
deionised formamide/2X SSC pH 7.0 at 65°C for 2 min
and then washed successively with 70% ethanol twice,
80% ethanol and 100% ethanol, blow-dried with nitro-
gen gas and pre-warmed in a hybridisation chamber at
65°C. The Type 7* slides did not require preparation or
pre-hybridisation washing and after gridding and UV
cross-linking (1,000 mJ), they were ready for pre-warming
in the hybridisation chamber.

Labelled sample was reduced down to 3 pl using Micro-
con YM-30 centifugal filters (Millipore, UK). Correspond-
ing control and treated samples labelled with different
fluorophores were combined in a 50 pl hybridisation mix
(19 ul Microarray Hybridisation Solution purchased from
GE Healthcare and 50% deionised formamide) and
heated at 70°C for 2 min and then at 37°C for 10 min.
Sample was pipetted onto a microarray slide and covered
with a glass cover slip. A 150ul aliquot of 6 X SSPE was
pipetted underneath the slide to prevent dehydration. The
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hybridisation chamber was sealed and incubated at 42°C
for 72 h. Poly-L-lysine slides were given three washes in 4
X SSPE, 10 mM EDTA pH 8.0 at 42°C. The first was a brief
soak, the second was to remove the coverslip and the third
was performed for 1 min. These slides were then washed
in 2 X SSPE, 10 mM EDTA pH 8.0 for 15 s at RT, and then
in 0.1 X SSPE for 15 s at RT before briefly rinsing in HPLC
grade water and drying with nitrogen gas. Type 7* slides
were washed three times in 4 X SSPE, 10 mM EDTA pH 8.0
as above, followed by a 10 s wash in 50% deionised for-
mamide, 6 X SSPE, before a brief rinse in HPLC grade
water and drying with nitrogen gas. The slides were then
scanned on an Axon Genepix 4000A laser scanner (Axon
Instruments, USA).

Microarray analysis

The initial analysis of the scanned slides was carried out
using GenePix Pro v-5.1 software (Axon Instruments,
USA). Within GenePix software the quality of individual
spots was assessed. A spot was automatically flagged to be
included in normalization (present) if the signal intensity
of >75% of the pixels for either the Cy3 and Cy5 channels
were 1S.D. above the background intensity. In addition,
spot quality was also assessed visually. Background sub-
traction is not suitable for these microarrays and in pre-
liminary analysis normalisation of background-corrected
data was shown to decrease the data quality as compared
to normalisation without background correction. Raw
data generated from GenePix software were therefore
imported into GeneSpring v-7.2 software (Agilent Tech-
noligies, UK) without background subtraction and sub-
jected to print-tip Lowess normalisation [75] to allow
different arrays to be compared. Within GeneSpring,
genes were removed from further analysis if they had not
been flagged in Genepix software as present in greater
than 50% of the experimental samples. As multiple time
and concentration sample points were used for these anal-
yses, biological replicates but not technical replicates were
performed so that the microarrays could be utilized for
the additional sampling points. Cy3/Cy?5 ratios of the bio-
logical replicate samples were averaged and these data
were then used to identify modulated genes within the
data using a fold-change cut-off of 1.4. Within Genespring
a one-sample Student's T-test is calculated for replicate
data to test whether the mean normalized expression
value for the gene is statistically different from 1. Log2
transformed averaged Cy3/Cy5 ratios were used to iden-
tify modulated genes that had a one-sample Student's T-
test p-value assigned by GeneSpring of less than 0.05.
Log2 transformed data were used for any statistical algo-
rithms performed within GeneSpring such as 2-Way
ANOVA and PCA. Pearson Correlation coefficients of
gene expression data and DNA adduct data were calcu-
lated using Microsoft Excel.
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The gene expression data discussed in this publication
have been deposited in NCBI Gene Expression Omnibus
[76] and are accessible through GEO Series accession
number GSE5894.

Real-time quantitative PCR

Two-step reverse transcription-PCR was used to generate
c¢DNA for relative quantitation analysis using real-time
fluorescent PCR. The cDNAs were reversed transcribed
from 1 pg total RNA using random primers and following
the Superscript III Reverse Transcriptase First-Strand
c¢DNA Synthesis Protocol (Invitrogen, UK). The cDNA was
diluted 1:10 and 2l was used as template to perform RT-
PCR in a 15ul reaction. GAPDH was used as an endog-
enous control (Applied Biosystems, UK) in multiplexed
PCR reactions on an ABI PRISM 7900HT Sequence Detec-
tion System (Applied Biosystems) with standard thermo-
cycling conditions (50°C 2 min, 95°C 10 min, then 40
cycles of 95°C 155, 60°C 1 min), using Tagman Univer-
sal PCR Master Mix (Applied Biosystems). To confirm the
modulated expression of the selected target genes 20x
Assays-On-Demand™ gene expression primers and probes
(Applied Biosystems) were  used (CYP1B1-
Hs00164383_m1, NQO1-Hs00168547_m1, AKR1C3-

Hs00366267_m1, CYP1A1-Hs00153120_m1, Bax-
Hs00180269, PCNA-Hs00427214_g1, TP53-
Hs00153349_m1, AhR-Hs00169233_m1, CDKNIA-
Hs00355782_m1, HIST1H3D-Hs00371415_m1, IER3-

Hs00174674_m1). All PCR reactions were performed in
triplicate and changes in gene expression between the
control (or calibrator) and treated samples after normali-
sation to the GAPDH reference were calculated using the
comparative threshold cycle (C;) method where relative

amount = 2724¢T  and where AAC;is the ACof the target
gene (threshold cycle test gene - threshold cycle endog-
enous control) minus the AC; of the calibrator sample

(threshold cycle calibrator gene - threshold cycle endog-
enous control).

Western blot analysis

Cells were exposed to BaP (1.00 or 5.00 uM), BeP (5.00
uM) or DMSO alone for up to 48 h. Cells were trypsinised
and pellets collected after 6, 24 and 48 h exposure and
then lysed in 100 pl lysis buffer (50 mM HEPES pH 7.4,
250 mM NacCl, 0.1% NP40, 1 mM DTT, plus 1 tablet of
protease inhibitor cocktail from Roche, Lewes, UK) on ice
for 30 min. Cell lysates were electrophoretically separated
using NuPage 4-12% Bis-Tris SDS polyacrylamide gels
(Invitrogen, UK). Following electrophoresis, gels were
transferred onto an Immunobilon-P PVDF membrane
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(Millipore, UK). The membranes were then blocked by
incubation in 5% non-fat dry milk in tris buffered saline
for 1 h at room temperature followed by a second block-
ing step using 10% milk for 15 min. The blots were then
incubated with primary antibody and then with the spe-
cies-specific horseradish peroxidase-conjugated secondary
antibody (Bio-Rad) and bands detected by chemilumines-
cence (ECL detection reagents, GE Healthcare). The mon-
oclonal antibody against p53 (Ab-6) was purchased from
Calbiochem (Darmstadt, Germany) and diluted 1:5000.
Monoclonal antibody to detect -actin (Ab8226) was pur-
chased from Abcam (Cambridge, UK), diluted 1:2000 and
used as a loading control.

Flow cytometry

Cells were exposed to 2.50 uM BaP or DMSO alone and
harvested by trypsinisation after 24, 48 and 72 h. The cell
pellets were re-suspended in 0.2 ml 10 X PBS solution and
fixed in 2 ml of ice-cold 70% ethanol. The samples were
then stored at 4 °C for at least 30 min prior to use. Twenty-
four hours prior to flow cytometry analysis the samples
were centrifuged at 1500 x g for 5 min and resuspended in
staining buffer containing 40 pug/ml propidium iodide
(Molecular Probes, Invitrogen, UK), 100 pg/ml RNase
(Sigma Aldrich, UK) in PBS buffer so that final concentra-
tion was equal to 1 x 106 cells/ml. The cells were then
incubated at 37°C for 30 min and then returned to 4°C
overnight. Cell cycle analysis was performed using a Beck-
man Coulter EPICS Elite ESP (Beckman Coulter, Bucking-
hamshire, UK) at 488 nm. The relative number of cells in
each phase of the cell cycle was determined using Cylcred
v 1.0.2 and WinMidi v2.8 software [77].
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HePG2 cells by 2-way ANOVA as being significantly (p < 0.05) affected
by BaP concentration and exposure time.
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Additional file 5

EASE results. The data presented are biological processes significantly
(fisher exact probability p < 0.05) over-represented in the MCF-7 and
HepG2 time and concentration BaP-modulated gene lists as calculated by
EASE.
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Additional file 6

RTqPCR data. Differential expression of selected genes in MCF-7 and
HepG2 cells exposed to BaP measured by microarray and RTqPCR.
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