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Abstract
Background: EST libraries are used in various biological studies, from microarray experiments to
proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are
typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are
possibly overlooked.

Results: We describe a system (EST2Prot) that uses multiple elements to map EST sequences to
their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis,
information about protein coding regions in existing DNA sequences and protein database
searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-
Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors.

Conclusion: EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing
multiple relations between known biological entities. It produces a mapping between ESTs and
proteins in real-time through a simple web-interface. The system is part of the Biozon database and
is accessible at http://biozon.org/tools/est/.

Background
Expressed Sequence Tags (ESTs) are partial sequences of
cDNA sequences that represent expressed DNA sequences
(expressed genes). These short fragments are usually gen-
erated by sequencing a few hundred nucleotides from
either the 5' end (forward primer) or the 3' end (reverse
primer) of a cDNA sequence. Libraries of ESTs can be gen-
erated relatively fast and are inexpensive. Therefore, they
often serve as a gene discovery tool.

EST libraries are often used to detect genes that are linked
with certain diseases or genes specifically expressed in cer-
tain tissues. For example, Vasmatzis et al. [1] clustered
ESTs using a rudimentary sequence identity metric to dis-
cover new genes specific to the human prostate. More

recently, Bera et al. [2,3] used a similar procedure to iden-
tify MRP8 and MRP9, genes highly expressed in breast
cancer. EST libraries were also used to predict, for exam-
ple, secreted proteins [4].

While EST libraries are potentially very informative, they
are difficult to process and analyze. Since ESTs are
sequenced by scanning the cDNA only once, they have rel-
atively high error rates due to either sequencing errors
(about one sequencing error per 100 residues) or
frameshift errors. Thus, nucleic acid sequence databases
are flooded with short, redundant and inaccurate or con-
taminated sequences.
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Moreover, ESTs are rarely annotated and the gene protein
product is usually undefined. Since ESTs are usually either
too short or too noisy for sequence alignment methods to
be effective, mapping EST sequences to protein products
can be a difficult task without some pre-processing. The
signal is often too weak, or the EST might be outside of the
translated region. Alternatively, the protein product might
not exist in protein sequence databases.

This poses a major problem for experimental molecular
biologists who generate large EST libraries to study spe-
cific biological systems. A careful investigation of genes is
time consuming, therefore only a few of the many EST
sequences are usually selected for detailed study. To max-
imize efficiency, the sequences that are selected are usu-
ally ESTs that can be mapped to well-studied genes. With
the vast majority of the original EST data ignored, poten-
tial advances and new discoveries are limited.

These problems can have a major impact on high-
throughput studies. For example, microarrays are com-
monly used to study a wide variety of biological questions
and the ability to correlate differentially expressed genes
with a particular experimental manipulation can provide
new insight into a given biological problem. However,
ESTs with no known function comprise 40–60% of the
genes in the genome and therefore many of these differen-
tially expressed genes are likely to be ESTs. Without any
further insight into their function, the role of these ESTs in
a given biological problem cannot be inferred. Instead,
much of the emphasis in analyzing microarray data is
devoted to grouping together genes with known function
into various categories (e.g. transcription factors, secreted
proteins, etc.). As a result, most microarray experiments
essentially act to associate known genes with new biolog-
ical paradigms, and ignore much of the data. Indeed, in
recognition of this fact, Affymetrix GeneChip arrays can
be ordered that only contain genes of known function,
and do not contain ESTs that cannot be annotated.

Similar problems characterize proteomic screens, and the
analysis of proteins that are induced or repressed under
specific experimental conditions typically focuses only on
those with known function. In still another example,
genetic screens for mutants will often identify genes that
previously had no known function. While these ESTs can
now be functionally defined by their observed phenotype,
detecting similarity to other proteins with known func-
tion can affect the interpretation of the phenotype as well
as shape the design of future experiments. In view of these
examples, a tool that can associate ESTs with genes of
known function would be of great value to biologists
looking to understand a given experimental problem.

Related studies
To increase the effectiveness of EST sequences, one can use
clustering procedures. These procedures build upon the
high redundancy in EST libraries. The clusters often
resolve sequencing errors and are easier to map to protein
products than individual ESTs. Three popular databases of
EST clusters are UniGene [5,6], TIGR [7] and STACK [8].

Other studies developed models for direct gene prediction
from EST data. ESTScan [9] is a program for detecting
potential coding regions in EST sequences that is based on
a hidden Markov model. Given a nucleic acid sequence,
ESTScan uses the Viterbi decoding algorithm to determine
the most probable path through the model and to infer
the most likely coding region or identify multiple coding
regions. The authors report 95% detection rate of true
coding regions at about 18% rate of false positives.

DIANA-EST [10] is a program that analyzes ESTs to deter-
mine coding regions and frame-shift errors using three
different Neural Networks (trained to recognize start
codons, coding regions and frameshifts, respectively). The
authors report accuracy of about 90% at the nucleotide
level. While these methods can be useful for the predic-
tion of coding regions, they do not attempt to map the
predicted genes to their protein products. That usually
entails additional analysis, BLAST searches and post
processing of the search results.

PipeOnline [11] was developed in response to the need
for large-scale EST analysis. Users upload raw sequence
data which is first cleaned and assembled into a non-
redundant set of contigs. PipeOnline then uses BLAST to
find protein sequences which are similar to the contigs.
ESTAnnotator [12] is another high-throughput EST analy-
sis utility which uses a series of BLAST searches to cluster,
assemble, and annotate ESTs. The utility first attempts to
annotate the input sequences by querying them against
multiple nucleotide databases. If this first step is unsuc-
cessful, ESTAnnotator clusters and assembles the ESTs by
iterating applications of BLAST and CAP [13] and the
resulting contigs are queried against nucleotide and pro-
tein databases. A similar approach is employed in
Prot4EST [14] which links together several EST prediction
algorithms. It feeds the input sequences through a pipe-
line of sequence comparisons against various databases
starting with rRNA databases (using BLASTN) followed by
mitochondrial protein databases (using BLASTX) and
other protein databases. If all these comparisons fail to
produce significant matches, Prot4EST uses ESTScan or
DECODER to annotate the sequence. Another EST analy-
sis package is PartiGene [15] which predicts possible pro-
tein products through clustering, sequence comparison
and application of other prediction algorithms such as
Prot4EST, DECODER, and ESTScan. Also relevant is
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ESTIMA [16] which is an application designed to assist
with EST data management and annotation. The ESTIMA
web interface allows users to query their EST data. Users
can, for example, find all ESTs associated with a particular
GO term, run BLAST queries against the sequences in the
database, view contigs and chromatograms, and view
BLAST derived annotation.

Current work is largely concerned with identifying gene
structure and alternative splicing variants. For example,
the latest version of GeneSeqer [17] predicts gene struc-
ture (i.e. placement of exons and introns) of a genomic
DNA sequence by aligning cDNA and EST sequences to
the long DNA sequence and using splice site prediction
methods. In addition to these programs there are many
other gene prediction programs that are not necessarily
geared for EST data and are usually applied to longer
nucleic acid sequences or complete genomes (for a review,
see [18,19]).

As the discussion above suggests, analysis of EST data is
not a simple task. Most EST analysis tools involve a lot of
data processing that cannot be done in real time and some
require the user to have all the requisite software locally
available. This limits the usability of these tools.

In this paper we describe a system that utilizes the Biozon
infrastructure [20] and uses EST cluster data together with
other data sets, such as established relations between
DNA and proteins and similarity data between proteins,
to map ESTs to their protein products. Our method is very
fast; it uses pre-computed data and does not require

intense computations at the query stage. The system can
also identify the ESTs whose protein products have spe-
cific functions ('target proteins'). In the next sections we
describe the main elements of the Biozon's EST2Prot
mapping tool and demonstrate its utility in predicting EST
sequences whose likely protein products are involved in
nerve regeneration.

Implementation
Biozon's EST2Prot system builds upon the infrastructure
of Biozon. It uses multiple data sets, all integrated into a
single, tightly connected schema that enables great flexi-
bility in querying for complex relations between entities.
Specifically, we utilize the many paths that exist between
entities in the Biozon data graph to map ESTs to protein
products.

Biozon
The Biozon database [21] is a system that unifies multiple
biological databases consisting of a variety of heterogene-
ous data types (such as DNA sequences, proteins, interac-
tions, cellular pathways and more) into a single schema.
Logically, the database is viewed as a large graph where
biological entities correspond to nodes and edges corre-
spond to relations, as is depicted schematically in Figure
1. The underlying assumption of Biozon is that any bio-
logical entity or process can be associated with a physical
object or a set of physical objects. Therefore, physical
objects form the backbone of the database and their phys-
ical properties serve as the actual identifiers. For example,
a protein is uniquely identified by its amino acid sequence
and a DNA by its sequence of nucleotides. An interaction

Left: Partial overview of the Biozon schemaFigure 1
Left: Partial overview of the Biozon schema. Biozon currently stores extensive information about more than 50,000,000 
objects (integrating sequence, structure, protein-protein interactions, pathways, expression data and more) totaling to about 
100 million documents from more than 20 different databases as well as from in-house computations, and 6.5 billion relations 
between documents (including explicit relations between objects, and derived relations based on different similarity indices). 
Similarity relations are depicted with dashed lines. The database will be gradually extended to span both new source data types 
as well well as new computed data. Right: a subgraph of the Biozon data graph.
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between two proteins or between a protein and a DNA is
represented as a set of physical objects (the interacting
partners), a protein family is a set of protein sequences, a
metabolic pathway is a set of reactions (each one associ-
ated with a protein (enzyme) family) and so on. Each type
of object is also associated with an identity operator that is
used to compare entities and determine whether they are
identical (for example, for sequences the string match
operator is used, for sets we use the set-identity operator
and for arbitrary subgraphs graph isomorphism is used).

The reliance on physical entities and sets of physical enti-
ties as our backbone is especially useful for data integra-
tion since it allows unambiguous unification of many
entities from different databases based on their physical
properties. For example, a protein sequence that exists in
Swiss-Prot [22], PIR [23] and RefSeq [24] will be mapped

to the same sequence object (node) in the data graph and
the information that is available in these sources about
this protein will be accessible from a single entry point in
Biozon. Unlike identifiers such as accession numbers and
cross-references that are potentially unstable or inconsist-
ent (as each database uses its own set of identifiers), rela-
tionships that are established based on physical non-
redundant Biozon objects are highly reliable and are
materialized explicitly in the data graph. This has a great
benefit in linking entities from disparate sources. For
example, paths are formed between protein domains
from InterPro [25] and interactions from BIND [26] or
between protein structures from PDB [27] and metabolic
pathways from KEGG [28]. Relations between objects in
Biozon can have different meanings, depending on the
entities they connect. For example, 'member of' is a rela-
tion that connects a protein to a protein family or an EST

The Biozon's EST2Prot systemFigure 2
The Biozon's EST2Prot system. An EST is mapped to a protein using one of five possible paths. To enrich the set of func-
tional descriptors associated with each EST we also utilize similarity relations between proteins.
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to a EST cluster. The relation 'manifests' relates a protein
sequence to its structure, 'encodes' relates a DNA sequence
to protein sequence(s), 'similar' relates two similar pro-
tein sequences and so on. The large-scale data integration
results in a highly connected graph structure that allows
one to see each entity in its broader context with all its
related entities; a context that cannot be determined from
any one source. Utilizing its graph structure, Biozon
allows complex and fuzzy searches on the data graph that
span multiple data types and specify desired interrelation-
ships between them. For more details on the Biozon
schema and its various components see [20].

Mapping ESTs to proteins
The EST2Prot system exploits a subset of the Biozon
schema, including DNA sequences, proteins and EST clus-
ters and the 'encodes', 'substring' and 'similar' relations.
We explore five different direct paths in the Biozon data
graph, and say that EST s is directly mapped to protein p if:

1. s encodes p

2. s is a substring of DNA s' near an encoding region of s'
which encodes for p (see section 'Relations').

3. s is a member of a UniGene cluster to which NCBI
assigns p

4. s is a member of a UniGene cluster containing s' and s'
encodes p

5. s is a member of a UniGene cluster containing s' and s'
is a substring of s" near an encoding region of s" which
encodes for p

We say an EST s maps to protein p if s directly maps to p or
if s directly maps to p' and p' is similar to p as described in
section 'Relations'. An overview of our system is given in
Figure 2.

It should be noted that while UniGene relies just on
BLAST searches with respect to eight model organisms,
Biozon uses all these paths at once to create a more com-
prehensive mapping between ESTs and proteins. It is the
tightly connected schema of Biozon that enables immedi-
ate information flow and deduction of paths between
entities, without having to resort to external resources out-
side the database or expensive computations. Most nota-
bly, the materialization of similarity data brings forward
instantly an unprecedented amount of information that
otherwise would requite millions of BLAST searches. This
is especially important since often proteins with unknown
properties can be characterized based on their similarity
with better studied homologous proteins.

Data sets
DNA sequences are gleaned from GenBank records. As of
September 2005 (release 2.2), Biozon contains
42,686,711 unique DNA sequences. Proteins are
extracted from several databases (including Swiss-Prot/
TrEMBL, Genpept, PDB, PIR, BIND and other sources)
and unified into a non-redundant set based on their phys-
ical sequence of amino acids (rather than based on cross-
links). All together, Biozon contains 2,062,061 unique
protein sequences in release 2.2.

EST clusters
In response to the growing chaos of EST data, NCBI devel-
oped UniGene [6], a gene-oriented clustering of tran-
scribed nucleic acid sequences. UniGene includes only
protein-coding genes which have at least 100 high quality
non-repetitive base pairs. It also requires that its clusters
be 3' anchored. Clusters not showing evidence of reaching
the 3' terminus are eliminated (these are usually singleton
clusters). Each UniGene cluster represents a gene and its
alternative splice forms. Associated with each cluster are
the gene's possible protein products. These proteins are
chosen by comparing the cluster sequences with the avail-
able proteomes of eight model organisms [Homo sapiens
(human), Mus musculus (mouse), Rattus norvegicus (rat),
Drosophila melanogaster (fruit fly), Caenorhabditis elegans
(nematode), Saccharomyces cerevisiae (baker's yeast),
Escherichia coli, and Arabidopsis thaliana (mouse-ear
cress)]. For each model organism, the cluster is assigned
the protein most similar to a representative sequence with
respect to some similarity threshold (BLAST evalue less
than 1e-6). If no sequence in a cluster has a significant
BLAST match, then that cluster is left unassigned. In fact,
UniGene do not assign proteins to 42% of its clusters.
UniGene clusters for 54 organisms were integrated into
the Biozon schema and in release 2.2 this dataset contains
807,175 clusters with a total of 19,471,927 EST
sequences.

Relations
To determine possible links between EST sequences and
proteins we explore several paths, as is depicted in Figure
2. These paths are based on the following relations.

The 'encodes' relation
This relation ties nucleic acid sequences and proteins. The
relations are not established based on cross links, but
rather based on physical properties. Each encodes relation
(d, p) indicates that the DNA sequence d contains a coding
region that can be translated completely to the protein
sequence p.
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The 'UniGene encodes' relation
This relation is established between UniGene clusters and
proteins. The relations are established by the UniGene
team as described above.

The 'substring' relation
This relation exists between strings of the same data type
(e.g. nucleic acid sequences). A substring relation (d, d')
indicates that the DNA sequence d is a fragment of the
longer DNA sequence d'. Of special interest are substring
relations that place a fragment d near a coding region of
d'. If d is no more than 50 base pairs away from overlap-
ping a coding region of d' that encodes for protein p, then
we say that d is linked to p (the strict threshold of 50 base
pairs was chosen to ensure high quality, however, as Fig-
ure 3 shows, more permissive thresholds can be used to
extend the set of links formed between DNA and protein
sequences).

The 'similarity' relation
The similarity relation is one of the most fundamental
relations in biology, frequently used for functional infer-
ence. Biozon computes and stores similarity relationships
between proteins based on sequence, structure or expres-
sion profiles. The integration of similarity data enables the
propagation of information from well-studied entries to
uncharacterized ones.

Biozon contains pairwise similarities for about 2,000,000
sequences, which were computed using BLAST [29],
resulting in a total of about 6.5 billion significant pairwise
similarities (with evalue < 0.1). These similarity relations
are used to extend the mappings from ESTs to proteins,
thus increasing the set of functional descriptors that can
be associated with an EST. The great advantage of the sim-
ilarity relations of Biozon is the scalability and accessibil-
ity. Since EST analysis requires expensive database
searches to search for possible protein products, it is diffi-
cult to scale existing methods for EST analysis to large
libraries. By materializing similarity data, knowledge
propagation in Biozon becomes immediate, thus facilitat-
ing the task of function assignment.

Target proteins
A biologist might be interested only in ESTs that are
linked to a specific biological system. To address this
need, the EST2Prot system can be queried with respect to
specific biological descriptors. The system collects a set of
target proteins with relevant functions and reports the
ESTs which map to at least one target protein. We define
our target proteins by target descriptors, which are based
on GO terms [30] and SwissProt keywords [22]. SwissProt
keywords are descriptors that are associated with proteins
based on manual curation. These keywords have been
used in many studies to automatically annotate proteins
or assess the biological function of protein clusters (e.g.
[31,32]). The Gene Ontology (GO) functional descriptors
are obtained from the GO database [30]. GO terms are
organized in an acyclic tree-like graph where a node's par-
ent represents a property that is more general than the
node's property. However, unlike a tree form of a graph,
in the GO graph it is possible to have more than one path
leading from the root to a node. Also, a protein may be
assigned more than one GO term, each one on a different
branch of the graph (the different branches represent dif-
ferent groups of properties). GO terms in Biozon were col-
lected from multiple sources, downloaded from the GO
consortium website and extracted from databases such as
UniProt. A total of 1,111,272 proteins in Biozon can be
associated with GO terms in release 2.2. (Since protein
databases contain many similar and almost identical pro-
teins, the number of functionally different proteins with
GO terms is obviously smaller).

User interface
Given an EST (a GenBank or RefSeq accession number)
EST2Prot explores all possible paths leading from that
sequence to protein products in the Biozon data graph.
The user is presented with multiple pages that summarize
the information and rank the proteins based on our con-
fidence in the association (depending on the type of the
path). The first page provides the entry point to the Bio-
zon data graph for the query EST and each page is linked

Mapping ESTs to proteins through the substring relationFigure 3
Mapping ESTs to proteins through the substring rela-
tion. Often, a nucleic acid sequence is a fragment of a longer 
DNA sequence that contains a coding region. We compared 
all mouse nucleic acid sequences to each other and studied 
the distribution of (minimal) distances from coding regions. 
The vast majority of fragments (250,000) are located at the 
beginning of a coding region of a longer DNA sequence. In 
addition, there is a substantial number of ESTs that are 
located in the proximity of a coding region.
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to other pages with increasingly detailed information on
the mapped proteins. For more information on the web-
server see the Appendix (Additional File 1).

Results
Statistics
We analyzed in detail 185,543 UniGene clusters of Mouse
and Human that were available as of April 2004 (105,680
human clusters and 79,863 mouse clusters). These clus-
ters contain a total of 7,602,768 nucleic acid sequences, of
which 125,235 are encoding sequences (i.e. sequences
that contain a coding sequence that can be completely
and directly mapped to an amino acid sequence). These
encoding ESTs can be mapped directly to proteins using
type I paths in Biozon. A total of 37,509 UniGene clusters
contain at least one encoding DNA sequence.

Of the 185,543 UniGene clusters, 77,501 are associated
with proteins by the UniGene team (type 3 paths). These
clusters account for 7,196,998 of the 7,602,767 EST
sequences (94.6%). By considering also direct relation-
ships that are formed by coding sequences (type 4 paths),
Biozon maps 79,760 clusters to proteins. Including also
type 5 paths (using substring relations) results in 79,823
mapped clusters. It should be noted that the contributions
of the Biozon-based paths of type 4 and 5 are substantial
in and of themselves. For example, 37,658 clusters can be
mapped based on class 4 paths alone and 13,370 clusters
can be mapped based on type 5 paths alone. The latter is
the result of 249,393 substring relations that we detected
in the Mouse genome (involving 111,816 unique sub-
string ESTs). These substring-superstring relations estab-
lish 169,480 relations between ESTs and proteins. [This
multiplicity is characteristic of the data. If the EST is inside
the coding region of a longer superstring, then the dis-
tance from the coding region is defined as zero. Some-
times, there might be multiple coding regions in the same
DNA sequence containing that EST sequence. In these
cases, the EST will be mapped to multiple proteins. Also,
the EST will be mapped to multiple proteins if it is a sub-
string of multiple DNA sequences, near coding regions.]
The additional paths that Biozon explores naturally
increase the number of ESTs that can be mapped to pro-
teins. Moreover, these mappings are of high quality as
they do not rely on cross-links by identifiers but rather on
computationally validated transformations and relations.
The most substantial difference between UniGene and the
EST2Prot system lies in the number of paths formed and
the number of proteins that can be mapped to EST clus-
ters. When using only UniGene, there are 248,367 rela-
tions between UniGene clusters and protein sequences.
With Biozon, the number of relations increases by 36% to
338,775 (even before considering similarity relation-
ships) thus enriching the protein information signifi-
cantly.

Interestingly, the 248,367 proteins that are mapped to
77,501 clusters by UniGene (type 3 paths) are reduced to
only 49,412 unique protein sequences (less than 20% of
the original set). Moreover, 38,534 proteins are mapped
to at least two clusters. The most extreme case is of PIR
protein S12207, with Biozon DocID 44431 [We refer to
entities using their unique and stable Biozon 'DocID'. To
view an entry with DocID x, follow the URL: http://bio-
zon.org/Biozon/Profile/x]. that is mapped to no less than
1624 clusters. Similarly, Genpept protein GI:3355742
(Biozon DocID 69611) is mapped to 185 UniGene clus-
ters. These numbers suggest very high redundancy and
overlap between UniGene clusters, which is surprising
given that clusters are expected to correlate with different
genes.

Since Biozon adopts the UniGene clusters as is, the redun-
dancy is also inherent to our mappings. However, the
redundancy level is much lower and the 341,560 proteins
that are mapped using paths of type 3, 4 and 5 are reduced
to 136,635 unique proteins (more than 40%, compared
to 20% with UniGene).

It should be noted that in some cases UniGene clusters
"physically" overlap, as is the case for UniGene clusters
Mm.334174 and Mm.247762. A total of 127 human clus-
ters overlap with other human clusters, and 111 mouse
clusters overlap with other mouse clusters. This can hap-
pen when multiple ESTs with different accession numbers
are actually identical. Since Biozon employs a non-redun-
dant object model, these identical sequences are mapped
to the same nucleic acid sequence object in Biozon. It is
unclear why these ESTs are clustered in UniGene to differ-
ent clusters, whether the ESTs have different locations (i.e.
the clusters correspond to paralogs), and if the UniGene
clustering algorithm considers the location when group-
ing ESTs into clusters.

Examples
As part of a study of pathways in the mouse olfactory sys-
tem we were interested in identifying mouse ESTs whose
protein products have brain-related functions from
approximately 50,000 mouse ESTs provided by NIA and
BMAP [33]. As target keywords and GO terms we chose
those containing the text "brain," "nerv," or "neuro" any-
where in the keyword's or GO term's description. We also
eliminate by hand keywords describing irrelevant dis-
eases. Our target proteins are simply those described by
the target keywords and GO terms (the complete list is
available at [34]).

Of the 50,795 sequences in BMAP, 34,579 can be mapped
to 30,463 proteins using UniGene alone. With the
EST2Prot system, Biozon maps 35,185 ESTs to 56,848
proteins (87% increase). As many as 8,834 ESTs (17.39%)
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can be mapped to target proteins. When similarity data is
considered the number of ESTs that can be mapped to tar-
get proteins more than doubles to 23,358 (45.98%).

To demonstrate the utility of the Biozon EST analysis tool,
we used it to determine the potential function of ESTs
identified in a microarray-based screen. This screen was
designed to identify genes involved in axon pathfinding
and target recognition in the mouse olfactory system. In
our preliminary studies we identified thirteen genes that
could potentially play key roles in this process. However,
eight of these were ESTs with no known function or anno-
tation. Biozon was able to find matches for four of the
eight ESTs. Interestingly, one EST (AI843903) that is clas-
sified to a UniGene cluster of unknown function (as of
October 2005) was predicted in Biozon to have similarity
to protocadherins. Protocadherins are members of the
cadherin superfamily, and are thought to play key roles in
axon guidance, target recognition, and synaptogenesis
[35]. Our preliminary results suggest that this EST is
indeed a member of the cadherin superfamily, and may
therefore be involved in mediating target recognition
within the olfactory system. Without such annotation,
this EST would likely have been ignored, and a valuable
potential guidance cue may not have been recognized.
Other ESTs (such as CX243176) that belong to the same
UniGene cluster as AI843903 are also linked with proto-
cadherins in Biozon, through similar paths, although nei-
ther UniGene nor Entrez suggest such links.

Conclusion
To allow biologists to exploit EST libraries more efficiently
and focus their search more effectively we developed an
EST mapping system that identifies for each EST its most
likely protein products. Our analysis relies heavily on
NCBI's UniGene clustering, Biozon's infrastructure and
the massive protein similarity data contained within. Our
tool can help experimental biologists filter a large collec-
tion of nucleic acid sequences and predict which
sequences are germane to a given biological system.

As an extensive and established EST analysis tool, Uni-
Gene is our main source of information. Biozon augments
this data with other datasets that are extracted from mul-
tiple databases. For example, UniGene uses only 8 model
organisms to map EST clusters to proteins, while Biozon
uses protein sequences from thousands of fully or partly
sequenced genomes, in addition to a myriad of other bio-
logical information on relationships between biological
entities to establish multiple paths between EST
sequences and protein sequences. Biozon also analyzes
sequences in the NCBI EST database (dbEST) that are
excluded from the gene-oriented UniGene, such as rRNA
and mitochondiral sequences.

The retrieval of this information is done in real-time by
traversing paths in the data graph. This is made possible
because of the graph-schema of Biozon that was designed
to handle large-scale integration of dynamically changing
biological data, where all datasets are compiled into a sin-
gle tightly-connected graph. Since the data in Biozon
relies on physical properties (e.g. the actual sequences or
sets thereof) rather than just database cross links, the
graph-link structure is of high quality. Moreover, the Bio-
zon database was designed to sustain frequent updates of
its sources, and as such it ensures that the mapping uti-
lizes newly sequenced DNA and protein sequences.

Biozon also strives for completeness, and the similarity
data makes up for missing and inconsistent data. This has
a major impact for example, when compiling the func-
tional descriptors from the GO database. Since GO data is
partial, and since it is derived from multiple sources, it is
not necessarily coherent. Consequently, in many cases
proteins that are very similar based on sequence are not
necessarily associated with the same set of GO terms, and
this can greatly reduce the effectiveness of the mapping.
By incorporating similarity relations Biozon extends and
enrich the set of functional descriptors that can be associ-
ated with a given EST.

The EST2Prot system can be accessed from the Biozon
webserver. Information on the web tools is available in
the Appendix (see Additional File 1).

Availability and requirements
EST2Prot is available online at http://biozon.org/tools/
est/. Any user can upload and analyze her or his EST data
through any javascript-enabled web browser such as Net-
scape, Mozzila or Explorer, and obtain the mapping in
real-time.
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Additional material

Additional file 1
Appendix The EST2Prot webserver. The appendix takes the reader through 
the main web pages that make-up the EST2Prot webserver, with explana-
tions of the output format of each page and snapshots that exemplify the 
type of information provided.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-41-S1.pdf]
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