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Abstract
Background: It is estimated that between 35% and 74% of all human genes undergo alternative
splicing. However, as a gene that undergoes alternative splicing can have between one and dozens
of alternative exons, the number of alternatively spliced genes by itself is not informative enough.
An additional parameter, which was not addressed so far, is therefore the number of human exons
that undergo alternative splicing. We have previously described an accurate machine-learning
method allowing the detection of conserved alternatively spliced exons without using ESTs, which
relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced
exons from constitutive ones.

Results: In this study we use the above-described approach to calculate that 7.2% (± 1.1%) of all
human exons that are conserved in mouse are alternatively spliced in both species.

Conclusion: This number is the first estimation for the extent of ancestral alternatively spliced
exons in the human genome.

Background
In recent years, numerous studies have shown that alter-
native splicing is very prevalent in the human genome.
Assessing the number of genes that undergo alternative
splicing has drawn much attention since the emergence of
ESTs as a resource for global alternative splicing analysis.
Early studies estimated this number at 35% [1] 38% [2]
and 42% [3] while recent studies present numbers as high
as 59% [4] 74% [5] and even higher [6,7]. However, there
is an ongoing debate as to how many of these predicted
splice variants are functional, and how many are the result
of aberrant splicing (or 'noise') [8,9]. In addition, ESTs
provide only a sample of the human transcriptome, and
many splice variants (including evolutionarily conserved

ones) are not represented in public EST databases. The
number of human genes that undergo alternative splicing,
therefore, remains elusive.

But does this number reveal the full picture of the tran-
scriptome complexity? Some genes can produce extremely
high number of transcripts, while others produce only
two or three variants. For example, the drosophila
DSCAM gene, which harbors 95 alternatively spliced
exons, can theoretically produce up to 38,016 different
transcripts. This number of transcripts, produced from
this single gene, is twice the number of genes in the entire
fly genome. Therefore, the number of exons that undergo
alternative splicing is a crucial parameter, and gives new,
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complementary information that is not contained in the
number of alternatively spliced genes. As far as we are
aware, the question of assessing the number of alternative
exons was never addressed in the literature before.

We have recently described an accurate machine-learning
method allowing the detection of conserved alternatively
spliced exons without using ESTs [10,11]. This approach
relies on specific features of the exon and its genomic
vicinity that distinguish alternatively spliced exons from
constitutive ones. Since this method does not rely on
ESTs, it avoids the problems of sampling errors and noise
inherent to ESTs, and can therefore provide robust assess-
ment on the absolute number of conserved alternatively
spliced exons in the human genome.

Results
Classifying ancestral alternative exons
Human internal exons (excluding the first and last ones)
can roughly be divided into three categories, based on
comparison to their counterparts in mouse: (i) constitu-
tive exons, i.e., exons that occur in the same form in all
(one or more) splice variants of the gene they belong to;
(ii) ancestral alternative exons, which are exons that are
alternatively spliced both in human and in mouse, i.e.,
were alternative in the common ancestor of primates and
rodents, and remained so in both species; (iii) human-
specific alternative exons, which are exons that have
alternative splicing pattern in human but not in mouse
[12].

To distinguish between ancestral alternative exons and
other exons we used a classifier trained by Support Vector
Machine (SVM), a machine learning algorithm [11]. For
each exon, the features taken into account were (i) exon
length, (ii) exon length divisibility by three, (iii) percent
identity when aligned to the mouse counterpart, (iv) con-
servation in the upstream and downstream flanking
intronic sequences (4 features), (v) 5' splice-site composi-
tion (28 features), (vi) poly-pyrimidine tract intensity,
and (vii) 3-tuple counts in the exon and the flanking
introns (192 features). These features were all previously
shown to differ between alternative and constitutive
exons [10,11,13,14]. For detailed description of our clas-
sifier see ref [11].

To obtain an accurate classifier we first collected pre-calcu-
lated training sets of each of the three groups of exons: (i)
5069 constitutive exons from Yeo et al [13]; (ii) 241
ancestral alternative exons compiled by the same authors
[13] and (iii) 212 human-specific alternative exons com-
piled by Pan et al. [12]. After filtering (see Methods), the
final sets contained 4655 constitutive exons, 221 ancestral
alternative exons, and 182 human specific alternative
exons. We also used a second set of 243 (215 after filter-

ing) ancestral alternative exons compiled in [15] as an
independent training set.

Next, we trained the classifier to distinguish between the
ancestral alternative exons (221 exons) and the 'other'
exons, i.e., the combined group of constitutive and
human-specific alternative (4655+182 = 4837) exons. For
each exon, the trained classifier outputs an 'alternativity
score', a number that is indicative to whether that exon is
ancestrally alternative or not. Using ten-fold cross valida-
tion we estimated the distributions of these scores for
alternative and other exons. Figure 1 presents these score
distributions. As seen in the figure, the scores significantly
distinguish ancestral alternative exons from the other
exons. It is noteworthy that we could not find a set of
parameters that distinguishes well between the constitu-
tive and the human-specific alternative exons, indicating
that these two sets of exons have very similar characteris-
tics.

Genome-wide collection of human exons
To assess the fraction of conserved, ancestral alternative
exons out of the entire human exon population, we first
used ESTs and cDNAs from Genbank version 136 aligned
to the human genome (version hg16) to identify internal
human exons. We collected 120,964 internal exons for
which we were able to identify the mouse ortholog exon
as described in ref [10]. These exons constitute the set of
"conserved exons". This set of exons is the basis for our
analysis, as our classifier relies on human-mouse homol-
ogy-based features.

Fraction of ancestral alternative cassette exons
Next, we employed our classifier on the entire set of
120,964 conserved exons (Figure 2). The resulting score
distribution represents a combination between "ancestral
alternative" and "other" exon scores, with the observed
right tail clearly representing the contribution of ancestral
alternative exons (Figure 2). To decompose the distribu-
tion into its two components we used a simple mixture
model: Assume that the distributions of scores of "ances-
tral alternative" and "other" exons are represented by the
functions fa(x) and fo(x) respectively. Then the distribu-
tion of the entire population of 120,964 exons composed
of these two components is modeled by f(x) = p fa(x) + (1-
p) fo(x), where p is the relative fraction of ancestral alterna-
tive exons. Estimating the three distributions fa, fo and f
using standard Maximum Likelihood estimation (see
Methods), we calculated that p equals 3.6% (± 0.5%).

To check the possibility that this estimator was biased by
the training set of ancestral alternative exons, we repeated
our analysis using the second training set of 215 ancestral
alternative exons from Sorek et al [15]. This exon set over-
laps the Yeo et al set by only 38 exons, and can therefore
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be used to obtain another estimator that is to a large
extent independent from the former. We trained a second
model on the basis of this second set of exons versus the
set of 4837 other exons (Figure 1B), and employed the
resulting model on the entire set of 120,964 conserved
exons. After decomposing the score distribution, the
resulting fraction of ancestral alternative exons was 3.9%
(± 0.5%), very similar to the result obtained using the first
training set. Combining these two results, we conclude
that 3.75% (± 0.65%) of the exons in our set of 120,964
known human-mouse conserved exons are ancestral alter-
native cassette exons (Figure 2).

The hidden conserved alternative exons
Our method enables, for each known exon, to assess its
probability of being alternatively spliced. However, some
conserved internal alternatively spliced exons are not rep-
resented in EST data due to sampling limitations of ESTs.
How many such exons still await discovery? To assess their
number we used the output of the Exoniphy program
[16]. This program, designed by Siepel and Haussler,
identifies evolutionarily conserved protein-coding exons
using a phylogenetic hidden Markov model, which simul-
taneously describes exon structure and exon evolution
[16]. Using human mouse and rat genome alignment,
Exoniphy predicted 177,040 putative exons on the UCSC
hg16 genome version (Methods). As these predictions do
not depend on existence of ESTs, they can be used to
assess the number of conserved coding exons that are still
undetected.

Out of our set of 120,964 conserved exons, 105,740
(87%) are accurately predicted by Exoniphy. This indi-
cates the small amount of false negative predictions,
namely, most true conserved exons are predicted by
Exoniphy. To search for possible new alternatively spliced
exons in the remaining 71,300 Exoniphy predictions, we
took all such predictions that satisfy the following criteria:
(i) Found within an intron of a known RefSeq gene (ii)
Do not overlap with any EST/RNA, (iii) Do not overlap

Decomposition of score distribution of 120,964 human-mouse conserved exonsFigure 2
Decomposition of score distribution of 120,964 human-
mouse conserved exons. The blue distribution represents 
the scores of all exons. Its bigger right tail represents the 
contribution of the ancestral alternative exons. This distribu-
tion was decomposed (see text) into "ancestral alternative" 
(transparent) and 'other' (superimposed in red) distributions. 
The area under the "ancestral alt" curve represents the per-
centage of ancestral alternative exons out of the entire exons 
set.

Score distribution of ancestral alternative exons and "other" exonsFigure 1
Score distribution of ancestral alternative exons and "other" 
exons. X axis: the SVM 'alternativity score'. Y Axis: probabil-
ity density. 'ancestral alt', score distribution of ancestral 
alternative exons in the training set; 'other', score distribu-
tion of 4655 constitutive exons plus 182 human specific alter-
native exons in the training set. (A) Model trained with 221 
ancestral alternative exons from Yeo et al. [13]. (B) Model 
trained with 215 ancestral alternative exons from Sorek et al. 
[15].
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with any processed pseudogene, and (iv) Are flanked by
canonical splice sites both in the human and the mouse
genomes. The first two criteria screened the vast majority
of the remaining predictions, as most of the predicted
exons were either overlapped (fully or partially) by an
expressed sequence, or not contained within any known
intron.

We collected 783 putative novel exons conforming to the
above criteria, and applied our classifiers on each of these.
Figure 3 presents the 'alternativity scores' distribution of
the 783 putative exons. Indeed, it is apparent that this
population of sequences is highly enriched in true alterna-
tive exons. Using the criterion described above to decom-
pose the distribution, we calculated that 93.1% (± 3.7%)
of these exons (~730 exons) represent true cassette exons.
These results are in agreement with recent estimates that
few hundred ancestral alternative exons are still undetec-
ted in the human genome [17].

Our analysis indicates that hidden, novel exons contrib-
ute at least 0.6% (out of ~122,000 conserved exons) to the
overall fraction of ancestral alternative exons. Combined
with our result from the non-hidden conserved exons, we
estimate that 4.3% (± 0.65%) of all conserved exons in
human are ancestral alternatively spliced cassette exons.
We note that Exoniphy is expected to fail in the identifica-
tion of very short and highly conserved exons (A. Siepel,
personal communications). As alternative exons tend to
be smaller and more conserved than constitutive ones
[10] the actual numbers of 'hidden' alternative exons
might be higher than that we calculate.

Additional types of alternative splicing
Both our training sets are composed solely of ancestral
alternatively spliced exons of the "cassette" type, i.e., such
that undergo exon-skipping. Exon skipping is the most
abundant type in human, composing ~40% of all alterna-
tive splicing events in the genome [18]. Events such as
mutually exclusive exons, intron-retention, alternative 5'
and 3' splice sites, etc., comprise the remaining 60% of the
events. Due to the composition of the training sets, we
expected our classifiers to be biased towards identifying
mainly cassette (skipped) exons. Indeed, manually
inspecting EST support for 50 of the conserved exons that
had the highest alternativity scores indicates that 70% of
them are alternatively spliced in an exon-skipping man-
ner, while only 30% show other patterns of alternative
splicing. A similar 70:30 ratio was observed in the results
obtained by using another classification rule, and also in
the experimentally verified predictions of that rule [10].
Hence, exon-skipping cases are over-represented in our
predictions, and consist a fraction of 0.7 of our set instead
of the expected 0.4 [18].

To reach the total fraction of exons in the genome that
undergo all types of alternative splicing, one must, there-
fore, multiply our previous results by a factor of 0.7/0.4 =
1.75 (this applies only to the known, non-hidden exons,
as all the hidden exons are, by definition, of the cassette
exons type). Thus, our estimate for the fraction of exons
that are ancestrally alternatively spliced is 3.75% * 1.75 +
0.6% = 7.2%. The error in this estimate is at least ± 1.1%
(0.65*1.75) due to the original error estimate; additional
unknown error in the 1.75 factor may increase the error
bound.

Discussion
Our analysis indicates that 7.2% (± 1.1%) of the exons in
the human genome are ancestrally alternatively spliced,
i.e., undergo alternative splicing both in human and in
mouse. As our positive training set was composed solely
of ancestral alternative exons, the classifier cannot detect
species-specific alternatively spliced exons. However,
some alternative splicing events are species specific: For
example, the primate-specific Alu-derived exon 8 in the
RNA-editing enzyme ADAR2 is contained in 40% of all
ADAR2 transcripts in human, thus changing the RNA-
editing activity of the mature protein [19]. Moreover, EST
analyses have shown that species-specific alternative splic-
ing might be up to 3 or 4 times more abundant than con-
served alternative splicing [10,20,21]. In this light, the
total number of human exons that are alternatively

Score distribution for the exons predicted by 'Exoniphy'Figure 3
Score distribution for the exons predicted by 'Exoniphy'. 
'ancestral alt', score distribution of ancestral alternative 
exons in the training set; 'other', score distribution of 4655 
constitutive exons plus 182 human specific alternative exons 
in the training set; 'exoniphy', scores of 783 predicted Exoni-
phy exons. The distribution of the Exoniphy exons is clearly 
biased toward the 'ancestral alt' distribution, indicating that 
many of the Exoniphy exons are truly ancestral alternative 
exons.
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spliced might be significantly higher than the 7.2% we cal-
culated. However, many lines of evidence suggest that the
majority of apparently species-specific alternative splicing
events observed in dbEST represent non-functional alter-
native splicing [9,13]. As there are currently no computa-
tional methods to distinguish functional from non-
functional species-specific splicing, at this stage it is
impossible to determine the contribution of species-spe-
cific alternative splicing to the fraction of functional alter-
native exons.

Based on the calculated fraction of 7.2% (± 1.1%), we esti-
mate that 7,500–10,000 exons in the set of ~121,700 con-
served human exons (including the putative hidden
exons) are ancestral alternatively spliced. This is a surpris-
ingly small number; however, we note that our set of con-
served exons is not the complete exon repertoire in the
human genome, which was estimated to contain
~200,000 exons [22]. Presumably, fast-evolving exons
(for example, in immune- or reproduction-related genes
[22]) escape our set due to low human-mouse conserva-
tion.

Nevertheless, even if we assume that the same rate of alter-
native splicing that we found holds for the complete set of
~200,000 exons in human (distributed within ~25,000
genes), our results predict that the number of ancestral
alternative exons in human is somewhere between
12,000–16,500. At first glance this number seems to con-
tradict the current paradigm of alternative splicing abun-
dance in human genes (the higher estimates are that 74%
of all human genes are alternatively spliced [5]). Indeed,
even if each alternatively spliced gene contains only one
ancestral alternative exon (which is frequently untrue),
the fraction of such genes would still be 48%-66%, less
than 74% of all human genes. However, all high estimates
of alternatively spliced genes were derived from analyses
that took into account also species-specific splicing
events, which, as mentioned above, are much more abun-
dant than ancestral alternative splicing (and their func-
tionality is yet to be proven). Our estimate solely refers to
ancestral, non-species specific alternative exons.

Our estimation of the fraction of alternative exons is com-
posed of three elements: estimation for the number of
known exons that undergo conserved exon-skipping
(3.75%), extrapolation using the fraction of the 'exon-
skipping' type out of all types of alternative splicing
(yielding a factor of 1.75), and additional estimation for
the number of ancestral alternative exons still hidden in
the human genome (0.6%). Whereas our results show
that the basic estimate of 3.75% (± 0.65%) is robust, the
two subsequent extrapolations are less reliable (due to the
difficulty in assigning proper error bounds). These extrap-
olations should, therefore, be viewed with caution.

Several factors might have influenced our results. First, it
is still possible that our training sets of exons are some-
how biased and do not represent the actual qualities of
alternative and constitutive exons in the genome.
Although we are not aware of any reason for such bias, if
it exists it could influence the resulting numbers. The fact
that we obtained very close estimates using two different
training sets, compiled in two separate studies by different
methods, makes such bias less likely. Second, the number
of 'hidden' alternative exons might be higher than what
we detected, due to under-representation of very short and
highly conserved exons in the Exoniphy predictions.
Finally, some exons can be alternatively spliced in several
ways, e.g., they can be both skipped and have an alterna-
tive 3' splice site. Our analysis, which assumed that ~40%
of all alternative exons are of the exon-skipping type, did
not take into account such complex cases.

It is noteworthy that our method does not classify each
specific exon as ancestral alternative or 'other'. Instead, it
assigns the exon a score that could be used to calculate the
probability that it is ancestral alternative. Calculated over
the entire set of conserved exons in the human genome,
these probabilities enabled us to accurately estimate the
number of ancestral alternative exons, but not to accu-
rately pinpoint each one of them. For the same reason, the
method cannot uncover the full complexity of the tran-
scriptome, as it does not directly provide the number of
alternative transcripts of each gene.

We could not find a set of parameters that produce SVM-
based classifier that would distinguish between species-
specific alternatively spliced exons and constitutive exons.
This could stem from several factors. First, for the species-
specific alternative exons we, naturally, did not have the
comparative-genomics-based parameters (such as exon-
conservation and flanking-intron conservation). As these
are strong classifying parameters in our SVM classifier [11]
their absence in this case limits its ability to distinguish
between the two populations. Second, the other character-
istics of species-specific alternative exons (such as their
size distribution and divisibility by 3) resemble those of
the constitutive exons [9].

Conclusion
To our knowledge, this report contains the first estimation
for the number of ancestral alternatively spliced exons in
the human genome. Most or all of these exons represent
functional and highly important splicing events (other-
wise they would not have been conserved in evolution
over millions of years). In the quest to reveal the full com-
plexity of the transcriptome, the central parameter will be
the total number of human functional transcripts. While
this number still remains unknown, our estimate is an
important signpost towards revealing it.
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Methods
Data
To compile the "conserved exons" set, internal human
exons were identified by aligning ESTs and cDNAs from
Genbank version 136 [23] to the human genome (version
hg16) downloaded from UCSC genome browser [24].
Internal exons were considered as such if they had valid
flanking 3' and 5' splice sites. The resulting exons were
compared to the mouse genome as described in ref [10].
Classifying features were calculated for each of the exons
as described in ref [11].

Training set exons were downloaded from refs [12,13,15]
and searched for matches in the "conserved exons" set
(120,964 exons) using BLASTn. Exons with no perfect
match were filtered out of the training set.

Exoniphy exons were downloaded from the UCSC hg16
genome version. EST/cDNA coverage of Exoniphy exons
was also derived from the UCSC annotation.

SVM training and hyper-parameter selection
To identify the ancestral alternative exons from species-
specific alternative and constitutive exons, an SVM classi-
fier with a Gaussian kernel was trained using the datasets
described above. Soft-margin SVM implemented in SVM-
light [25] was used throughout the research.

SVM training involves fixing several hyper-parameters, the
values of which has a crucial effect on the performance of
the trained classifier. A grid search combined with five-
fold cross validation was used to evaluate the performance
over various values of the slack parameter C, the width the
kernel σ and the number of features. The latter was con-
trolled by standard filtering using Pearson correlation as
an association measure between a feature and the target.
The final model, obtained by optimizing the area under
the ROC curve, used all available features and its hyper-
parameters were C = 0.1 and σ = 1.4. The "alternativity
score" of an exon is the output of the trained SVM classi-
fier when applied to its feature vector (For details see ref
[11]).

Likelihood maximization
Using the trained SVM we obtained several distributions
of alternativity scores: the scores distribution of the ances-
tral alternative exons, the scores distribution of the 'other'
exons, the scores distribution of all human exons, and the
scores distribution of Exoniphy exons. The latter two pop-
ulations contain unknown fractions of ancestral alterna-
tive exons, hence the distribution of each one of them can
be decomposed into two components: f(x) = pfa(x) + (1-
p)fo(x) where fa and fo represent the probability distribu-
tion function of the SVM score x for the ancestral alterna-
tive exons and for the 'other' exons (ancestral constitutive

and human-specific alternative), respectively. p is the frac-
tion of ancestral alternative exons (0 ≤ p ≤ 1). f represents
the distribution function of a mixed population, either all
human exons or Exoniphy exons.

p was computed by maximizing the log likelihood func-
tion L = log Πif(xi) = Σi log(pfa(xi) + (1-p)fo(xi)), where the
summation is over the SVM scores of all exons in the test
set. As L is a function of a single parameter, finding its glo-
bal maximum is straightforward. The Fisher information
F was used to estimate a confidence interval for p. In sub-
sequent analysis we used one standard deviation Δ = 1/√F
as a measure of the uncertainty in p.

Parzen smoothing
fa and fowere extracted from the score distribution of the
ancestral alternative exons and the 'other' exons of the
training set, respectively, using 200-fold cross validation
to avoid over-fitting. The score distributions are only
insignificantly different if a 'leave-one-out' cross-valida-
tion is performed instead.

Since a normal approximation of these distributions devi-
ated considerably from the observed distributions, Parzen
smoothing was used instead to model them as continuous
probability distribution functions. To determine the
Gaussian width for Parzen smoothing, each population,
ancestral alternative exons and 'other' exons, was split
into two equal disjoint sets. One set was used to produce
a probability distribution function using a fixed Gaussian
width, and the second set was used to calculate the log-
likelihood function La = Σi log(fa(xi)) and Lo= Σi log(fo(xi))
for the ancestral alternative exons and 'other' exons,
respectively, where the summation is over the examples of
the second set. This process was repeated 100 time for
each Gaussian width. The widths that gave the highest
average log-likelihood values were chosen for Parzen
smoothing. These widths were 0.0111 and 0.0117 for the
ancestral alternative and the 'other' exons, respectively, in
the Yeo set, and 0.0159 and 0.0145 for the ancestral alter-
native and the 'other' exons, respectively, in the Sorek set.
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