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Abstract
Background: A 70-gene tumor expression profile was established as a powerful predictor of
disease outcome in young breast cancer patients. This profile, however, was generated on
microarrays containing 25,000 60-mer oligonucleotides that are not designed for processing of
many samples on a routine basis.

Results: To facilitate its use in a diagnostic setting, the 70-gene prognosis profile was translated
into a customized microarray (MammaPrint) containing a reduced set of 1,900 probes suitable for
high throughput processing. RNA of 162 patient samples from two previous studies was subjected
to hybridization to this custom array to validate the prognostic value. Classification results obtained
from the original analysis were then compared to those generated using the algorithms based on
the custom microarray and showed an extremely high correlation of prognosis prediction between
the original data and those generated using the custom mini-array (p < 0.0001).

Conclusion: In this report we demonstrate for the first time that microarray technology can be
used as a reliable diagnostic tool. The data clearly demonstrate the reproducibility and robustness
of the small custom-made microarray. The array is therefore an excellent tool to predict outcome
of disease in breast cancer patients.

Background
Microarray analysis is a widely used technology for study-
ing gene expression on a global scale. However, the tech-
nology is presently not used as a routine diagnostic tool.

Various studies have shown that microarray analysis
results in improved diagnosis and risk stratification in
many cancers [1-12]. More specifically, in human breast
cancer molecular profiles have identified subtypes [3,8],
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and prognostic subgroups that are relevant to patient
management [4,6,13,14], and may add to the prediction
of therapy response [15-18].

One study involved the discovery of a profile associated
with the risk of early development of distant metastasis in
young patients with lymph-node negative breast cancer
[6]. The development of distant metastases is the primary
cause of death in breast cancer patients; approximately
one third of women with lymph node negative breast can-
cer will develop distant metastasis. The challenge there-
fore is to predict the risk of metastasis at the time of
primary diagnosis and accurately manage those patients
identified as high-risk. The Amsterdam 70-gene prognosis
profile has been shown to outperform all clinical param-
eters in predicting distant metastasis [13]. The ability to
use this profile in a high throughput diagnostic setting
would be a great advantage in the prognosis and treat-
ment of breast cancer.

This profile, however, was generated on oligonucleotide
microarrays containing approximately 25,000 60-mer oli-
gonucleotides. Using these arrays for clinical practice
would not only be costly, but their one-sample-per-chip
design would not allow for high throughput processing of
many samples on a routine basis. Recently, an 8-pack for-
mat with 8 identical sub-arrays, containing a limited
number (1900) of 60-mer oligonucleotides became avail-
able. This would allow less sample RNA input for labeling
and hybridization and data processing time could be sub-
stantially reduced, permitting test results to become avail-
able within 5 days.

Nonetheless, there are several issues to consider when
'reading' expression profiles from mini-microarrays. Data
processing steps, such as normalization to remove sys-
temic variation and background subtraction, may require
re-optimization for the smaller number of probes present.
Apart from such issues of data processing, the original bio-
logical samples used to generate the original profile need
to be available for confirmation and validation purposes.

In this paper we describe the development of a custom-
ized diagnostic breast cancer mini-array, MammaPrint,
based on the Amsterdam 70-gene expression profile [6],
and describe its reliable use in a diagnostic setting.

Results
Recently, using complex microarrays, a 70-gene prognosis
profile was identified that is a powerful predictor for the
outcome of disease in young breast cancer patients. This
profile was generated using 78 tumor samples of patients
having lymph node negative disease by hybridization of
fluorescent-dye labeled RNA to microarrays containing
25,000 60-mer oligonucleotide probes. To enable the use

of this prognostic classifier in a diagnostic setting, custom-
made 8-pack mini-arrays were developed (Agilent Tech-
nologies). This mini-array is a single 1" × 3" slide contain-
ing eight identically printed regions or sub-arrays, each
containing 1,900 60-mer oligonucleotide probes, includ-
ing the 70 prognostic classifier genes [6]. This allows eight
individual hybridizations to be carried out simultane-
ously on a single microarray slide (Figure 1).

To increase measurement precision, each of the signature
genes was spotted in triplicate and an error-weighted aver-
age of the intensity ratios was calculated. In the original
studies another method was used to decrease uncertain-
ties of the array measurements, i.e., the use of the quantity
Xdev [19,20], however, this showed undesirable artifacts
since the variance in error estimation is dependent on the
number of spots used in the calculations.

To determine if the customized mini microarray test per-
forms as well as the original 25 k microarrays [6,13], RNA
of samples used in the original series to develop the 70-
gene prognosis classifier [6] were retrieved, labeled and re-
hybridized against a common reference sample with
reverse fluorescent dyes using the 8-pack mini-arrays.
Since different measurement quantities were used (Xdev
versus LogRatio), we reconstructed the 'good prognosis
template' by using the data of the 44 good outcome
patients generated on the mini-array based on log ratios.
Disease outcome classification of individual samples was
then determined by the cosine correlation to this recre-
ated template in a leave-one-out cross validation proce-
dure.

The expression intensities of the 70 signature genes for the
78 original samples hybridized to the customized array
are shown in Figure 2. The tumors are rank-ordered
according to their correlation coefficients with the re-
established 'good prognosis template' (Figure 2 middle
panel). Genes are ordered according to their correlation
coefficient with the two prognostic groups as previously
described [6]. Tumors with correlation values above or
below the previously determined threshold [6] (indicated
by the yellow line in Figure 2) were assigned to the good
or poor prognosis profile group, respectively. The right
panel in Figure 2 shows the distant metastasis status of the
patients and confirms the strong correlation of prediction
and high accuracy between the profile predicted and
actual outcome of disease of the patients, as observed in
the original studies [6,13].

Comparison to original data
To perform a comprehensive evaluation of the mini-array
results, we compared in Figure 3 the current classification
to the good and poor prognostic profiles with that of the
originally published classification for each sample.
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Results from the original study are shown (X-axis) plotted
against those obtained from the customized mini-array (Y
axis) [6]. The data generated using the diagnostic test is
highly similar (Pearson correlation of 0.92, p < 0.0001) to
the original published data. The overall accuracy of the
diagnostic test was determined by calculating the odds
ratio for the development of distant metastases within five
years. The odds ratio calculated based on the current
results (OR = 13. 95%CI 3.9 to 44) was highly comparable
to the original data (OR = 15, 95%CI 2.1 to 19) using the
methods described in the supplementary information of
[6].

A more detailed evaluation revealed seven discordant
cases between MammaPrint risk assessment and the pub-
lished data. These cases included two patients that did not
develop distant metastases, who were classified as being
poor prognosis in the published data [6], but the diagnos-
tic test correctly classified them into the good prognosis
group. Furthermore, one patient who did develop metas-

tases was originally classified as good prognosis, whereas
in the current results this patient was classified correctly as
having a poor prognosis. On the other hand, however,
there were two good outcome patients classified as poor
prognosis using the diagnostic test, while in the original
data these samples were classified correctly, as well as two
poor outcome patients classified as good prognosis by the
current test who where correctly classified by original
analysis as poor prognosis.

Customized mini-array reproducibility
To further investigate if the differences seen were due to
technical variation of the current test or could be other-
wise explained, 49 samples were amplified and hybrid-
ized a second time to the 8-pack mini-array (Figure 4).
The Pearson correlation for the replicate experiments was
0.995, indicating a very high degree of reproducibility of
classification for individual tumor samples using the cus-
tomized 8-pack array. Also an ANOVA analysis performed
on the 70-gene expression values obtained in the dupli-

MammaPrint 8-pack, a single 1" × 3" slide containing 8 mini-arrays with 1,900 60-mer oligonucleotide probes, allowing for eight individual hybridizations simultaneouslyFigure 1
MammaPrint 8-pack, a single 1" × 3" slide containing 8 mini-arrays with 1,900 60-mer oligonucleotide probes, allowing for eight 
individual hybridizations simultaneously. The samples are hybridized against a common breast cancer reference pool.
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cate experiments showed no significant differences, inde-
pendent of variation between individual samples and
profile genes (p = 0.960).

To ensure that the outcome of the test does not change
over time, two samples were amplified and labeled repeat-
edly over a period of 12 months (Figure 5). One sample
(HRC) was classified as poor prognosis with an average
cosine correlation to the good prognosis template of -
0.44. The other sample (LRC) was classified as good prog-
nosis (average correlation to the good prognosis template
of 0.61). Both samples were stable over time as shown
and the diagnostic test result was observed to have a very
low standard deviation (LRC and HRC stdev 0.028, i.e.

technical variation), indicating the robustness of the diag-
nostic test.

A sample close to the classification threshold was ana-
lyzed 40 times in a period of 4 months. The average corre-
lation to the good prognosis template was 0.430 with a
standard deviation of 0.027. The sample was misclassified
6 times (15 %), which is in agreement with the expected
chance of misclassification (14%) based on the area of the
Gaussian that falls on the other side of the decision
boundary (s = 0.028 (the overall standard deviation for
the test) and m = 0.430).

Expression data matrix of 70 prognostic markers genes from tumors of 78 breast cancer patients hybridized using the custom microarrayFigure 2
Expression data matrix of 70 prognostic markers genes from tumors of 78 breast cancer patients hybridized using the custom 
microarray. Each row represents a tumor and each column a gene. Genes are ordered according to their original ordering. 
Tumors are ordered by their correlation to the average profile of the good prognosis group (middle panel). The metastases 
status for each patient is shown in the right panel. White indicates patients who developed metastases within 5 years after the 
initial diagnosis, black indicates patients who continued to be metastasis free for at least 5 years.
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Clinical validation study comparison
To more accurately estimate the risk of metastases associ-
ated with the 70-gene prognostic profile, a validation
study [13] was performed using a cohort of 295 young
breast cancer patients. For the current study we selected
the 151 patients from this cohort without lymph node
involvement at diagnosis of which 145 RNAs were availa-
ble.

We calculated the probability of a patient remaining free
of distant metastases and overall survival according to the
prognosis profile and compared this to the published data
[13].

Once more the data generated using the customized array
is highly similar (Pearson correlation of 0.88, p < 0.0001)
to the original data.

As was seen before, Kaplan-Meier curves showed a signif-
icant difference in the probability that patients would
remain free of distant metastases when classified in the
good or poor prognosis profile group (Figure 6A, LogRank
p < 0.001). The difference in prediction of probability of
overall survival (Figure 6B) between the groups with good
or poor prognosis profiles was also highly significant (p <
0.001). The estimated hazard ratio for distant metastases
as a first event in the group with a poor prognosis signa-
ture versus the group with a good-prognosis signature,
over the entire follow up period, was 5.6 (95% CI 2.4 to
7.3, P < 0.0001). This confirms the published data [13]
(HR = 5.5, 95%CI 2.5 to12.2, P < 0.001).

When the probability of a patient remaining free of dis-
tant metastases was compared between the current result
(Figure 6 blue line) and the original analysis (Figure 6
dashed green line) in the good prognosis profile groups,
no significant difference was found (logRank p = 0.890).
Similarly for those patients in the poor prognosis profile
groups (logRank p = 0.794) (Figure 6 red and dashed
magenta lines). Equally, there is no significant difference
in overall survival of patients grouped by either the cur-
rent result or the original published result for either prog-
nosis profile group (two results of good prognosis profile
group: logRank p = 0.747, two results of poor prognosis
profile group logRank p = 0.760, respectively). All results
taken together indicate that there is not only a strong cor-
relation between good prognosis and the absence of dis-
tant metastasis or death [13], but the findings generated
using the more complex microarray platform were nearly
perfectly reproduced using the customized mini-arrays,
and demonstrate the robustness of the MammaPrint 8-
pack mini-array test.

Custom array outcome of replicate experimentsFigure 4
Custom array outcome of replicate experiments. Cosine 
correlation to the good prognosis template is plotted, and is 
highly similar between duplicate experiments.

Comparison of current data to published values [6]Figure 3
Comparison of current data to published values [6]. Correla-
tion of the 70 genes from each tumor to the average expres-
sion profile of the good outcome patients is plotted. On the 
Y axis results from the customized 8-pack test is plotted and 
on the X axis results are plotted using published data from 
the original paper [6] using Xdev values (see text)
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Discussion
Recently, a 70-gene expression profile was established as a
powerful predictor of disease outcome in young breast
cancer patients. This profile was generated using microar-
rays containing 60-mer oligonucleotide probes corre-
sponding to 25,000 transcripts. To enable the use of this
prognostic classifier in a high throughput diagnostic set-
ting, a custom-made 8-pack mini-array was developed,
which allowed for eight individual simultaneous hybridi-
zations on a single microarray slide (Figure 1). In the
present study we tested these custom-made microarrays
for use in a diagnostic setting. Sample RNAs from our
original studies from which the 70-gene profile was
deduced and clinically validated were retrieved, labeled
and hybridized to the mini-arrays. Outcome prediction
was found to be highly similar to the original data (Figure
3), as well as the probabilities of remaining metastases

free and overall survival (Figure 6). There was, however, a
small number for which a discrepancy was observed
between the current result and that obtained in the origi-
nal analysis. These were cases for which the 70-gene corre-
lation to the good prognosis template was observed to be
very close to the classification threshold (0.4), indicating
that minor differences can cause the result for a sample to
change from high to low risk classification, or vice versa.

To investigate if these small differences in correlation
coefficient were due to technical variation of the custom-
ized arrays, 39 samples were labeled, hybridized and ana-
lyzed a second time. A high Pearson correlation (0.995)
between duplicate samples was observed, indicating very
low measurement variability (Figure 4). The diagnostic
test was found to be stable over time as well; two samples
that were repeatedly labeled and hybridized over a period

Custom diagnostic microarray outcome of two samples over timeFigure 5
Custom diagnostic microarray outcome of two samples over time. The correlation to the good prognosis profile of three sam-
ples (HRC, LRC, and BLS) of >100 measurements over a period of 12 months shows constant outcome.
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of 5 months as part of our internal control system showed
minimal variation. Most importantly, the outcome of
these samples did not gradually shift over time (Figure 5).
Differences in outcome between the current and the orig-
inal data might be due to experimental factors such as dif-
ferent labeling and hybridization protocols, as well as a
new reference being used for the microarray hybridiza-
tions carried out for this study. Sufficient quantities of this
reference stock have now been created for many thou-
sands of hybridizations. Another explanation may be sub-
tle differences in the data processing methods used for the
high-throughput diagnostic test, as opposed to those used
in the original study. To improve measurement precision
in the current analysis, each gene was printed on the mini-
array in triplicate, while on the original platform genes
were singularly represented. Xdev values were calculated
to increase measurement certainty in the initial study,
whereas triplicate spotting requires the customized array
to use the more robust error-weighted mean log-ratios.
The current procedure is therefore considered to be more
reliable.

Even though the technical accuracy is extremely high,
samples close to the threshold have a higher chance of
misclassification than samples further away from the
threshold. Based on the known variation in MammaPrint
results, a small proportion of MammaPrint samples with
indices close to the prediction threshold may have been
misclassified. In principle, the chance of a patient with a
poor clinical outcome incorrectly being assigned to a
good prognosis profile should be minimized. Based on
analysis of MammaPrint results generated to date, less
than 1.1% of all samples fall into this category. Repeated

analysis of borderline samples makes the area of classifi-
cation uncertainty on either side of the threshold substan-
tially smaller, reducing the proportion of false negative
classifications to less than one percent.

The reproducibility of the current test and the similarity of
its results to those obtained from the original data demon-
strate that it is an excellent tool to predict outcome of dis-
ease in breast cancer patients and is highly suitable for a
clinical diagnostic clinical setting.

An external validation series by the Transbig consortium
using this same customized mini-array, evaluating out-
come prediction of 307 patients from 5 European hospi-
tals who were diagnosed with lymph node negative breast
cancer before the age of 60 years and who did not receive
adjuvant therapy, showed the independent clinical valida-
tion of the 70-gene expression profile[21].

Conclusion
Using the MammaPrint microarray test in the clinical set-
ting will provide more accurate information on recurrence
risk as compared to conventional clinical criteria and will
thus improve the guidance for the requirement of adju-
vant therapy for young women diagnosed with breast can-
cer. As a direct result, many patients could be potentially
spared the side effects and risks of such treatment,
improving quality of life and reducing healthcare costs.

Methods
Patient samples
One hundred and sixty-two patients with lymph node
negative (pN0) breast cancer, age of diagnosis before 55

A. Kaplan-Meier Analysis of the probability that patients would remain free of distant metastases among 145 patients with lymph-node-negative breast cancerFigure 6
A. Kaplan-Meier Analysis of the probability that patients would remain free of distant metastases among 145 patients with 
lymph-node-negative breast cancer. Blue: Current Good prognosis profile group; green dashed: Good prognosis profile group; 
Red: Current Poor prognosis profile group; Magenta dashed: previous published data [13] Poor prognosis profile group. B. 
Kaplan-Meier Analysis of the probability of overall survival among 145 patients with lymph-node-negative breast cancer.
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years, not having received adjuvant therapy and that were
part of our previous studies [6,13] were included. All 78
patients that were part of the study in which the 70-gene
prognosis profile was established [6], were used to re-
establish the 70-gene expression profile. Of the 151
patients used in the clinical validation [13], 145 patients
were used, including 61 from the first study. Patients that
remained free of disease after initial diagnosis for a period
of at least 5 years were assigned to the good prognosis
group, i.e. 'good outcome group'; patients that had devel-
oped metastasis within 5 years were assigned to the poor
prognosis group.

RNA Isolation and cRNA labelling and hybridization
Aliquots of total RNA of 149 frozen tumor samples was
available for this study, for 13 samples (8 out of 78 and 5
of the 145 tumor series, see above) new RNA was isolated
from available frozen tumor tissue as described previously
[6,13,22]. Two-hundred nanogram total RNA was ampli-
fied using the Low RNA Input Fluorescent Labeling Kit
(Agilent Technologies). Cyanine 3-CTP or Cyanine 5-CTP
(Perkin Elmer) was directly incorporated into the cRNA
during in vitro transcription. A total of 200 ng of Cyanine-
labeled RNA was co-hybridized with a standard reference
to custom 8-pack mini-microarrays (MammaPrint, Agen-
dia) at 60°C for 17 hrs and subsequently washed accord-
ing to the Agilent standard hybridization protocol
(Agilent Oligo Microarray Kit, Agilent Technologies). The
reference sample consisted of pooled and amplified RNA
of 105 primary breast tumors selected from patients of the
clinical validation series [13] in such a way that it had a
similar proportional distribution between good and poor
profile patients. Sufficient reference material was gener-
ated for over 30,000 hybridizations. For each tumor two
hybridizations were performed by using a reversal fluores-
cent dye.

The customized mini-array contained 1,900 60-mer oligo-
nucleotide probes that comprise the 232 prognosis related
genes [6] identical to the probes on the original array,
including the genes of the 70-gene prognosis classifier,
spotted in triplicate. Each array additionally includes 289
probes for hybridization and printing quality control as
well as 915 normalization genes. Eight identical Mamm-
aPrint arrays are present on a single 1" × 3" slide, allowing
for eight individual hybridizations to be performed simul-
taneously. After hybridization the slides were washed and
subsequently scanned with a dual laser scanner (Agilent
Technologies). Microarray raw data are available at the
European Bioinformatics Institute (EBI) Arrayexpress
database;[23] accession number E-TABM-115.

Data analysis
Fluorescence intensities on scanned images were quanti-
fied, values corrected for background non-specific hybrid-

ization, and normalized using Feature Extraction software
version 7.5.1 (Agilent Technologies). Data was further
analyzed using custom algorithms in Matlab version 7.1
(The Mathworks). To obtain an overall expression value
for each of the signature genes on the array, an error-
weighted mean value was calculated for the three identical
probes belonging to the same gene as log10ratios. To
establish appropriate relative weights, the Rosetta error
model was used, which corrects for the uncertainties in
individual probe measurements [19,24,25]. Probes were
excluded from further calculations if their background
corrected intensities were below zero and/or if spots were
flagged as non-uniformity outliers as determined by the
image analysis software.

Outcome prediction
Outcome prediction for the 78 tumor samples used in Fig-
ure 2 and 3 was performed as described by Van 't Veer et
al [6]. In brief, the 'good prognosis template' was (re-)con-
structed using the average expression for each of the 70
genes in tumors from the 44 'good outcome' patients as
determined on the customized mini-array. Subsequently,
the expression of the 70 profile genes for each patient was
correlated in a leave-one-out cross validation procedure to
the 'good prognosis template'. A patient with a cosine cor-
relation to the good prognosis template higher than 0.4
(the previously determined threshold [6]) was assigned to
the good-profile group. Patients with a correlation lower
than this threshold were assigned to the poor-profile
group.

Outcome prediction for the 145 tumor samples used in
Figure 6 was performed as described by Van de Vijver et al.
(13). For each of the 84 tumors from patients that were
not included in the original Nature study [6], a correlation
coefficient of the 70-gene expression with the template
was calculated as described above. For the 61 patients who
were included in the original study [6], correlation coeffi-
cients were calculated according to the cross-validated
classification method using all 231 genes. This approach
was originally employed to minimize to some extent the
overestimation of the value of the prognosis profile, i.e.,
no optimization of the number of reporter genes was car-
ried out, as described in the Nature supplementary infor-
mation by Van 't Veer et al [6]. The only deviation is that
231 instead of a varying number of prognosis correlated
genes (range 238 ± 23) were used in the cross-validation
procedure since only these 231 genes are present on the
mini array. We did show before, however, that the vast
majority of the 231 genes were commonly shared by the
78 classifiers generated in the cross-validation procedure
[6]. For this subgroup, a patient with a tumor with corre-
lation of the 70 genes higher than the previously deter-
mined threshold of 0.55 was assigned to the good
Page 8 of 10
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prognosis profile, and a correlation of less than 0.55 was
assigned to the poor prognosis profile group [13].

Statistical analysis
Odds ratios were calculated based on a two by two contin-
gency table. P-values associated with odds ratios were cal-
culated by Fisher's exact test. Survival periods of patients
were analyzed from the calendar date of surgery to the
time of the first event or the date on which data were cen-
sored, according to the method of Kaplan Meier. The
curves were compared using the log rank test.

List of abbreviations
OR: Odds Ratio

CI Confidence Interval

Stdev: standard deviation

HR: Hazard ratio

pN0 lymphnode negative
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