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Abstract

Background: One of the main goals of cancer genetics is to identify the causative elements at the

molecular level leading to cancer.

Results: We have conducted an analysis of a set of genes known to be involved in cancer in order
to unveil their unique features that can assist towards the identification of new candidate cancer

genes.

Conclusion: We have detected key patterns in this group of genes in terms of the molecular
function or the biological process in which they are involved as well as sequence properties. Based
on these features we have developed an accurate Bayesian classification model with which human
genes have been scored for their likelihood of involvement in cancer.

Background

All cancers are caused by alterations in DNA that affect the
biochemical function or expression of certain genes pro-
viding expansion capabilities to the cell with the muta-
tions. Generally this is a multi-step process, requiring
mutations in several genes that ultimately result in the
uncontrolled growth of a clone derived from the cells with
the mutations[1]. A main aim in cancer research is to
identify the causative genes and mutations leading to car-
cinogenesis. This knowledge can then be translated into
new targets for diagnosis and treatment. The continuing
investigation into the genetic basis of cancer has revealed
a number of genes whose individual or concerted actions,
when mutated, result in oncogenesis. Cancer-causing
genes have been classified into three distinct groups:

proto-oncogenes, tumour-suppressor genes, and stability
genes, according to the biological roles they fulfil in a nor-
mal cell and hence, the aberrant process they effect in an
oncogenic state[2]. Proto-oncogenes, when mutated,
unleash their oncogenic potential primarily by remaining
in a permanently activated state. On the other hand, onco-
genic induction by tumour-suppressor genes occurs
through the inactivation of the gene/protein. Stability
genes are responsible for processes including DNA repair
and chromosomal segregation. Mutations in these genes
lead to a higher mutation rate in the genome|[3].

The computational era of cancer research has revolved
around the identification of transcriptomic differences
between normal and cancerous tissues[4], and between
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Table I: Mean values and statistical analysis for degree of conservation and paralogy. Kolmogorov-Smirnov (KS) test of the
conservation score between cancer proteins and the rest of human proteins. The KS test analyses show how different two distributions
are, and computes a probability (P-value) that the two distributions are equal as well as the maximum distance (D) between them.

Genome Average cs KS test: conservation score (cs)
Cancer genes Non-cancer genes D (%) P-value

M. musculus 0.79 0.73 19.5 1.57e-09

R. norvegicus 0.77 0.71 16.7 4.69e-07

G. gallus 0.62 0.56 14.1 5.36e-05

F. rubripes 0.52 0.48 10.6 5.4e-03

paralogues 0.36 0.40 9.8 9.1e-03

tumour subtypes [5-7]. This field has been dominated by
the analysis of microarray data to elucidate these differ-
ences[8]. Other studies have endeavoured to identify and
examine orthologues of human cancer genes [9-11].
Recently, a census of human cancer genes was com-
piled[12]. This list, comprising 291 genes, is exclusively
restricted to genes which, when mutated, are responsible
to the development of cancer. In addition, the study
recorded the mutation type evident in the cancer gene
(somatic, germline, or both), neoplasm types associated
with the gene (leukaemias/lymphomas, mesenchymal,
epithelial, others), the phenotypic nature of the mutated
gene (dominant or recessive), and the mechanism of
mutation affecting each gene (e.g. translocation, deletion,
frameshift). It has been suggested that 5-10% or more
genes in the human genome could be contributing to
oncogenesis|7]. Hence it is expected that many more
genes involved in the cancer process remain to be identi-
fied[12].

Cancer is a complex disease with many different clinical
forms and a relatively large number of genes involved.
However, it has been suggested that, notwithstanding its
complexity, cancer could be understood in terms of a
small number of underlying principles[1]. Probably most,
or perhaps all, types of human cancers show alterations in
a small number of molecular, biochemical and cellular
traits[1]. We have examined structural, functional and
evolutionary properties of the group of causative genes of
cancer as a whole, in order to unveil any common features
and to uncover differences between this group of proteins
and the entire human proteome.

Our analysis examines the distribution of Gene Ontology
(GO) annotations[13] in the group of cancer genes com-
pared to the rest of human proteins[14] to delineate
trends in the biology of the oncoproteins. We have also
analysed sequence properties of the cancer genes, such as
the extent of conservation, paralogy and the protein and
gene length, based on the hypothesis that these parame-
ters influence the susceptibility of the genes to suffer alter-
ations that could lead to a cancer phenotype. Since most

of the genes in the cancer dataset analysed were identified
by positional cloning without any previous hypothesis of
biological function[12], we expect minimal biases due to
the analysis of candidate genes with similar function or
domains to the previously identified genes. Only a minor-
ity of known cancer genes were identified through analy-
sis of plausible candidates based on known biological
features of cancer cells[12].

If we assume that the trends observed in the group of
known cancer genes reflect the general trends in all genes
involved in oncogenesis, we should consider other genes
in the human genome with similar trends as candidate
genes involved in cancer development. We devised a
model to identify and score such candidate cancer-related
genes.

Results

Sequence properties of genes mutated in cancer cell
Degree of conservation

An examination of the level of conservation of cancer pro-
teins compared to the rest of human proteins was facili-
tated by calculating the conservation score (cs) of these
proteins in eukaryotic completed genomes (Pan troglo-
dytes, Mus musculus, Rattus norvegicus, Gallus gallus, Fugu
rubripes, Danio rerio, Drosophila melanogaster, Anopheles
gambiae, Caenorhabditis elegans and Caenorhabditis
briggsae) as described elsewhere[15] (see methods for
details). Conservation scores (cs) range from 0, when no
homologue is detected, to 1, when the closest homologue
is identical to the human protein. This score is indicative
of how conserved a protein has remained through evolu-
tion, and hence the degree to which mutations within the
sequence are tolerated. Proteins involved in cancer show
on average higher conservation scores than that of the
human proteome in each of the species comparisons
(Table 1).

In addition, the distributions of conservation scores
between the cancer protein and human proteome datasets
are markedly different (Figure 1; Table 1 for statistical
analysis). It is evident in Figure 1 that a greater frequency
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(a) Distribution of conservation score of proteins involved in cancer (red line) and all human proteins (blue line) against their
closest homologue in M. musculus, R. norvegicus, G. gallus and between Paralogues. The conservation score gives an estimation
of the mutation rate that the protein has been subjected to during evolution that is independent of the length of the protein.
(b) Protein length, calculated as number of amino acids, and gene length distribution of cancer proteins (red) and all human
proteins (blue).

of cancer proteins have high conservation scores (>0.8)  mouse, whereas only 46% of the human proteome have
compared to the human proteome. In fact, 67% of cancer  scores in this range. Similar patterns are evident in the Rat-
proteins have conservation scores greater than 0.8 in  tus (61% of cancer proteins cs >0.8; 42% human pro-
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Table 2: Mean values and statistical analysis for gene length, protein length and the gene protein length ratio. The P-value for the KS
test of the values distribution between each of the groups and the non-cancer group is shown in parenthesis.

Protein length

Cancer genes
Cancer genes with point mutations 817 (1.2e-8)
Translocated cancer genes 690 (7.7e-08)
Non-cancer genes 491

721 (<2.2e-16)

Gene length Genelprotein length
87426 (5e-14) 157 (4.1e-08)

82615 (7.4e-07) 121 (3.9e-03)

92494 (8.7e-15) 176 (7.7¢-08)

49437 114

teome) and Gallus (31% of cancer proteins cs >0.8; 17%
human proteome) proteomes.

Furthermore, when examining the degree of conservation
within the cancer protein dataset, a fundamental division
between proteins with dominantly and recessively acting
mutations (according to the Cancer Census Database[12])
identifies a distinct pattern in the comparison proteomes.
Proteins whose mechanism of cancer induction is caused
by a dominant phenotype are more conserved than pro-
teins that require a recessive phenotype to effect an onco-
genic state (e.g. M. musculus average cs is 0.80 for
dominant and 0.76 for recessive and G. gallus average cs is
0.64 for dominant and 0.56 for recessive, Supplementary
Table 1).

Paralogy

To estimate the degree of paralogy within the human pro-
teome, conservation scores for each human protein
against its closest paralogue were calculated. These scores
indicate whether or not a protein has a similar human
homologue. Sufficiently close paralogues may possess a
functionality similar enough to a cancer-causing protein
to rescue a system from a disease state[16]. Cancer pro-
teins have an average conservation score (0.36) lower
than that of the human proteome (0.40; Table 1). In addi-
tion, a lower proportion of cancer genes have a conserva-
tion score >0.7 (12%) when compared to the human
proteome (21%).

However, this view is reflective of the oncoprotein dataset
as a whole and obscures an underlying trend in the paral-
ogy properties of dominantly and recessively acting cancer
proteins (Supplementary Table 1). When divided accord-
ingly, dominant cancer proteins (n = 219) have an average
conservation score of 0.41, in comparison to a conserva-
tion score of 0.19 for recessive proteins (n = 63). Further-
more, 14% of dominant cancer proteins possess a
paralogue with a conservation score >0.7, compared to
5% of recessive proteins.

Length

Cancer genes are longer, on average, than genes from the
remainder of the human genome (Fig. 1 and Table 2).
Also the proteins encoded by the genes involved in cancer

are, in general, longer than the rest of the human proteins
(Fig. 1 and Table 2). Furthermore, when we split the can-
cer genes into those that are translocated in human can-
cers and those that register point mutations (according to
the Cancer Census Database[12]), we observe an interest-
ing pattern. The group of genes in which point mutations
have been detected show on average longer coding
sequences than translocated genes. In contrast, the trans-
located genes possess longer gene sequences than cancer
genes with point mutations (Table 2).

Function and process of cancer genes

Gene Ontology (GO) terms have been used previously to
characterise protein function and to elucidate trends in
protein datasets[17]. We classified all human genes
according to the molecular function of each protein and
the biological process in which it is involved, as dictated
by the Gene Ontology "slim" terms|[13]. In total, 12222
human genes had a GO term assignment, of which 240
belonged to the cancer gene dataset. Analysis of the rela-
tive representations of both molecular functions and bio-
logical processes reveals particular trends in the cancer
gene group compared to the human genome (Figure 2).

Transcription regulator activity and nucleic acid binding
are significantly over-represented in the cancer genes, with
transporter and enzyme function noticeably under-repre-
sented (Figure 2A). In terms of GO biological process,
cancer genes, as expected, appear to be over-represented in
cell cycle, cell-growth and/or maintenance, and develop-
mental processes, whilst being considerably under-repre-
sented in transport processes (Figure 2B). Interestingly, 22
out of 30 of the cancer genes involved in stress response,
and 27 out of 49 cancer genes involved in cell cycle show
recessively acting mutations. For the other biological
processes, higher proportions of genes belonging to the
dominantly acting group are evident.

Table 3 lists the GO terms that are most significantly over-
and under-represented in the cancer proteins.
GO:0045786 (Negative regulation of cell cycle) is the
most prominent disproportionately represented term.
Interestingly, of the 22 cancer genes with this GO term
(Table 3), 20 belong to the group that are prone to reces-
sive mutations. This term describes only 46 further genes
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Figure 2

Number of genes involved in cancer with each Molecular function (a) or Biological process (b) GO assignments (red) and
number of genes expected in a same size random group of genes from the human genome (blue) (the P-value for the y2 test is
|.5e-30 for the Molecular function and 3.5e-36 for the Biological process GO assignments). Note that one gene can have mul-
tiple GO assignments. %2 values for each cell are represented with a colour-coded scale. Colours towards red signify over-rep-
resentation and those towards blue signify under-representation of cancer genes with a particular GO assignment. Green
signifies equal representation of both sets in a category.

Page 5 of 11

(page number not for citation purposes)



BMC Genomics 2006, 7:3

http://www.biomedcentral.com/1471-2164/7/3

Table 3: Selected GO annotations of genes involved in cancer compared to all human genes. The sign in the y2 value indicates over-
representation (positive values) or under-representation (negative values) of the GO term in the group of cancer proteins.

GO id GO term #total #cancer genes 12

GO:0045786 negative regulation of cell cycle 68 22 22591
GO:0003684 damaged DNA binding 35 10 88.55
GO:0030528 transcription regulator activity 1034 76 85.86
GO:0006355 regulation of transcription, DNA-dependent 1281 84 73.49
GO:0003700 transcription factor activity 770 59 72.73
GO:0007049 cell cycle 601 48 64.36
GO:0005634 nucleus 2492 122 47.13
GO:0006366 transcription from Pol Il promoter 181 19 41.93
GO:0008151 cell growth and/or maintenance 3014 137 40.58
GO:0003713 transcription coactivator activity 109 13 35.30
GO:0006281 DNA repair 94 I 28.98
GO:0003676 nucleic acid binding 2546 11 27.88
GO:0003824 catalytic activity 3768 62 -14.46
GO:0006810 transport 1529 12 -20.14
GO:0016021 integral to membrane 1986 20 -20.31

in the human genome. GO terms associated with the reg-
ulation of transcription, and kinase activity are most fre-
quently over-represented amongst cancer proteins. GO
terms depicting catalytic activity, transport and mem-
brane integrality are notably under-represented.

Bayesian method for the identification of genes likely to be
involved in cancer

Based on the differences detected between genes involved
in cancer and the rest of genes in the human genome, we
wished to identify which other genes in the human
genome are more likely to be involved in the cancer proc-
ess. We developed and tested a naive Bayesian classifier
based on sequence properties of the genes and the molec-
ular function and biological processes in which they are
involved.

Naive Bayes is a simple probabilistic induction algorithm
widely used for classification problems|[18,19]. This clas-
sifier learns from training data the conditional probability
of each attribute given the class label. Classification is
then done by applying Bayes rule[19] to compute the
probability of the class for a particular instance in which
the attributes are known|[18].

We have applied the naive Bayes model to identify human
genes likely to be involved in the cancer process based on
sequence properties and the molecular function and bio-
logical process in which the genes are involved (based on
GO terms). In particular, the attributes used to build the
model are the assignment or non-assignment to 106 GO
terms, the length of the protein and the length of the gene,
the conservation score of the protein in eukaryotic com-
pleted genomes (Pan troglodytes, Mus musculus, Rattus nor-
vegicus, Gallus gallus, Fugu rubripes, Danio rerio, Drosophila
melanogaster, Anopheles gambiae, Caenorhabditis elegans and

Caenorhabditis briggsae) and conservation score in para-
logues. The length values and the conservation scores are
used in the model as continuous features, while the GO
terms are discrete features (1 or 0). The 106 GO terms
used in the model were selected by computing the 2 value
of each GO term with respect to the number of cancer
genes assigned to the term compared to all human genes.
Only those GO terms with a 2 value greater than 3 were
used.

Although the positive set of genes from the cancer census
can be generally trusted, producing negative sets for genes
that are known not to be involved in cancer is not possi-
ble. Thus, to generate the negative examples, we randomly
selected genes from the human genome that presumably
are not known to be involved in cancer. However, a small
proportion of these genes may well be involved in onco-
genesis, although this property has not been detected yet.
By implication, some of the false positive predictions
might represent true positives — indeed, this is the predic-
tive power of our current inductive approach.

To build the model, 100 sets of 480 genes were used: each
with the 240 genes known to be involved in cancer and
with GO terms assigned and a different set of 240 genes
randomly selected from the group of 11982 human genes
with GO terms assigned and not known to be involved in
cancer. The final model used is the result of averaging the
probabilities given by each of the 100 different models.

Each of the models was validated with a 10-fold cross-val-
idation test. This test consist of building the model with a
fraction of the data (90%, learning set) and checking how
well the model is able to predict the remaining fraction
that has not seen before (10%, test set). This test was per-
formed 10 times for each of the 100 sets of 480 proteins:
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Figure 3

ROC curve for the prediction of cancer genes. The 45° diagonal of the ROC space represents a random guess situation. The
performance of the model at 0.5 and 0.7 cut-off probability scores are shown with dashed lines.

on average, we obtained 78.1% accuracy, 79.2% specifi-
city and 76.5% sensitivity. These values were calculated
with a cut-off probability score of 0.5. The accuracy of the
method was evaluated using an ROC (receiver operating
characteristic) analysis (Figure 3) (see Methods for
details).

We have applied this model to all the genes in the human
genome with GO terms assigned (12222) and in total
2295 human genes are predicted with a probability score
greater than 0.5 to be involved in cancer and 199 with a
probability > 0.99 (Supplementary Table 2). We also list
the 30 genes predicted with the highest probability score
(Supplementary Table 3). All the genes predicted as cancer
genes and the corresponding probability scores assigned
by our method can be accessed via WWW [20].

Discussion

Sequence properties of cancer genes

The work presented here reveals that the group of genes
involved in oncogenesis differs from the rest of human

genes in sequence properties (conservation, paralogy and
gene and protein length). It appears that the evolution of
proteins causally involved in cancer is more tightly con-
trolled than the human proteome in general (Figure 1).
This is consistent with biological expectation: mutations,
which can be disease-causing, are not readily tolerated in
cancer proteins. A similar conservation pattern has been
observed in a group of genes involved in hereditary dis-
ease[15]. Furthermore, proteins whose mechanism of
cancer induction is dominant are more conserved than
proteins that require a recessive phenotype to effect an
oncogenic state. It is conceivable that a greater selective
pressure is imposed on proteins in which mutation of a
single allele leads to a dominantly phenotypic disease
state. Conversely, it would follow that there is less selec-
tive pressure on a protein that requires mutations in both
alleles to induce a cancer phenotype.

A low proportion of cancer proteins have highly con-
served paralogs (Figure 1), this would indicate that the
roles of proteins that become defective in cancer are less
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likely to be compensated for by wild-type paralagous pro-
teins, as has been previously described for hereditary dis-
ease genes[15]. However this pattern is much more
prominent in recessive cancer proteins. This is compatible
with the fact that recessive mutations are generally loss-of-
function mutations and functionality could be restored by
the presence of a close paralogue. This is clearly not evi-
dent in a cancer disease state. Dominant mutations are
predominantly gain-of-function or dominant-negative
mutations for which a close paralogue would be unable to
revert the biological perturbation.

Finally, cancer genes and proteins are longer, on average,
than the rest of human genes. A similar pattern has been
noticed in a comparison of proteins involved in heredi-
tary disease[15]. Furthermore, the group of genes in which
point mutations have been detected show on average
longer coding sequences than translocated genes. In con-
trast, the translocated genes possess longer gene sequences
than cancer genes with point mutations. This can be
attributed to differences in the mutation process of these
two groups of genes. In cancer, as in hereditary disease, a
longer coding sequence is more susceptible to the acquisi-
tion of point mutations solely as a consequence of its
length, and hence is more likely to produce a dysfunc-
tional gene product. On the other hand, a longer gene
sequence has a greater probability of being involved in a
random translocation, and thus is more likely to produce
a chimaeric gene implicated in oncogenesis.

In conclusion the sequence properties shown by the can-
cer genes are very similar to those previously described for
genes involved in hereditary disease[15]. This is biologi-
cally relevant, as it is understood that the molecular mech-
anism that yields both groups of genes to cause either
cancer or a hereditary disease is a mutation or alteration
that impairs the normal functionality of the protein or
modifies its expression. The sequence properties exhibited
by this group of genes simply make them more likely to
suffer these types of mutations.

Function and process of cancer genes

The differential distribution of certain GO annotations in
the group of cancer genes delineates trends in the func-
tions and biological processes of the genes whose altered
function or expression results in oncogenesis. Transcrip-
tion regulator activity and nucleic acid binding are signif-
icantly over-represented in the cancer genes, with
transporter and enzyme function noticeably under-repre-
sented (Figure 2A). This observation is attributable to the
number of transcription factors that have been causally
implicated in cancer (e.g. p53, c-myc, n-mygc, pax3, pax8).
In terms of GO biological process, cancer genes are over-
represented in cell cycle, cell-growth and/or maintenance,
and developmental processes, whilst are considerably

http://www.biomedcentral.com/1471-2164/7/3

under-represented in transport processes (Figure 2B). This
result is consistent with the idea suggested by Hanahan
and Weinberg that although the complexity of the cancer
process, most human cancers would show alterations in a
small number of molecular or cellular processes|1].

Although in this work we have focused on the analysis of
the functions and processes in which cancer genes are
involved, it would be also interesting to explore other type
of data when available, for instance, the gene expression
pattern of these genes or their genomic distribution. Also
important is the fact that proteins interact between them
or with DNA, and perform their function in the context of
the cell and not individually, it would be therefore, inter-
esting to investigate the involvement of cancer proteins in
the context of protein networks and gene regulatory net-
works to get further knowledge of the tumorigenic process
and improve on the prediction of cancer genes.

Identifying genes likely to be involved in cancer

The unique pattern in GO annotation and sequence prop-
erties of cancer genes gives us the opportunity to identify
which other genes in the human genome follow this pat-
tern and thus are more likely to be altered in cancerous
cells. We have developed a model using a Bayesian
approach that is able to identify candidate genes for can-
cer.

We want to point out that both sequence properties and
GO annotations are important for the correct identifica-
tion of candidate genes for cancer. When we only use the
GO annotations to build the Bayesian model, the
sequence properties of the genes identified with a high
likelihood of being involved in cancer differ from the
sequence properties of cancer genes (i.e. the protein
length, conservation and paralogy are similar to the rest of
genes of the human genome and not to the cancer genes,
see Supplementary Table 4 for details). This shows that it
is not only the function of a gene nor the process in which
itis involved that are indicative of its potential oncogenic-
ity but that it is also a consequence of a gene's susceptibil-
ity to mutation which governs its liability to cause cancer.
This also shows that the different sequence properties
observed in the group of known cancer genes are not due
to the fact that they belong to particular classes of genes,
but due to their increased probability of suffering dysfunc-
tional mutations solely as a consequence of their
sequence properties (i.e. protein length, conservation and

paralogy).

The 30 genes predicted with the highest probability score
by our method are listed in Table 3. Of these, some have
been found to be implicated in cancer although they are
not included in the Cancer Census Dataset (see supple-
mentary Table 5). Four of the genes (Nuclear factor NF-
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kappa-B p100/p49 subunits, MYST histone acetyltrans-
ferase 3, C-ets-1 protein (p54) and C-ets-2 protein) have
been implicated in cancer-causing translocations [21-25].
In addition, Hypermethylated in cancer 1 protein (Hic-1)
has been reported to be underexpressed in tumour cells
due to hypermethylation and in mice, heterozygous dis-
ruption of the gene has been shown to induce
tumours|[26,27]. The complete list of genes predicted as
cancer genes and the corresponding probability scores
assigned by our method can be accessed via WWW [20].
We believe that this information could facilitate the proc-
ess of finding the causative mutations or alterations in dif-
ferent cancer types.

Conclusion

In summary, we have analysed the sequence and func-
tional properties of the group of genes known to be caus-
ative of cancer when mutated. We have detected clear
trends in this group of genes in terms of the molecular
function or the biological process in which they are
involved as well as sequence properties. Based on these
features we have developed an accurate Bayesian classifi-
cation model with which human genes have been scored
for their likelihood of involvement in cancer. The results
can be consulted by WWW [20].

Methods

Data

The list of genes involved in cancer was obtained from the
Cancer Gene Census Database [28]. This list comprises
291 genes, and is exclusively restricted to genes which,
when mutated, are responsible to the development of can-
cer.

All human genes were classified according to the molecu-
lar function of each protein and the biological process in
which they are involved according to the Gene Ontology
"slim" terms[13].

Computation of conservation score

Conservation score (cs) is a measure that gives an estima-
tion of the mutation rate that the protein has been sub-
jected to during evolution that is independent of the
length of the protein|15]. This was computed using WUB-
LASTP (version 2.0)[29], which is based on the public
domain NCBI BLAST version 1.4[30]. Hits with E_values
> 1010 were discarded. Smith-Waterman[31] alignment
was performed on the pairs that gave a significant BLAST
hit. The value of cs was calculated for each human gene as
the WUBLASTP score of the closest homologue in each
eukaryotic completed genome (Pan troglodytes, Mus muscu-
lus, Rattus norvegicus, Gallus gallus, Fugu rubripes, Danio
rerio, Drosophila  melanogaster, ~Anopheles  gambiae,
Caenorhabditis elegans and Caenorhabditis briggsae) divided
by the WUBLASTP score of the protein against itself.

http://www.biomedcentral.com/1471-2164/7/3

Naive Bayes model

We have applied the naive Bayes model to identify human
genes likely to be involved in the cancer process based on
sequence properties and the molecular function and bio-
logical process in which the genes are involved (based on
GO terms). This classifier learns from training data the
conditional probability of each attribute given the class
label. Classification is then done by applying Bayes
rule[19] to compute the probability of the class for a par-
ticular instance in which the attributes are known[18].

The attributes used to build the model are the assignment
or non-assignment to 106 selected GO terms (terms with
a y2value greater than 3), the length of the protein and the
length of the gene, the conservation score of the protein in
eukaryotic completed genomes (Pan troglodytes, Mus mus-
culus, Rattus norvegicus, Gallus gallus, Fugu rubripes, Danio
rerio, Drosophila  melanogaster, Anopheles  gambiae,
Caenorhabditis elegans and Caenorhabditis briggsae) and
conservation score in paralogues.

The model was build by averaging the probabilities given
by 100 different models, each built with 240 genes known
to be involved in cancer and with GO terms assigned and
a different set of 240 genes randomly selected from the
group of 11982 human genes with GO terms assigned and
not known to be involved in cancer.

Each of the models was validated with a 10-fold cross-val-
idation test. This test consist of building the model with a
fraction of the data (90%, learning set) and checking how
well the model is able to predict the remaining fraction
that has not seen before (10%, test set). This test was per-
formed 10 times for each of the 100 sets of 480 proteins.

We use an ROC curve to evaluate the overall accuracy and
predictive value of the method. The ROC analysis is a
standard approach to evaluate the sensitivity and specifi-
city of prediction methods (Figure 3). It estimates a curve,
which describes the inherent tradeoff between sensitivity
and specificity of a model. Each point on the ROC curve
is associated with a specific prediction criteria - in this
case it is the cut-off probability score above which genes
are considered candidates to be involved in cancer. The
ROC curve is obtained by plotting the True Positive rate
(fraction of known cancer genes that are predicted by the
method) against the False Positive rate, for different val-
ues of the cut-off probability score. The 45° diagonal of
the ROC space represents a random guess situation.
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