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Abstract
Background: Peridinin-containing dinoflagellates have a highly reduced chloroplast genome,
which is unlike that found in other chloroplast containing organisms. Genome reduction appears
to be the result of extensive transfer of genes to the nuclear genome. Unusually the genes believed
to be remaining in the chloroplast genome are found on small DNA 'minicircles'. In this study we
present a comparison of sets of minicircle sequences from three dinoflagellate species.

Results: PCR was used to amplify several minicircles from Amphidinium carterae so that a
homologous set of gene-containing minicircles was available for Amphidinium carterae and
Amphidinium operculatum, two apparently closely related peridinin-containing dinoflagellates. We
compared the sequences of these minicircles to determine the content and characteristics of their
chloroplast genomes. We also made comparisons with minicircles which had been obtained from
Heterocapsa triquetra, another peridinin-containing dinoflagellate. These in silico comparisons have
revealed several genetic features which were not apparent in single species analyses. The features
include further protein coding genes, unusual rRNA genes, which we show are transcribed, and the
first examples of tRNA genes from peridinin-containing dinoflagellate chloroplast genomes.

Conclusion: Comparative analysis of minicircle sequences has allowed us to identify previously
unrecognised features of dinoflagellate chloroplast genomes, including additional protein and RNA
genes. The chloroplast rRNA gene sequences are radically different from those in other organisms,
and in many ways resemble the rRNA genes found in some highly reduced mitochondrial genomes.
The retention of certain tRNA genes in the dinoflagellate chloroplast genome has important
implications for models of chloroplast-mitochondrion interaction.

Background
The organisation of the chloroplast genome in many
peridinin-containing dinoflagellates has been shown to
be very unusual [1-5]. A massive reduction in the gene

content of the organelle genome is observed in these
organisms relative to all other photosynthetic chloro-
plasts [6]. EST data from a number of dinoflagellate spe-
cies suggest that many genes that are typically located
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within the chloroplast genome have been transferred to
the nuclear genome [7-10]. Furthermore, the genome is
unusual in that the remaining chloroplast genes are con-
fined to small circular DNA molecules (minicircles) of
between 2–10 kb (although larger molecules have been
reported in some species [11]), rather than a single large
circularly mapping molecule [12]. The minicircles found
in dinoflagellates each typically contain a single gene,
though up to three genes have been recorded on one
minicircle [13]. An interesting feature of these minicircles
is the presence of a non-coding region that is well con-
served in all gene-containing minicircles of a given spe-
cies, as well as in 'empty' minicircles which have no
obvious gene sequences [1,3,13-15]. However, even
within genera there is little or no conservation of DNA
sequence identity within this common non-coding region
[16]. In contrast, the coding regions of minicircles show
high levels of identity within genera. Some controversy
exists as to the location of the minicircles. Several indirect
lines of evidence support their location in the chloroplast
[5]. These include an absence of sequences encoding tran-
sit peptides, the localisation of psbA transcripts to chloro-
plasts [17] and chloramphenicol inhibition of PsbA
translation [18]. However, a report from one species indi-
cates a possible location of minicircles in the nuclear com-
partment [4]. This contradiction is not yet resolved, and it
remains possible that different dinoflagellate species have
circular DNA molecules present in different compart-
ments.

We have characterised what appear to be the complete
chloroplast coding genomes of both A. carterae and A.
operculatum as well as a number of the related 'empty'
minicircles from each species. It seems likely that few, if
any, minicircles remain to be discovered that contain typ-
ically chloroplast located genes, since the EST data [7-10]
contain examples of almost all the genes which are invar-
iably found on chloroplast genomes that have not been
found on minicircles. This provides the basis for a com-
parative analysis of two sets of minicircles. We have also
made comparisons with the other extensively character-
ised dinoflagellate minicircle set from Heterocapsa triquetra
where appropriate. Comparative genome analyses are use-
ful in identifying genetic features that may not be appar-
ent from single genome analyses [19,20]. We were
particularly interested in examining whether any previ-
ously unrecognized genes were present on the minicircles.
Genes could have been missed from previous analyses of
minicircular sequences, especially if the genes were short
or poorly conserved. As the rate of substitution in minicir-
cle genes appears to be high this is a significant concern
and similarity searches against sequence databases may
have missed genes [2,21]. However, we would expect
DNA sequences containing such genes to be conserved
between two closely related organisms, such as the two

Amphidinium species. We also used comparisons between
more distantly related genera to help establish the extent
of ribosomal RNA genes as the identification of rRNA
genes has proved controversial [6]. Other pattern based
search algorithms, such as tRNA-scan-SE [22], were used
to examine the minicircles for significant genetic features.

The results of these analyses suggest that at least three
extra protein-coding regions may be present. We also
found the first evidence for tRNA genes on minicircles. We
have also further characterised rDNA sequences from
minicircles. These sequences, which are transcribed, are
highly divergent showing evidence of a high rate of muta-
tion, as well as a possible fragmentation of the gene
sequence. The peridinin-containing dinoflagellate rDNA
sequences share similarities to the reduced rDNA
sequences found in mitochondrial genomes.

Results and Discussion
PCR amplification of A. carterae minicircles
A DNA fraction from A. carterae which had been previ-
ously shown to be enriched in minicircles was used as a
template for PCR [3]. Fragments of the A. carterae genes
for psbB, petD and atpB were initially obtained by PCR
using degenerate primers based on the corresponding
translated gene sequences from A. operculatum and 'uni-
versal' primers to the core region (Table 1). It was
assumed that the gene orientation in A. carterae is con-
served with respect to the core region. Part of a psbC gene
sequence was generated by chance from primers CD26f1
and UR (CD26f1 was a primer to reverse of psbE but had
10 out of 11 3' bases in common with psbC). Full
sequences of each minicircle were generated by adjacent
opposed specific primers designed according to the frag-
ment sequences. DNA sequencing revealed that all of the
minicircle sequences obtained possessed a core region of
the type previously described for A. carterae [3].

Another minicircle was obtained by PCR with primers
designed on the basis of the A. carterae core region (UF
and UR) only (ecac27: acc. no. DQ507216). A similar
approach had been used to obtain nine other empty
minicircles [3]. With the characterisation of the four gene-
coding minicircles from A. carterae (petD, atpB, psbC and
psbB: acc. nos DQ507217–DQ507220 respectively), we
now possessed a homologous set of gene-coding minicir-
cle sequences for the two Amphidinium species.

Overall genome characteristics
A summary of the genome sizes and previously annotated
gene content is shown in Table 2. The mean GC contents
of the Amphidinium species minicircles are 45.27% for A.
carterae and 46.46% for A. operculatum. The coding
regions generally appear to be more GC-rich than the
non-coding regions, as shown by a plot of GC content
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(Figure 1). The GC content of all of the core regions in
both Amphidinium species is lower than the overall GC
content of the minicircles. Intriguingly the psbA gene in
both Amphidinium species is flanked by a region of unusu-
ally high GC content preceding the gene and low GC con-
tent after the gene. The mean GC content of H. triquetra
minicircles is 37.02%, which is much lower than in the
Amphidinium species. Some of the discrepancy is due to
the longer non-coding regions found in the minicircles of
H. triquetra, as these regions are AT-rich. However, this is
not the sole cause. The coding regions of H. triquetra,
whilst more GC-rich than the core regions, are considera-
bly more AT-rich than the coding regions of Amphidinium.
This is reflected in the codon usage of the two genera.
Codons ending in A or T are more prevalent in H. triquetra
[2]. The total length of all minicircle sequences (both
gene-containing and 'empty') obtained from A. carterae is
45,815 bp and from A. operculatum is 34,186 bp. The main
cause of the difference in lengths is the discovery of many
more empty minicircles in A. carterae (10 empty minicir-
cles compared to 5 in A. operculatum). However, in addi-
tion the A. carterae minicircles are slightly larger than their
A. operculatum equivalents, with just a single exception
(the petB/atpA minicircle).

Comparison of previously identified genes
Coding regions on previously reported minicircles of A.
operculatum and A. carterae had been identified by combi-
nation of BLAST searches and CodonPreference analysis
of the DNA sequences. The 12 predicted gene-encoding
regions in each species all have obvious identity to known
chloroplast encoded proteins. The coding regions of A.
operculatum and A. carterae minicircles show high levels of
identity at both the DNA and predicted amino acid level

(Table 3). The PsaB sequences (beta subunit of Photosys-
tem I) had the lowest identity between species, 97.6%. All
other inferred protein sequences have at least 99% iden-
tity or above. Therefore, on the basis of their protein
sequences it seems that the two dinoflagellate species are
closely related. (In addition ultrastructural studies suggest
that the A. operculatum strain might be more appropriately
designated as A. carterae {E. Nash, pers. comm.}) The
shortest previously identified coding region is for PsbI, a
component of Photosystem II, the sequence correspond-
ing to protein of only 35 amino acids [13].

Little difference exists in the codon usage of the two
Amphidinium species. Marked preferences exist for certain
codons for many amino acid residues (data not shown).
For example the GGT codon is by far the most frequently
used codon for glycine. Other features of the codon usage
in A. operculatum and H. triquetra have been discussed pre-
viously [2,23].

An identical set of eleven codons is very infrequently used
in both species (10 examples or fewer of each out of 4453
codons). They are TTA (Leu), TCA (Ser), TGA (Stop), CCC
(Pro), CGC (Arg), CGG (Arg), ATA (Ile), ACG (Thr), AAA
(Lys), AGA (Arg) and GGG (Gly). The frequency of the
rare codons is unevenly distributed amongst the minicir-
cle genes. The two genes for the core components of Pho-
tosystem I, psaA and psaB, have higher frequencies of these
codons than the other genes as shown in Table 4.

In addition to the previously identified protein genes
BLAST searches identified a region with clear identity to a
plastid-type LSU rDNA in each species of Amphidinium.
However, the LSU rDNA sequence does not appear to be

Table 1: Primers used for PCR and RT-PCR.

Primer Sequence Amino acid sequence or adjacent rRNA structure

UF 5'-TTTGGAATCTCAGCTCGATTC
UR 5'-CTCGCACCCAAATTGACT

CD26f1 5'-gtGATgagGTCTGtAGTGG
NICpsbB 5'-GCNTTYTGGCAYTGGGC A F W H W A
petDf3 5'-GARCCNGCNTGGCCNAA E P A W P N
atpBr1 5'-TCNCGGAARTAYTCNGCC (M) A E Y F R D (in reverse)
LSU1F 5'-AGTGATACTGTTCTCTTGAG 3' helix 46 LSU rRNA
LSU2R 5'-GGTTTCATAACTCGGTTGTC 5' helix 62 LSU rRNA
LSU3F 5'-GACAACCGAGTTATGAAACC 5' helix 62 LSU rRNA
LSU4R 5'-ACGTCCAGTGTCATTTCACC 5' helix 72 LSU rRNA
SSU1F 5'-GAAACTTAAAGGTGCTGGTGG 3' helix 27 SSU rRNA
SSU2R 5'-GTTACTAACGATTCCAGCTTC 5' helix 43 SSU rRNA

Primers used to amplify initial fragments of psbC, psbB, petD and atpB genes from A. carterae and primers used in RT-PCR analyses of the A. 
operculatum rRNAs. UF (universal forward) and UR (universal reverse) are adjacent opposed primers made to the core region. In CD26f1 the 
mismatches with psbC sequence are shown in lower case.
Page 3 of 15
(page number not for citation purposes)



BMC Genomics 2006, 7:297 http://www.biomedcentral.com/1471-2164/7/297

Page 4 of 15
(page number not for citation purposes)

GC content for the psaA-, psaB-, psbA- and psbB-containing minicircles of A. operculatumFigure 1
GC content for the psaA-, psaB-, psbA- and psbB-containing minicircles of A. operculatum. GC content is calculated 
within a window of 200 nucleotides. Boxes indicate the positions of genes (green) and core regions (gray).
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Table 2: Type and size of minicircle sequences in the chloroplast genomes studied

A. carterae A. operculatum H. triquetra

total length (bp) 45,815 34,186 42,769
mean GC content 45.27% 46.46% 37.02%
gene containing minicircles
psaA 2,558 2,443 3,005
psaB 2,366 2,363 3,121
psbA 2,520 2,311 2,151
psbB 2,327 2,282 2,286
psbC 2,477 2,341 2,330
psbD/E/I 2,358 2,369
psbD 2,628#

psbE 2,196#

petB/atpA 2,606 2,713
petB 2,204
atpA 2,444
petD 2,563 2,416 2,177#

atpB 2,587 2,483 -
LSU rRNA 2,713 2,651 3,027
SSU rRNA (2,533) (2,458) 2,563
'empty' minicircles
No. 10 5 1
total length of empty minicircles 20,729 (18,196$) 9,825 (7,367$) 2,012#

chimeric minicircles 5
total length of chimeric minicircles 10,625

$Not including putative SSU rRNA minicircle.
#These sequences were submitted to the sequence database whilst this paper was in submission, the sequences do not therefore form part of our 
comparative analysis.
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Table 4: Distribution of rare codons in Amphidinium minicircle protein genes.

A. c./no. A. c./total amino acids % rare codons A. o./no. A. o./total amino acids % rare codons

psaA 16 678 2.4 13 671 1.9
psaB 9 644 1.4 12 685 1.8
psbA 4 340 1.2 2 340 0.6
psbB 3 506 0.6 3 506 0.6
psbC 5 463 1.1 5 463 1.1
psbD 2 355 0.6 1 355 0.3
psbE 0 77 - 0 77 -
psbI 2 35 5.7 1 35 2.9
petB 4 219 0.9 2 219 0.9
petD 2 157 1.3 2 157 1.3
atpA 4 488 0.8 4 488 0.8
atpB 5 590 0.8 6 590 1.0
ORF1 (psbD/E/I) 3 73 4.1 3 73 4.1
ORF2 (petD) 5 90 5.6 5 90 5.6
ORF3 (petD) 9 150 6.0 8 150 5.3

Rare codons comprise 1.2% of all codons in the previously identified gene set. 
A. c.: Amphidinium carterae, A. o.: Amphidinium operculatum.

Table 3: Percentage identities of minicircle ORFs

A. operculatum H. triquetra

percentage identities percentage identities

PsaA 99.3 50.7
PsaB 97.6 42.7
PsbA 99.7 86.1
PsbB 100.0 59.9
PsbC 99.6 64.5
PsbD 99.7 na
PsbE 100.0 na
PsbI 100.0 na
PetB 99.1 75.3
PetD 100.0 na
AtpA 99.8 54.1
AtpB 99.3 na
ORF1 98.6 na
ORF2 100.0 na
ORF3 100.0 na
LSU rRNA 92.0 over 2662 base stretch, not all of this may be LSU rDNA. (DNA comparison) 67.6 over 692 base stretch. (DNA comparison)
SSU rRNA 81.1 over 2403 base stretch, not all of this may be SSU rDNA. (DNA comparison) 69.8 over 288 base stretch. (DNA comparison)

Percentage identities were calculated by comparison to A. carterae sequences using pairwise Blast [36].
na – sequences unavailable or not found in the other species.
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a full-length sequence, as will be discussed later. No SSU
rRNA gene was identified in an initial search in the
Amphidinium sequences.

Further protein genes
Artemis and ACT analyses were used to identify regions of
high identity between the Amphidinium species that were
comparable in sequence identity to previously character-
ised genes (>95%). Using Artemis ORFs within these
regions were identified and investigated [see Additional
files 1, 2, 3 and 4]. These comparative analyses suggest
there may be a further three protein coding regions on the
gene-coding minicircles; one more on the psbD/E/I
minicircle and two more on the petD minicircle. The posi-
tions of these putative protein-coding regions are shown
in Figure 2. The inferred amino acid sequences have rela-
tively few of the 'rare' codons, as determined from the pre-
viously identified genes, though the occurrence of these
codons is more frequent (Table 4). None of the putative
amino acid sequences gave significant hits in BLAST and
FASTA searches of protein databases. One of the
sequences (the second ORF on the petD minicircle, ORF3)
was suggested by FUGUE [24] to encode a ribosomal pro-
tein (Rpl15), although the assignment was tentative. An
alignment of the ORF3 sequence with other Rpl15
sequences shows a very low level of identity with these
sequences. A longer sequence, open apart from a single
TAA termination codon, is present in a different reading
frame. However, this did not give significant hits in BLAST
or FASTA sequences. Furthermore, no evidence of editing
has yet been found in Amphidinium [15], so we identify
the most likely ORF as that shown in Figure 2b. Several
other short ORFs are present in areas of minicircles that
are neither established coding regions nor core regions.
However, these ORFs are either not conserved between
the Amphidinium species or have high levels of rare
codons, and do not give significant hits in protein similar-
ity searches.

Within the A. operculatum empty minicircles there is only
a single ORF capable of producing a protein of over 100
amino acids on the expected strand in all the 'empty' cir-
cles. Six ORFs exist that could produce proteins of at least
75 amino acids. Numerous ORFs exist of comparable size
to the psbI ORF. Within the A. carterae empty minicircles,
where more 'empty' minicircles have been identified,
three ORFs capable of producing a protein of over 100
amino acids are present on the expected strand together
with a further eleven ORFs capable of producing proteins
of at least 75 amino acids. However, none of these ORFs
of over 75 amino acids is found in their entirety on an
empty circle in both species. In some cases short stretches
of sequence corresponding to part of these ORFs show
high levels of identity (>90%) between the species. How-
ever, in all these cases either the level of identity rapidly

falls or frame shifts are introduced in one of the
sequences.

One of the ORFs found only in A. carterae is of note in that
it is predicted by the FUGUE search algorithm to be a
ribosomal protein (Rps3) gene. The gene for this protein
is invariably found in the plastid genome of all other plas-
tid-containing organisms. So far the gene for this protein
has not been found in any of the dinoflagellate EST
projects, although it should be noted that these projects
are not comprehensive with regard to plastid targeted
gene sequences. Alignments with other Rps3 sequences
are not conclusive in identifying the ORF. They suggest
that the first domain of the protein, if it is an Rps3, is trun-
cated.

RNA genes
Typically chloroplast genomes encode a number of
important functional RNA molecules. These include
tRNAs, rRNAs and in some taxa tmRNA, the RNA compo-
nent of RNase P and the RNA associated with the SRP-like
protein. We carried out sensitive searches of regions of
high identity (>90%) between species to identify whether
such components are encoded in the dinoflagellate chlo-
roplast genome [see Additional files 1, 2, 3, 4, 5, and 6].
For the larger RNA molecules we attempted to establish
their organisation and extent [see Additional files 7, 8, 9
and 10]. Typically this was achieved by using Bestfit to
identify matches to short conserved nucleotide motifs that
are found in the functional RNAs. Regions identified by
this approach were checked against multiple alignments.
Surrounding sequences were analysed to see if there was
potential for forming appropriate secondary structures
[see Additional files 11 and 12]. This was achieved using
a combination of visual inspection and the Mfold pro-
gram. In generating assignments we made extensive use of
structure models, especially those of Gutell et al. for rRNAs
[25].

Ribosomal RNA
Within the Amphidinium species only one sequence with
significant identity to a functional RNA has been previ-
ously identified [3,13], showing similarity to a LSU rRNA
gene. However, based on similarity searches this did not
appear to be a full-length LSU rDNA sequence. We studied
the sequence further to establish the probable size of the
LSU ribosomal sequence and whether the sequence con-
forms to structural models of other chloroplast LSU ribos-
omal RNAs [25]. This comparison revealed that stretches
of nucleotides sharing identity to conserved regions of
other chloroplast LSU rDNAs are found only for domains
II, IV, V and VI on the LSU rDNA minicircles of A. carterae
and A. operculatum [26]. Domains I and III appear to be
either missing or so divergent that alignment with other
LSU rRNA molecules proves impossible. Even the
Page 6 of 15
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sequences which lie within the domains II, IV, V and VI
are highly unusual compared with LSU rRNA genes from
other chloroplasts. A higher substitution rate is apparent,
and there is frequent deletion or truncation of helical ele-
ments (see Figure 3).

Only short stretches of domain II can be assigned. Many
of the short stretches correspond to loop regions between
helices (see Figure 3). The most notable feature that can be
identified comprises helices 43 and 44. These helices are
RNA components of the 'stalk', which is known to interact
with elongation factors [26].

Domain IV is the most strongly conserved domain found.
However, significant truncations of the sequence are
clearly discernible. Helix 63 appears to have been com-
pletely lost. This is accompanied by a shortening of the
following loop. Helix 66 appears to have been signifi-
cantly modified and helix 68 is much shorter than is typi-
cal. Despite the Amphidinium sequences sharing fewer
identities with other chloroplast ribosomal sequences
than is usual, the overall folding of the molecule seems to
be maintained.

Sequences corresponding to domain V are clearly discern-
ible for both Amphidinium species. However, numerous
truncations or mutations appear to have altered the capa-
bility of forming a typical structure. The truncations are
almost exclusively found in regions corresponding to
stem-loop structures, rather than the loop regions
between stem-loops (Figure 3). In particular truncation of
the region corresponding to helices 75–79 appears to be
very extensive and an alternative folding is predicted that
does not resemble more typical models. The nature of the
sequence corresponding to domain V, in terms of muta-
tions and truncations, is similar to those described by San-
tos et al. in their study of domain V of LSU rDNA of the
genus Symbiodinium [27].

The only feature of domain VI that can be assigned is the
sarcin/ricin loop (helix 95). Identity to other LSU rDNA
sequences break downs soon after this feature, and it is
possible that this is where the functional sequence ends. It
should be noted that the non-core sequence of A. opercu-
latum microcircle 1 (415 bp) [13] corresponds almost
exactly to the 23S rRNA minicircle sequence after the end

Positions of additional gene-coding regionsFigure 2
Positions of additional gene-coding regions. a) psbDEI minicircle of A. operculatum. A single further gene is proposed 
between the psbE and psbI genes. b) petD minicircle of A. operculatum. Two further genes are proposed following the petD gene. 
Diagrams show all three reading frames and the positions of all stop codons (vertical lines). Boxes indicate the positions of the 
proposed protein-coding regions and also the position of the core region on each minicircle. Minicircles were linearised for 
graphical display by breaking the minicircle immediately prior to the core region.
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of domain V, including the region corresponding to the
sarcin/ricin loop.

Short SSU rRNA sequences have previously been reported
from empty circle 4, but they were believed to be non-
functional owing to their length [15]. The surrounding
sequences showed very low identity to other predicted
SSU rDNAs; the first block of SSU rRNA sequence we iden-
tified is helix 18 (Figure 4). This feature contains the
highly conserved 530 loop that is involved in proofread-
ing of the mRNA/tRNA interaction [28]. The loop region
itself shows high levels of identity with all other SSU rRNA
sequences as shown in Figure 5. However, the sequence of
the stem either side of the loop is very divergent with
respect to other chloroplast SSU rRNAs (Figure 5). Indeed
within this feature it appears to be the most divergent of
all known chloroplast sequences. Despite the incorpora-
tion of these base changes base-pairing within the stem

loop structure is maintained, suggesting selective evolu-
tionary pressure is still present.

We found that there is a much larger intervening sequence
between two of the elements that we identified (the 5' and
3' strands of helix 20 [Figure 4]) than is usually the case,
902 nucleotides rather than the 165 nucleotides (posi-
tions 588–753 E. coli [Figure 4]) that would be normally
expected. None of the intervening sequences in Amphidin-
ium resembled features typically found in SSU rRNAs. This
suggests that the sequences preceding and following these
elements could be transcribed separately or that an intron
could be present.

The second block of SSU rRNA sequence we identified is
much longer than the first and comprises sequences corre-
sponding to positions 754–1542 (3' end) of the E. coli
sequence. Despite having very low levels of identity to

Schematic diagram indicating the extent of the LSU rRNA gene in AmphidiniumFigure 3
Schematic diagram indicating the extent of the LSU rRNA gene in Amphidinium. Structural model of the folding of 
the 5' and 3' halves of LSU rRNA from E. coli. Regions where homologous sequence or structure is found on Amphidinium 
minicircles are in bold. The proposed base-pairing of the individual structures is displayed in additional file 11, along with 
detailed numbering of the positions of the structures. Helices proposed to be present in Amphidinium or that are mentioned in 
the text are labelled (e.g. H18 for helix 18). Helix numbering as defined by Ban et al.[26].
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other SSU rDNAs the sequence is capable of folding to
form most of the secondary structure elements found in
such molecules. Some peripheral features do appear to
have been lost or truncated, namely regions correspond-
ing to helices 26, 33, 33a, 33b, 36, 37, 38, 39, 40 and 44
(see Figure 4).

We have found no evidence for a 5S rRNA gene.

The highly divergent nature of the LSU and SSU rDNA
sequences raises the probability that they are pseudogenes
rather than functional sequences. Clearly the rDNA
sequences are unlike any that have been previously
described from chloroplast genomes. Even the sequences
from the apicoplasts of sporozoa, such as Toxoplasma gon-

dii, whilst showing high levels of substitution have
retained essentially all the structural features, including all
the domains, found in other plastid rDNAs [25]. The clos-
est example to the sequences found on dinoflagellate
minicircles comes from highly derived mitochondrial
genomes. In many mitochondrial rDNAs there are exten-
sive examples of deletions and truncations of many struc-
tural elements including entire domains, as well as
examples of fragmented rDNA sequences. In the most
reduced examples peripheral features are extensively
deleted whilst key regions which contribute to essential
features such as the A, P and E sites are retained [29]. Our
analyses suggests that this is what we find with regard to
the dinoflagellate rDNA sequences. Nucleotide positions
that are known to contribute to the A, P and E sites are
generally well conserved in Amphidinium as well as other
important features such as proof-reading and decoding
sites. It is also possible that other rDNA fragments exist
that "fill in" missing parts of the molecules. Thus the
rRNAs could be assembled from separate bits, as has been
found elsewhere (e.g. Chlamydomonas mitochondria
[30]). The molecules could either remain separate or be
joined together by trans-splicing.

We therefore carried out RT-PCR of representative regions
of LSU and SSU rRNA. Using specific primers we ampli-
fied two regions for the predicted LSU rRNA; these corre-
sponded to sequences from 3' of helix 46 to 5' of helix 62
and from 5' of helix 62 to 5' of helix 72. For the SSU rRNA
gene we amplified a region from 3' of helix 27 to 5' of
helix 43. Precise primer positions are specified in the sup-
plementary data files BMCGenLSU.tab and BMC-
GenSSU.tab respectively. For both RNAs products were
obtained of sizes corresponding to genomic DNA (Figure
6), whose sequences were also consistent with the
genomic DNA. These initial data indicate that the putative
rRNA genes are transcribed and remain essentially
unmodified.

tRNA
Searches for tRNAs in Amphidinium revealed a single puta-
tive example, which is present in both species. The
sequence suggests that it is a formyl-methionine initiator
tRNA, as there is an absence of Watson-Crick base pairing
at the end of the acceptor stem and also there is a charac-
teristic purine:pyrimidine base pair in the dihydrouridine
stem, in contrast to a pyrimidine:purine base pair which is
found in other tRNAs [31]. The predicted structure of the
A. operculatum tRNA is shown in Figure 7a. The trnfM
sequence is found adjacent to the 3' end of the core region
on empty minicircle 4 in A. operculatum and empty
minicircle 33 in A. carterae (both of which we now believe
to contain the unusual SSU rRNA gene) and is almost
completely identical between the two species. It may be
significant that it is a trnfM sequence that is retained as no

Schematic diagram indicating the extent of the LSU rRNA gene in AmphidiniumFigure 4
Schematic diagram indicating the extent of the LSU 
rRNA gene in Amphidinium. Structural model of the fold-
ing of the SSU rRNA from E. coli. Regions where homologous 
sequence or structure is found on Amphidinium minicircles 
are in bold. The proposed base-pairing of the individual 
structures is displayed in additional file 12, along with 
detailed numbering of the positions of the structures. Helices 
proposed to be present in Amphidinium or that are men-
tioned in the text are labelled (e.g. H95 for helix 95). Helix 
numbering as defined by Wimberley et al. [28].
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equivalent tRNA species exists in the cytosol which could
be imported as a replacement [32]. Many organelles with
highly reduced genomes lacking a full complement of
tRNA genes are believed to import cytosolic tRNAs to
maintain translation within the organelle [33].

A homologous fMet-tRNA was not found in any of the
Heterocapsa species sequences, although two other puta-
tive tRNA sequences were found, one for Pro-tRNA and
one for Trp-tRNA (Figure 7b, 7c respectively). In H. tri-
quetra both putative tRNA sequences are found on
minicircles that do not have full-length gene sequences,
but have truncated versions of at least two other genes
('jumbled' minicircles) [14]. One such circle carries a sin-
gle tRNA gene, whilst in three others the two tRNAs are
found in tandem. All of the tRNA sequences found on
each of the different 'jumbled' minicircles are identical. In
Heterocapsa pygmaea these two same tRNA sequences are
found in tandem on psbA minicircles, almost immediately
after the psbA coding region. Two distinct psbA-containing
minicircles have been isolated from H. pygmaea, and both
contain the tRNA sequences. The tRNA sequences are

almost identical to the H. triquetra sequences (Figure 7b,
6c). Some sequence variation exists between the tRNA
sequences on each of the minicircle in H. pygmaea. In one
of the tandem tRNA copies (H. pygmaea 2) this variation
disrupts base-pairing in the tRNA structures (Figure 7b,
7c). As there are apparently at least two copies of the gene
it is possible that one of the sequences is redundant and is
no longer under selective pressure.

Other RNA species
Searches for other RNA species that have previously been
discovered in other chloroplast genomes did not yield any
significant matches. Thus we found no evidence for RNase
P, tmRNA or SRP-associated RNA.

Conclusion
The acquisition of complementary sets of minicircles from
two Amphidinium species has facilitated the identification
of several genetic features on the minicircles that had not
previously been recognised. We suggest that a further
three protein coding genes are present on the minicircular
chloroplast genome of both A. operculatum and A. carterae.

Alignment of chloroplast SSU rDNA sequences corresponding to helix 18Figure 5
Alignment of chloroplast SSU rDNA sequences corresponding to helix 18. Boxes and arrows indicate regions of 
complementary base pairing. Asterisks indicate positions of nucleotide identity.

Plasmodium berghei        GUAUUUGCUAAUUUCUGUGCCAGCAGCAGCGGUAAU-ACAGAAAAUAC

Babesia bovis             AUAUCGGCAAA-CUCUGUGCCAGCAGCCGCG-UAAU-ACAGAGGAUAU

Cyanidium caldarum        GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUGC

Chondrus crispus          GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUGC

Emiliania huxleyi         GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUGC

Chlorarachnion sp.        GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUGC

Astasia longa             GCAUCGGCUAA-UUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUGC

Euglena gracilis          GCAUCGGCUAA-UUCCGUGCCAGCAGCCGCGGUAAU-ACGGGAGAUGC

Toxoplasma gondii         GUAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGGGGAUAC

Pylaiella littoralis      GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAGGACGGGGGAUGC

Cyanophora paradoxa       GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGAGGAUGC

Porphyra purpurea         GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGAGGAUGC

Olisthodiscus luteus      GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAU-ACGGAGGAUGC

Odontella sinensis        GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAG-ACGGAGGAUGC

Nephroselmis olivacea     GCAUCGGCUAA-CUCCGUGCCAGCAGCCGCGGUAAG-ACGGAGGAUGC

Chlorella vulgaris        GCAUCGGCUAA-CUCUGUGCCAGCAGCCGCGGUAAG-ACAGAGGAUGC

Pyrenomonas salina        GCAUCGGCUAA-CUCUGUGCCAGCAGCCGCGGUAAU-ACAGAGGAUGC

Guillardia theta          GCAUCGGCUAA-CUCUGUGCCAGCAGCCGCGGUAAU-ACAGAGGAUGC

Cryptomonas phi           GCAUCGGCUAA-CUCUGUGCCAGCAGCCGCGGUAAU-ACAGAGGAUGC

Prototheca zopfii         GUAUCGGCUAA-CUCUGUGCCAGCAGCCGCGGUAAU-ACAGAGGAUGC

Chlamydomonas moewusii    GCUCCGGCUAA-CUAUGUGCCAGCAGCCGCGGUAAU-ACAUAGGGAGC

Heterocapsa triquetra     AUACCGGUUAA-UCUUGUGCCAGCAGCAGCGGUAAU-ACAAGUGGUGU

Amphidinium operculatum   GUCACGAUACA-AGAUGUGCCAGCAGUCGCGGUAAU-ACAUCUGUGGC

                                    *     **********  *** ***  **         
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These genes appear do not bear similarity to typically
chloroplast genome located genes. They may therefore be
specific to dinoflagellates and could be connected to the
unusual genome organisation. Evidence from transcripts
levels in A. carterae suggests that these open reading
frames are expressed at levels comparable to other genes
that have been found on minicircles such as psbD (R.
Hiller, in preparation).

We have also been able to locate a partial SSU rRNA gene.
This was found on what had previously been described as

empty minicircles in both Amphidinium species. With the
exception of one further minicircle from A. carterae we
have not found genes on any of the other empty minicir-
cles, though their presence cannot yet be ruled out. It is
possible that editing might restore presently unrecognized
coding sequences. Although editing has been reported
from C. horridum, no evidence has been found for it in
Amphidinium, although only a limited number of tran-
scripts have been tested [15]. We determined the extent of
the both the SSU rRNA and LSU rRNA genes by sequence
and folding similarity to other chloroplast genes. This

Structural diagrams of tRNA sequences found on minicircles of peridinin-containing dinoflagellatesFigure 7
Structural diagrams of tRNA sequences found on 
minicircles of peridinin-containing dinoflagellates. 
Sequence variation between species or different copies 
within a species is indicated. Structures are as suggested by 
tRNAscan-SE v.1.2. a) Structure of the tRNAfMet encoded on 
empty circle 4 (ecao4: AF401630) in the dinoflagellate 
Amphidinium operculatum. The purine:pyrimidine base pair in 
the dihydrouridine stem characteristic of fMet-tRNAs is high-
lighted [31]. b) Structure of the tRNAPro encoded on plastid 
minicircles in the dinoflagellates H. triquetra and H. pygmaea 
(H. pygmaea 1: AF206707, H. pygmaea 2: AY033400). c) 
Structure of the tRNATrp encoded on plastid minicircles in 
the dinoflagellates H. triquetra and H. pygmaea.
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RT-PCR analysis of LSU and SSU rRNA sequencesFigure 6
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LSU3F and LSU4R and A. operculatum RNA template; Lane 8, 
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10, as Lane 9 but no DNA template added. b) Lane 1, Hyper-
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revealed the extremely unusual nature of these genes.
Numerous features of the chloroplast rRNA molecules are
missing from these sequences, including whole domains
in the case of the LSU rDNA. It is possible that these
domains could be transcribed from a distinct DNA locus
and the rRNA reassembled post-transcriptionally. How-
ever, the RT-PCR data suggest that this is not the case. Fur-
ther transcript analysis will be needed to confirm this, but
it seems that the extent and architecture of the Amphidin-
ium sequences most closely resembles the severely trun-
cated rDNAs found in some mitochondrial genomes, and
represents the most divergent chloroplast rDNAs yet
found.

We also report the discovery of the first tRNA genes to be
found on minicircles. These appear to be very limited in
number and it is therefore likely that the peridinin-con-
taining chloroplast is reliant on the import of cytosolic
tRNAs for chloroplast translation. It is interesting that the
only tRNA to be found so far in the Amphidinium species
is an fMet-tRNA for which a cytosolic counterpart does
not exist. It has been suggested that the plastid provides
fMet-tRNA for the mitochondrion in Apicomplexa [32].
Although no complete dinoflagellate mitochondrial
genome sequence has yet been published, no tRNA genes
have been identified in the partial sequences available at
present [34]. Given this, we suggest that the dinoflagellate
plastid likewise supplies fMet-tRNA to the mitochon-
drion.

Our analyses further highlight the unusual nature of the
peridinin-containing dinoflagellate chloroplast genome,
which is characterised by highly reduced gene content,
atypical genomic organisation and highly divergent gene
sequences. However, the existence of divergent genes
sequences may have lead us to underestimate the genetic
capacity of the minicircular genomes, when they are
examined in isolation. Comparative analyses of the dino-
flagellate genomes, particularly closely related genomes,
appear to be a useful tool in identifying significant fea-
tures. Based on our analyses of the Amphidinium genomes
the minicircles may be more densely packed with genes
than we thought. Further comparative analyses of other
dinoflagellate chloroplast genomes are likely to be useful.

Methods
Culture Conditions
A. carterae CS21 was cultured under continuous illumina-
tion (20 µEinsteins.m-2·s-1) at 18°C in Provasoli's
enriched sea water. A. operculatum (from the Culture Col-
lection of Algae and Protozoa, Oban, UK, ref CCAP 1102/
6) was cultured under a 16 h light (25 µEinsteins.m-2·s-1)/
8 h dark cycle at 21°C in f/2 media.

DNA Isolation, PCR amplification and cloning of 
minicircular sequences
Template DNA for PCR was obtained from total DNA
from A. carterae as described by Hiller[3]. Primers used in
PCR reactions are described in Table 1. Standard PCR con-
ditions were an initial cycle of 94°C for 1 minutes fol-
lowed by 35 cycles of 94°C for 1 minutes, 52°C for 1
minutes, 72°C for 4 minutes. PCR products were cloned
into pGEM-T plasmid vector (Promega) and transformed
into Escherichia coli prior to sequencing.

DNA Sequencing and Computational Analysis of 
Sequences
DNA clones were sequenced using the automatic dye ter-
minator system (ABI 377). BLAST analyses were used to
identify conserved chloroplast genes. Minicircle DNA
sequences were assembled and analyzed using the GCG
Wisconsin package (version 11.1, Accelrys Inc., San
Diego, CA). The Bestfit, Compare, Dotplot and Gap pro-
grams, which are part of the GCG Wisconsin package,
were used to identify regions of identity between minicir-
cle sequences.

Accession numbers of sequences used
Amphidinium operculatum sequences used were: psaA
[EMBL:AJ250264]; psaB [EMBL:AJ582639]; psbA
[EMBL:AJ250262]; psbB [EMBL:AJ250263]; psbC [Gen-
Bank:AF426172]; psbD/E/I [EMBL:AJ620761]; petB/atpA
[GenBank:AY048664]; petD [EMBL:AJ250265]; atpB
[EMBL:AJ250266]; LSU rRNA [EMBL:AJ582640]; ecao4
(SSU rRNA) [GenBank:AF401630]; ecao1 (empty circle A.
operculatum 1) [GenBank:AF401627]; ecao2 [Gen-
Bank:AF401628]; ecao3 [GenBank:AF401629] and ecao5
[EMBL:AJ582641].

Amphidinium carterae sequences used were: psaA
[EMBL:AJ311631]; psaB [EMBL:AJ311629]; psbA
[EMBL:AJ311632]; psbB [Genbank:DQ507216]; psbC
[GenBank:DQ507219]; psbD/E/I [EMBL:AJ311628]; petB/
atpA [EMBL:AJ311630]; petD [GenBank:DQ507217]; atpB
[GenBank:DQ507218]; LSU rRNA [EMBL:AJ311633];
ecac33 (SSU rRNA) [EMBL:AJ318067]; ecac2 (empty cir-
cle A. carterae 2) [EMBL:AJ307009]; ecac10
[EMBL:AJ307010]; ecac11 [EMBL:AJ307011]; ecac14
[EMBL:AJ307012]; ecac15 [EMBL:AJ307014]; ecac17
[EMBL:AJ307013]; ecac25 [EMBL:AJ307015]; ecac27
[GenBank:DQ507216] and ecac82 [EMBL:AJ307016].

Heterocapsa triquetra sequences used were: psaA [Gen-
Bank:AF130031]; psaB [GenBank:AF130032]; psbA [Gen-
Bank:AF130033]; psbB [GenBank:AF130034]; psbC
[GenBank:AF130035]; petB [GenBank:AF130037]; atpA
[GenBank:AF130036]; LSU rRNA [GenBank:AF130039];
SSU rRNA [GenBank:AF130038]; abc1 (aberrant circle 1)
[GenBank:AY004267]; abc2 [GenBank:AY004268]; abc3
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[GenBank:AY004269]; abc4 [GenBank:AY004270] and
abc5 [GenBank:AY004271].

Heterocapsa pygmaea sequences used were: psbA [Gen-
Bank:AF206707] and psbA2 [GenBank:AY033400].

Artemis and ACT analysis
Artemis and Artemis Comparison Tool (ACT) were used
for whole genome analyses of minicircle sequences
[35,36]. For these analyses minicircle sequences were con-
catenated as linear DNA sequences. The circular sequences
were linearised by breaking immediately 5' of the core
region. The sequence and annotation files for use with
Artemis are available as additional files in this publication
[See Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ACT was
used to visualise regions of identity between species.
Regions of identity were determined by pairwise Blast
[37]. The output of the pairwise Blast was then used as an
input into ACT.

RNA searches
Identification of potential structures of rRNA was facili-
tated by comparison of the dinoflagellate sequences to
structural models of rRNAs. These were obtained from the
Comparative RNA website [25]. Potential folding of
inferred RNA sequences was explored using Mfold [38].
Searches for potential tRNA sequences were carried out
with tRNAscan-SE v.1.2 using a mitochondrial/chloro-
plast source model [22]. The tmRNA website was used for
similarity searches between a database of tmRNAs and the
dinoflagellate sequences [39].

RNA extraction and RT-PCR analysis
Template RNA for reverse transcriptase reactions was
obtained from A. operculatum cells using the RNeasy Mini
Kit (QIAGEN) according to manufacturer's instructions.
Total RNA was subsequently incubated with RQ RNase-
free DNase (Promega) for 1 hour at 37°C, after which 5 µl
STOP solution was added and the DNase inactivated by
incubation at 65°C for 10 minutes. For first-strand DNA
synthesis 5 µl RNA preparation was mixed with 20 pmol
of the relevant RT primer in a total volume of 15 µl. This
mixture was incubated at 70°C for 5 minutes then rapidly
cooled on ice. To this initial volume 5 µl of Moloney-
Murine Leukemia Virus RT reaction buffer (Promega),
1.25 µl of dNTPs (10 mM each), 25 U of RNasin
(Promega) and 200 U of Moloney-Murine Leukemia Virus
reverse transcriptase (M-MLV RT) were added and the
reaction mixture brought to 25 µl with nuclease-free
water. The reverse transcription reaction was incubated at
42°C for 1 hour. Controls with no M-MLV RT added were
also performed. Subsequent PCR was carried out using 5
µl of the reverse transcription reaction mixture to which
25 µl MasterAmp 2× PCR Premix A (Epicentre Technolo-
gies), 2 µl 25 mM MgCl2, 25 pmol of each primer and 1.25

U GoTaq DNA polymerase (Promega) were added and the
reaction mixture brought to 50 µl. Standard PCR condi-
tions were an initial cycle of 95°C for 2 minutes followed
by 35 cycles of 95°C for 1 minute, 52°C for 1 minute,
72°C for 1 minute and a final cycle of 72°C for 10 min-
utes. Positive controls which included A. operculatum total
DNA instead of M-MLV RT reaction mix and negative con-
trols with no template addition were also carried out as
well as the no M-MLV RT control described above. PCR
products obtained were cloned into pGEM-T Easy plasmid
vector (Promega) and transformed into Escherichia coli
prior to sequencing.
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