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Abstract
Background: Several studies have compared various features of heritable disease genes with
other so called non-disease genes, but they have yielded some conflicting results. A potential
problem in those studies is that the non-disease genes contained a large number of essential genes
– genes which are indispensable for humans to survive and reproduce. Since a functional disruption
of an essential gene has fatal consequences, it's more reasonable to regard essential genes as
extremely severe "disease" genes. Here we perform a comparative study on the features of human
essential, disease, and other genes.

Results: In the absence of a set of well defined human essential genes, we consider a set of 1,789
ubiquitously expressed human genes (UEHGs), also known as housekeeping genes, as an
approximation. We demonstrate that UEHGs are very likely to contain a large proportion of
essential genes. We show that the UEHGs, disease genes and other genes are different in their
evolutionary conservation rates, DNA coding lengths, gene functions, etc. Our findings
systematically confirm that disease genes have an intermediate essentiality which is less than
housekeeping genes but greater than other human genes.

Conclusion: The human genome may contain thousands of essential genes having features which
differ significantly from disease and other genes. We propose to classify them as a unique group for
comparisons of disease genes with non-disease genes. This new way of classification and
comparison enables us to have a clearer understanding of disease genes.

Background
Identification of novel genes associated with human dis-
eases is among the most critical tasks in medical research.
Towards this goal, various features have been compared
between heritable disease genes and non-disease genes [1-
4]. Although most findings were consistent with each
other, a few conflicting results showed up. For example,

Smith et al. [3] found that disease genes evolved with
higher nonsynonymous/synonymous substitution rate
ratios (Ka/Ks) than non-disease genes, but Huang et al. [4]
found no such significant differences. One common prob-
lem with these studies is that human essential genes were
ignored and simply grouped together with other non-dis-
ease genes. Essential genes are genes whose functions are
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necessary for the organism to survive and reproduce. Since
the disruption of essential genes' function will cause fatal
consequences, they should be regarded as the most severe
"disease" genes. Therefore, comparing disease genes to a
mixture of essential and non-disease genes will reduce the
clarity of the signals of the disease-related features and
may even lead to erroneous findings. Thus, it is beneficial
to separate human essential genes from other non-disease
genes before comparisons are made.

Thousands of genes have been identified as essential
genes in multiple model organisms, such as Saccharomyces
cerevisiae, Caenorhabditis elegans, and Mus musculus [5-7].
Although it is almost certain that the human genome also
contains hundreds to thousands of essential genes, it's
impractical to experimentally determine them as in S. cer-
evisiae or C. elegans. The absence of a set of well-defined
human essential genes poses a challenge on studying
them and urges for alternative solutions.

The human genome has an extremely complex tissue
expression profile. Some genes are expressed only in cer-
tain tissues during specific times, while others are consti-
tutively and ubiquitously expressed [8,9]. For the latter
genes, they are presumed to be necessary for the most fun-
damental cellular physiological processes and are referred
as housekeeping genes [9]. Housekeeping genes have
been studied by many researchers and some interesting
observations have been reported. For example, Zhang and
Li found that housekeeping genes evolved more slowly
than tissue-specific genes [10]. Eisenberg and Levanon
found that housekeeping genes were compact in their
coding lengths, which could be the result of higher selec-
tive pressure[11]. Based on the unique properties of the
ubiquitously expressed human genes (UEHGs), we
believe that they are suitable candidates for essential
genes. Although this hypothesis is intuitive and sounds
reasonable, serious efforts are required to collect support-
ive evidence on a systematic level.

In this study, we consider a set of 1,789 ubiquitously
expressed human genes (UEHGs) as an approximation for
essential genes. We demonstrate that UEHGs are very
likely to contain a large proportion of essential genes and
thus can approximate human essential genes. By perform-
ing a three-way feature comparison of UEHGs (presumed
essential genes), disease genes, and the rest of human
genes (referred as other genes), we show that they are dif-
ferent in many aspects such as the evolutionary conserva-
tion rates, DNA coding lengths, gene functions, etc.

Results
Instead of dividing the human genome into disease vs.
non-disease genes, we choose a three-way classification,
namely, UEHGs (presumed "essential"), disease, and

other genes. We first validate that the set of UEHGs con-
tains a large fraction of essential genes. Then by compar-
ing the three groups of genes, we see how the disease
genes can be distinguished from essential and other genes.
If UEHGs really contain much greater fraction of essential
genes than non-UEHGs (i.e. disease and other genes), we
expect to observe the followings. First, as essential genes
are functionally extremely important, the selective pres-
sure on them are much higher than on non-essential
genes, thus UEHGs should have a slower evolutionary rate
than both disease and other genes [12,13]. Second, since
most Mendelian diseases are caused by deleterious amino
acid substitutions, if we study the conservation at amino
acid level, we expect to see different patterns for UEHGs,
disease and other genes. Third, when UEHGs are mapped
to another species, the homologous genes should more
likely be essential in that species if the species is evolu-
tionarily close to humans. Fourth, since essential proteins
usually tend to be hub proteins (highly connected) in the
protein-protein interaction network [14], UEHGs should
have a higher average physical interaction degree than
non-UEHGs. Fifth, the functions of UEHGs should be
fundamentally important. To verify these hypotheses, we
compile the lists of UEHGs, disease genes and other
human genes. We then collect various features and com-
pare those selected features among the three gene classifi-
cations.

Comparison on the evolutionary features
We first compare the Ka, Ks and the ratio (Ka/Ks) based on
the three-way classification of the human genome. The
Ka, Ks and Ka/Ks are derived from both human-rat and
human-mouse orthologous pairs. The results obtained
from human-mouse orthologous pairs indicate that
UEHGs have the smallest Ka, Ks and Ka/Ks ratio in the
three groups (P-values for UEHGs vs. disease are 3.4E-39,
6.3E-15, and 1.7E-38; P-values for UEHGs vs. others are
5.3E-64, 9.0E-27, and 1.3E-57, respectively for Ka, Ks and
Ka/Ks), and disease genes have lower evolutionary rates
than other genes (P-values are 9.1E-5, 5.5E-4 and 2.6E-4
for Ka, Ks and Ka/Ks, respectively) (Fig 1). By various sta-
tistical measurements, UEHGs consistently stand out as
the slowest evolved gene group and the difference
between UEHGs and the other two groups is greater than
the difference between disease genes and other genes
(Table 1). The results are similar when human-rat orthol-
ogous pairs are used to calculate Ka and Ks, only the P-val-
ues are slightly less significant. Again, disease genes evolve
at slower rates than other genes with significant differ-
ences in Ka, Ks and Ka/Ks (P-values are 0.008, 0.052 and
0.026, respectively). UEHGs evolve at the slowest rates
and the differences in Ka, Ks and Ka/Ks are strongly signif-
icant (P-values for UEHGs vs. disease are 7.0E-32, 3.2E-
13, and 2.7E-28; P-values for UEHGs vs. others are 1.1E-
49, 4.8E-23, and 1.2E-44, respectively, for Ka, Ks and Ka/
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Distribution of Ka, Ks and Ka/KsFigure 1
Distribution of Ka, Ks and Ka/Ks (a) The cumulative density of Ka, Ks and Ka/Ks derived from human-mouse orthologous 
pairs. Ka, the number of non-synonymous substitutions per non-synonymous sites. Ks, the number of synonymous substitu-
tions per synonymous site, and the Ka/Ks ratio. Three groups of human genes are represented in different colors and the 
number of genes in each group is listed right to the line symbols. (b) The box plots are drawn based on the same data. For each 
category, the central box depicts the middle 50% of the data between the 25th and 75th percentile, and the enclosed red hor-
izontal line represents the median value of the distribution. Extreme values are indicated by solid blue dots that occur outside 
the main bodies of data.

(a) 

(b) 
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Ks) (Fig S2). Here, our results are different from the find-
ings of Smith [3] and Huang [4], and as described before,
their results are not consistent with each other either. We
think this is partly due to the effect of mixing essential
genes with non-disease genes in the previous studies.
Another reason is that different groups used different set
of disease and non-disease genes (Smith et al. studied 387
disease and 2,024 non disease genes, Huang et al. studied
1,112 disease genes and more than 10,000 non-disease
genes and our dataset covered >1,700 disease genes and
>12,000 non-disease genes, see supplementary materials
for a detailed comparison). Our results indicate that
UEHGs are under the strongest selection pressure. Disease
genes evolve at an intermediate rate which is slower than
other genes, but faster than UEHGs. Our experiments con-
sider much larger gene sets and a significant number of
essential genes are separated out from non-disease genes.
Therefore, our results may better reflect the relationship of
disease genes with other genes. The slightly different
results calculated from rat and mouse are most likely due
to the different evolutionary rates between mouse and rat
after their divergence around 16 million years ago [15].
We also confirm the positive correlation between Ka and
Ks in all the three gene groups, as observed in previous
studies [16-20]. For example, the Ka and Ks of disease
genes have a correlation coefficient of 0.45 (P-value is
1.9E-86 by t-test). Although a synonymous mutation has
no apparent effect on protein sequence, it may affect the
DNA structure, mRNA structure, and biological processes
such as transcription and RNA splicing [21]. The small
average Ks of UEHGs indicates that the synonymous sites
of UEHGs are also under stronger selection than the other
two groups, which further suggests the functional impor-
tance of UEHGs.

As Ka and Ks are summary statistics of the nucleotide sub-
stitution rate of a gene, and most Mendelian diseases are
caused by amino acid substitutions in coding regions, it
will be more informative to study the pattern of conserva-
tion for individual nucleotides or amino acids. We obtain

the conservation score of specific amino acids based on a
large-scale multiple-sequence alignment of 8 species per-
formed recently by the UCSC research group [22]. The
conservation scores were derived from a two-state phylo-
Hidden Markov Model and can be interpreted as proba-
bilities of each base being from a conserved hidden state.
We collect a list of more than 6,000 disease mutation sites
and about 1,900 polymorphism (neutral) mutation sites
from SwissProt. We compare the conservation of these
two types of sites with each other and also with the back-
ground (The background is obtained by considering the
conservation score of all the amino acids in coding
regions). As shown in Fig 2 (a, b), polymorphism muta-
tion sites are significantly biased towards less conserved
sites while disease mutation sites are significantly biased
towards more conserved sites (p-values < 10-5 in both
cases). This is consistent with the findings of Miller and
Kumar although they focused only on seven disease genes
[23]. Then we compare the UEHGs with disease genes and
results are shown in Fig 2(c). UEHGs are more conserved
than disease genes but the conservation score of disease
mutation sites are greater than those for UEHGs. Since we
don't have information on "essential sites", we are unable
to directly compare the "essential sites" with disease sites.
Instead, we think that one possible mechanism distin-
guishing essential genes from disease genes is that essen-
tial genes contain a larger fraction of highly conserved
sites (with the underlying assumption that highly con-
served sites correspond to functionally important loci).
Thus, the chance that a random mutation will cause a
severe phenotype will be much higher for essential genes
than for disease genes. We select conservation score 0.9 as
the cut-off value and define sites with conservation scores
above that as highly conserved sites. The cut-off is chosen
based on the distribution of the conservation scores of
disease mutation sites. Different cut-off values were tested
and results are similar. We calculate the fraction of highly
conserved sites in the coding region and show the distri-
bution of this fraction for UEHGs, disease genes and other
genes in Figure 2(d). It's clear that UEHGs contains a

Table 1: Comparison of evolutionary rate among three groups of genes

UEHGs Disease genes Other genes

Mean(SEM) Median Range Mean(SEM) Median Range Mean(SEM) Median Range

Ka 0.053 
(0.0015)

0.033 0–0.48 0.080 
(0.0017)

0.061 0–0.70 0.092 
(8.0E-4)

0.066 0–1.37

Ks 0.58 
(0.0047)

0.57 0.076–2.0 0.63 
(0.0043)

0.61 0.14–2.4 0.66 
(0.0022)

0.62 0.041–4.2

Ka/Ks 0.088 
(0.0023)

0.059 0–0.59 0.12 
(0.0023)

0.10 0–0.70 0.13 
(0.001)

0.11 0–1.2

Ka, the number of non-synonymous substitutions per non-synonymous sites. Ks, the number of synonymous substitutions per synonymous site. Ka 
and Ks values are calculated based on human-mouse orthologous pairs as described in the main text. The first column in each group is the mean 
followed by standard error of the mean (SEM).
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much higher fraction of highly conserved sites than the
other two groups, while there is no significant difference
between disease genes and other genes (p-value = 0.32).

Cross-species comparison of gene deletion phenotypes
Many human diseases are studied by experimenting on
model organisms such as mouse. The underneath ration-
ale is that the homologous genes have similar functions if
the two species are evolutionarily close. Similarly, the
essentiality of human genes can be tested in an evolution-
arily close species. This approach may not work for all
genes, due to differences between species, however, the
closer the two species are, the higher accuracy it can

achieve. Unfortunately, the knowledge on gene essential-
ity in other high animals is still very limited. For example,
the number of mouse genes with known mutation pheno-
types is around 10% of the genome (~2,800 in Mouse
Genome Informatics database) and they are heavily
biased towards the homologs of human disease genes
(results not shown). By now, only S. cerevisiae and C. ele-
gans have been explored for gene essentialities on the
whole genome scale [5,6]. Here we compare the human
genome with them, although they are not favoured for the
rather far evolutionarily distances between them and
humans. Human genes are mapped onto yeast and worm
based on homologous relationship. For UEHGs, disease

Codon conservation of the three gene groupsFigure 2
Codon conservation of the three gene groups. The conservation score of amino acids of the three groups of genes are 
compared. (a) The distribution of disease causing mutation sites' conservation score is plotted in the solid line. The dotted line 
is drawn based on the conservation scores of all the sites in the coding region (i.e., the distribution of the conservation score 
when sites are randomly chosen). (b) The distribution of polymorphism mutation sites' conservation score vs. the random dis-
tribution as in (a). (c) The distribution of conservation score for UEHGs (black line), disease gene (broken blue line) and dis-
ease causing mutation sites (red broken line). (d) The distribution of the fraction of the highly conserved regions (Cons. 
Score>0.9). Each human gene group is represented in a different color.
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genes and other genes, we examine the fraction of genes
which are homologous and essential in the mapped spe-
cies (Table 2 and Fig 3). The first column of Table 2 shows
that UEHGs contain the largest fraction of genes which
have homologous counterparts in yeast. Disease genes
have smaller fraction than UEHGs but greater than other
genes. The same order can be observed in C. elegans as
shown in Fig 3. Since yeast and C. elegans are evolutionary
distant from human, the results support that UEHGs con-
tain a greater fraction of functionally important genes
than disease and other genes. The second column of Table
2 shows the fraction of homologous genes in each three
groups which are also essential in yeast. Again, we see that

UEHGs have the highest fraction, followed by disease
genes, and the other genes. However, as shown in the
same column, conditional on homologous genes, the
fraction of essential genes for each group does not strictly
follow the same order (i.e., UEHGs>disease genes>other
genes). This is more prominent in yeast than in C. elegans.
Therefore the phenomenon is very likely caused by the
larger evolutionary distance between yeast and human. Or
we can say that given a gene is highly conserved (such as
a human-yeast homologous gene), the essentiality of the
gene is no longer strongly linked to the group that the
gene belongs to. In addition, the results suggest that the

Comparison of gene essentiality between human and C. elegansFigure 3
Comparison of gene essentiality between human and C. elegans Human genome is divided to three groups as 
described in the main text and 20,488 C. elegans genes are mapped to each group based on homology. The essentiality of C. ele-
gans gene is obtained from RNAi-interference experiment as described in the main text. Different phenotypes are represented 
by different colors and the number of the homologs in each group is listed. The fraction of human genes with C. elegans 
homologs is shown under the group name.
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highly conserved genes contain large fraction of essential
genes too.

Comparison on other features
It has been noticed for several years that, in the protein
interaction network, essential proteins tend to interact
with more proteins in model organisms [14]. Peri et al.
manually collected more than 27,000 interactions involv-
ing about 18,000 human proteins [24]. Although this data
set is still quite sparse, its accuracy is assumed to be high.
The distribution of protein physical interaction degree of
the UEHGs, disease and all other genes are shown in Fig-
ure 4. The average degree ± standard error for UEHGs, dis-
ease and all other genes are 11.0 ± 0.6,8.4 ± 0.4 and 6.2 ±
0.1, respectively. We only consider proteins with at least
one interaction, since 0 degree could mean either no inter-
action or absence of data and we are unable to make the
distinction. We acknowledge that the data collection
could be biased towards human disease genes. However,
as the set of UEHGs are defined purely based on gene
expression from an independent source, it's unlikely to
have a heavy bias towards UEHGs. Thus, the high interac-
tion degrees of UEHGs can be regarded as a supporting
evidence for their essentiality.

We also investigate the function annotation of the three
groups of genes. As shown in Figure 5, UEHGs, disease
genes and all other genes have distinct function distribu-
tions. UEHGs are enriched in protein biosynthesis and
several other fundamentally important physiological
processes, while disease genes are more relevant to sens-
ing and responding to internal/external signals, which are
advanced mechanisms for the fine tuning of certain bio-
logical processes.

Finally, we look at the relationship between gene's conser-
vation and the onset age of disease. Different diseases
exhibit their symptoms at different ages. Some diseases
develop as early as in utero while some only present in

elders. People usually think genes associated with early
onset diseases are under higher selection pressure than
those associated with late onset diseases. If this is correct,
since essential genes are critical, their evolutionary rates
should be similar to those early onset disease genes rather
than the late onset ones. To verify this, we divide disease
genes based on their onset age as Jimenez et al. [25] and
compare the Ka/Ks ratio. Figure 6 shows that evolutionary
rates tend to increase when the onset age becomes larger.
The correlation coefficient between the onset age and the
Ka/Ks ratio is positive with P-value of 0.02 based on
weighted least squares regression [26]. (Weighted least
square is used here since different age groups contain une-
qual number of genes with non-constant variances, by
introducing weight to the regression, such effects can be
reduced.) Base on visual inspection, Fig. 6 also suggests
that UEHGs have similar Ka/Ks ratios as those for genes
responsible for diseases in uterus and other genes have
similar Ka/Ks ratios with genes associated with late onset
diseases. However, as the regression is performed on the
group number rather than the actual disease onset age
(the original linear relationship among different disease
onset ages could be distorted to some extent), and the P-
value just passes a less stringent cut-off (i.e., 0.05), more
data and further analysis are needed to draw a more con-
fident conclusion from above results.

Discussion
All the results above support that UEHGs by themselves
form a distinct group other than disease genes. The results
also endorse that UEHGs may contain a large proportion
of functionally essential genes. Although we try to show
that UEHGs are good candidates for human essential
genes, we have no intention to claim that they are the only
or the best gene set for representing human essential
genes. Because a gene needs to be ubiquitously expressed
to be considered an UEHG, low expressed or somehow
tissue specific expressed essential genes will be excluded.
Also, since the tissue samples were collected mainly from

Table 2: Cross-species comparison of gene essentiality between human and S. cerevisiae.

Total Essential Non-essential Unknown

Homologs of UEHGs 384 (20.2% of UEHGs)* 138 (35.9%) (7.3% of UEHGs)* 242(63.0%) 4(1.1%)
Homologs of disease genes 196 (9.8% of disease genes)* 51 (26.0%) (2.5% of disease genes)* 142(72.5%) 3(1.5%)
Homologs of other genes 1005 (3.5% of other genes)* 379 (37.7%) (1.3% of other genes)* 618(61.5%) 8(0.8%)
No homologs 4641 505 (10.9%) 3427(73.8%) 709(15.3%)
Total yeast genes 6179 1058 (17.1%) 4397(71.2%) 724(11.7%)

Yeast genes are mapped to three human gene groups by homologous mapping. The first three rows are for each human gene group and the fourth 
row is for yeast genes without human homologous genes. The last row summarizes all the yeast genes. The first column lists the number of 
homologous genes found for each human gene group and the fractions with respect to the number of human genes in the corresponding group 
(show in brackets marked with *). The following columns list the number of yeast essential, non-essential, and unknown genes for each human gene 
group. The fractions with respect to the number of homologs found in each group are shown in brackets. In the second column, the fraction of 
homologous essential genes over the human genes in each group is given in the bracket with *.
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adult individuals, genes which are essential for early stage
development may be missed too. As revealed by the cross-
species comparison, UEHGs may have failed to cover
many essential genes and those genes are still classified as
other genes. We study a different set of genes by consider-
ing genes that are conserved across yeast, C. elegans and
human. The results indicate that they may contain a large
fraction of essential genes too (results not shown). How-
ever, as pointed out by Chervitz et al. [27], such set may
miss many human essential genes which don't have
homologs in yeast and C. elegans. In contrast, UEHGs is a
more unbiased sample from all essential genes. A combi-
nation of UEHGs and conserved genes might generate a
more complete set of candidates for human essential
genes. We also realize that the set of disease genes in our
study are mainly genes associated with Mendelian dis-
eases, while complex disease genes are under-represented.

Different from previous studies on human housekeeping
gene, we define the UEHGs as genes expressed in "almost
all" (not "exactly all") the tissues that are examined. Due
to the fluctuation of gene expression and the error in the
gene expression measurement, as more tissues being
examined, fewer genes will be observed as expressed in all
the tissues. We relax the criteria to allow missing expres-
sion in a small fraction of tissues so that the size of UEHGs
is less sensitive to the number of tissues being examined.
Also a different cutoff value of expression level was
adopted. In order to verify that our results are not sensitive
to specific criteria used to define UEHGs, we prepare
another UEHGs set defined as genes expressed at more
than 300 standard units in all the 79 tissues. This leads to
2,038 genes being grouped as UEHGs, and 1,509 genes
are contained in the original set of 1,789 genes. The evo-
lutionary rates are compared among the new set of

Distribution of protein physical interaction degreesFigure 4
Distribution of protein physical interaction degrees. UEHGs, disease genes, and other genes are shown in three differ-
ent colors in the histogram. It can be seen that as the interaction degree increases, the fraction of UEHGs also increases. For 
the summary statistics, see main text. The number of genes with at least one interaction in HPRD is listed for each gene group.
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UEHGs, disease genes and other genes. The results are
almost identical as before except for the slight changes in
P-values (see details in supplementary materials). This
indicates that our findings are not sensitive to the criteria
for defining the UEHGs.

Previous studies have shown that house-keeping genes
have shorter coding length [11] while disease genes usu-
ally have longer coding length [1]. We confirm these find-
ings in a three-way comparison (Table 3). Since UEHGs
are required to be expressed in all the tissues constitu-
tively, it's beneficial to have the intron and untranslated

regions shorter than other genes. But it is unclear why dis-
ease genes are generally longer than other genes. One pos-
sible explanation is that the functions of many disease
genes can only be performed by proteins with certain
lengths. For example, some ion channel proteins (e.g.
cystic fibrosis transmembrane conductance regulator,
CFTR) need to span through the membrane multiple
times to form the pore structure, a task which can not be
fulfilled by a short protein. Further studies are needed to
explore how general such cases are.

Function annotation of genes in the three groupsFigure 5
Function annotation of genes in the three groups. GO categories are described by the row labels and columns are the 
three classes of genes. A color scheme (scale shown on the right) is used to display the significance level of over-representation 
(numbered as negative logarithm of the P-value, upper half of the scale) or under-representation (numbered as logarithm of the 
P-value, lower half of the scale) for certain gene group and function category. Hyper-geometric distribution is used for the cal-
culation of the P-value.
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We also want to point out that, as shown in Fig 6, there are
no sharp dividing lines among essential genes, disease
genes and other genes. Some diseases are simply lethal
and the associated genes are essential genes by the defini-
tion. Some diseases have much less severe effects and it's
hard to distinguish them from true non-disease genes.
Thus, the gene essentiality might be better described by a
continuous spectrum rather than by artificially divided
groups. Even more complicated situations arise when dif-
ferent mutation forms are considered. Since different
mutations usually lead to phenotypes of different severi-
ties [28,29], a disease gene could be either a non-essential
gene or essential gene but with non-lethal mutation form.
Thus, any simple grouping of human genome may lack
the power for accurately illustration of the complex sce-
nario associated with human disease genes.

Conclusion
Our studies suggest that human essential genes are a
unique group of genes and should not simply be ignored
and classified with non-disease genes for the studies on
disease genes. We also show that disease genes have sev-
eral properties residing between essential and other genes.
We notice that gene essentiality might better be described
in a continuous spectrum instead of being assigned a class
label. Nevertheless, the simplicity of the three-way classi-
fication is good for the purpose of this research since com-
parisons can be performed easily.

Extensive knowledge on human essential genes can be
critical for the understanding of human diseases. It has
been shown that essential genes may have direct associa-
tion with diseases such as cancer [30,31]. Studying human
essential genes might also provide key clues for questions
such as how human beings evolved. However, limited
attentions have been paid to them and very little system-
atic studies have been done. We showed how the picture
of disease genes gets clearer when we explicitly consider

the essential genes. We believe the updated global picture
of disease genes will enable us to better identify them in
the future [32].

Methods
Compiling lists of disease genes and UEHGs list
The list of disease genes were obtained from OMIM [29].
3,962 records were listed in the morbidmap (Jun 6, 2005)
and entries with known sequence (OMIM ID marked with
*), with known sequence and phenotype (OMIM ID
marked with #), and with phenotype description, molec-
ular basis known (OMIM ID marked with +) were
retained for this study. A total of 2,012 genes with unique
OMIM Ids were finally collected as human disease genes.

Ubiquitously expressed genes were obtained from the
result of a recent large scale microarray experiment on
human gene expression patterns by Su et al. [33]. A total
of 33,698 genes sampled from 79 tissues were interro-
gated in their experiments. The overall gene expression
level was 776.5 standard Affymetrix average difference
units, and genes with expression level greater than 550
standard units in at least 73/79 tissues were selected as
UEHGs (a conservative estimation on the percentage of
essential genes in the human genome is about 10%, thus
the standards were set so that roughly 2,000 genes would
be classified as UEHGs). A total of 1,789 such genes were
collected. The set of UEHGs has a small overlap with dis-
ease genes as 176 genes belong to both classes. The full list
of UEHGs can be found in Additional file 2.

Collection of gene features
The mouse and rat homologs and corresponding synony-
mous substitution rate (Ks), nonsynomymous substitu-
tion rate (Ka) of totally 15,726 human genes were
downloaded from NCBI HomoloGene [34]. To prevent
possible contamination by paralogous genes, we only
considered one-to-one mapped orthologous pairs. To test

Table 3: Comparison of the length of various parts of UEHGs, disease genes, and all other genes.

UEHGs (n = 1400) Disease (n = 1773) Others (n = 10304) P-value

Coding sequence length 1501 ± 38 
1109

2205 ± 73 
1537

1849 ± 15 
1459

3.2E-09

Total exon length 2545 ± 48 
2136

3250 ± 78 
2557

2752 ± 18 
2343

1.6E-06

Number of exons 10.7 ± 0.2 
8

13.5 ± 0.3 
10

9.9 ± 0.1 
7

9.6E-07

Total intron length 35698 ± 1558 
15588

60376 ± 2836 
23528

54881 ± 1139 
18540

0.012

5' UTR length 546 ± 22 
238

582 ± 21 
251

560 ± 8 
245

0.55

3' UTR length 559 ± 21 
247

569 ± 21 
243

575 ± 8 
254

0.86

For each row the first line gives the average value ± s.e.m, and the second line gives the median. UTR stands for untranslated region. Pair-wise rank 
sum tests are performed and only the largest P-values are listed in the last column.
Page 10 of 13
(page number not for citation purposes)



BMC Genomics 2006, 7:31 http://www.biomedcentral.com/1471-2164/7/31
the statistical significance of the difference of Ka, Ks and
Ka/Ks distributions among the three groups, Kolmogorov-
Smirnov test was used to calculate the p-value as in [4] so
that direct comparisons could be possible. Nucleotide
conservation scores were downloaded from UCSC
Genome Browser website [35]. Human sequence varia-
tion information was obtained from Swiss-Prot protein
knowledgebase [36]. The original amino acid positions
were mapped to nucleotide positions on the correspond-
ing chromosome to obtain the conservation score. To
study the correlation of the onset age of a disease with its
conservation, we obtained the onset ages of over 900

genes from [25]. Weighted least square regression is used
to find the correlations between disease onset ages and
Ka/Ks ratios [26].

Yeast genes were collected from NCBI Entrez Gene Data-
base [37] and were divided into four groups: UEHG
homologs, disease gene homologs, other human gene
homologs, and genes without human homologs. The
homologies were obtained from NCBI HomoloGene as
described above. The yeast gene deletion phenotype data
were downloaded from Saccharomyces Genome Database
[38]. Similarly, genes in C. elegans were collected from

Correlation of disease onset age with Ka/KsFigure 6
Correlation of disease onset age with Ka/Ks. The correlation of disease onset age with Ka/Ks. Disease genes are divided 
into 5 groups based on disease onset age. The weighted linear regression is applied to disease genes (group 2 to 5) and is 
shown as the dotted line. The coefficient for onset age is +0.0086 and P-value is 0.02, derived from the regression. UEHGs and 
other genes are plotted on the two sides of the diseases genes for visual comparison. The standard deviation is indicated by the 
short horizontal bar and mean is denoted by the solid circle. The large variation in each group hints for other confounding fac-
tors which also affect Ka/Ks.
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NCBI Entrez Gene Database and were divided into four
groups. RNAi phenotypes of C. elegans genes were
retrieved from WormBase [39]. The RNAi phenotypes
were divided into four categories: lethal (including both
embryonic and larval lethal), wild type, sick (phenotypes
other than the above two), and unknown. For genes anno-
tated with more than one phenotype, the most severe one
(assuming lethal>sick>wild) was chosen as their pheno-
types.

The degrees of genes in the protein physical interaction
network were retrieved from the Human Protein Refer-
ence Database (HPRD) [24]. To compare the function dis-
tribution of the genes in different categories, we used
Gene Ontology (GO) Biological Process for protein func-
tion annotation. Gene Ontology annotations of 12,715
human genes were downloaded from NCBI [40] and the
classifications based on biological processes were used.
Similar to Zhou et al. [41], a GO node is referred as inform-
ative if it covers more than 500 genes, and none of its
descendant nodes cover that many genes. 25 GO inform-
ative nodes were defined according to the criterion. To test
whether UEHGs, disease genes or other genes were over/
under represented in each of the 25 function categories,
we used hyper-geometric distribution to calculate the p-
value.

Gene length information was retrieved from UCSC
genome table browser [42]. All the genes were first
mapped to their refSeq IDs for length information
retrieval. To assess the significance of the difference in the
length of genes in different categories, Wilcoxon rank sum
test was used to calculate the p-value.

In the process of collecting various features, some genes
were not annotated in certain databases. We limited our
comparisons to genes with information. The number of
genes included for each comparison can be found in the
corresponding tables or figures. For more information on
the method and materials, see Additional file 1.
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