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Abstract

Background: We compared the relative precision and accuracy of expression measurements
obtained from three different state-of-the-art commercial short and long-oligonucleotide
microarray platforms (Affymetrix GeneChip™, GE Healthcare CodeLink™ and Agilent
Technologies). The design of the comparison was chosen to judge each platform in the context of
a multi-project program.

Results: All wet-lab experiments and raw data acquisitions were performed independently by each
commercial platform. Intra-platform reproducibility was assessed using measurements from all
available targets. Inter-platform comparisons of relative signal intensities were based on a common
and non-redundant set of roughly 3,400 targets chosen for their unique correspondence toward a
single transcript. Despite many examples of strong similarities we found several areas of
discrepancy between the different platforms.

Conclusion: We found a higher level of reproducibility from one-color based microarrays
(Affymetrix and CodeLink) compared to the two-color arrays from Agilent. Overall, Affymetrix
data had a slightly higher level of concordance with sample-matched real-time quantitative reverse-
transcriptase polymerase chain reaction (QRT-PCR) data particularly for detecting small changes
in gene expression levels.

Background

For the last decade, genome-wide expression analysis
technologies have been rapidly evolving. With the grow-
ing number of large data sets derived from a variety of
technological platforms (commercial and "homemade"
spotted arrays) cross-laboratory studies are becoming
more challenging. These kind of studies are greatly

effected by differences in target type (cDNA versus short or
long oligonucleotide), target production and design, the
efficiencies of target labeling and sub-optimal array pro-
duction/hybridization protocols [1-4]. These effects are
compounded in studies involving clinically derived tissue
samples such as human tumor biopsies. Efforts have been
made to overcome these limitations by proposing to con-
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form to standardize experimental conditions and proce-
dural documentation [5]. Recently, Dobbin et al.
demonstrated that by using standardized conditions and
a single technological platform (Affymetrix HG-U133A),
a cancer-related (RNA from tumor tissue and cell lines),
multi-laboratory expression profiling study was feasible
[6]. Mathematical approaches [7-10] and sequence-based
mapping between platforms [11-13] have also been devel-
oped to reduce inter-technological differences in order to
maximize cross-platform studies.

Nevertheless, increasing the precision and accuracy of a
given microarray study will ultimately increase the yield
of meaningful biological information and thus reduce the
cost of genome-based biomedical discovery. Since com-
mercial expression profiling technologies, which typically
offer a higher precision compared to homemade arrays,
are not only becoming more abundant but also more
affordable comparative studies are useful in making a
cost-efficient choice. Several of these types of studies have
been published [14-22]. However, due to the rapid pace
of technological development, the relevance of many of
the published comparisons are quickly brought into ques-
tion. Moreover, these studies have either offered conflict-
ing conclusions or were biased by competing interests
[19,22] and most have not been validated with a non-
microarray-based approach, such as quantitative reverse-
transcriptase PCR (QRT-PCR). Recent papers by Bammler
et al. and Irizarry et al. offer a multi-laboratory compari-
sons of different technologies [23,24]. Bammler et al.
compared 12 technological platforms and 7 different lab-
oratories, and found that standardized protocols com-
bined with comparisons limited to biological themes
greatly increased inter-laboratory and inter-platform
reproducibility. Irizarry et al. compared different dilutions
of 3 cell lines analyzed at 10 different laboratories and 3
different platforms (Affymetrix oligo arrays, 2-color oligo
arrays and 2-color cDNA arrays where only one platform
was employed by a given lab) and found that overall level
of accuracy and precision of a given technological plat-
form are greatly affected by the differences in lab perform-
ance. Though useful, these studies do not offer a clear
choice between current genome-wide, transcriptome tech-
nologies for studying human disease in the context of a
centralized, multi-project (theme) program.

We present here, a comparison of the precision and accu-
racy of the latest and most exploited commercial high-
density, pan-genomic short- and long-oligonucleotide
reporter technologies. We compared data derived "in-
house" from a common source of RNAs from 3 different
human cell lines between Affymetrix HG-U133 plus 2.0
GeneChip™ (one-color), GE Healthcare Codelink™
(Amersham) (one-color) and Agilent Technologies 44 k
whole human genome arrays (two-color). This compari-
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son was conducted for the multi-project transcriptome
program "Cartes d'Identite des Tumeurs" (CIT,[25])
launched by France's Ligue Contre le Cancer as well as for
the Canceropole, Ile-de-France [26], France's cancer
research network. The aim of these programs is to provide
a standardized method for centralized, large-scale tran-
scriptome analyses of a great diversity of tumors covering
the maximal number of genes of interest for intra- and
inter-cancer research projects. Keeping this aim in mind,
we standardized the one-color with two-color data by
including a common reference sample. Designs that opti-
mize studies using two-color arrays combined with a lim-
ited number of samples (e.g. loop design, [27]) were not
considered.

Results and discussion

All raw data sets were generated by each respective com-
mercial entity (labeling, hybridization, image analyses
and pre-processing data filtering) from a common source
of biologically different RNAs (MCF-7, Jurkat, and Batt
P12 cell lines). Data from a pre-release version of a fourth
commercial platform ("PX", one-color, 60-mer oligonu-
cleotide-microarray) was also included in and limited to
the evaluation of the level of discordance between the tar-
get measurements between the 3 platforms. The term
"available targets" hereafter refers to target measurements
that were not filtered out by a given platform. Different
lists of targets (spotted or synthesized oligonucleotide
located on the arrays) were used for the following differ-
ent aspects of the analyses: all available target measure-
ments were used for the comparisons of intra-platform
reproducibility (precision); all available targets out of a
common lists of 3,471 targets ("3.4 K" set) were used for
all inter-platform comparisons of the accuracy of target
measurement (agreement in expression levels and statisti-
cal tests results); a sub-list of 14 genes were used for the
comparison of microarray data and quantitative QRT-PCR
data.

Comparison of the precision of expression measurements

In order to compare the precision of the measurements
derived from each platform we used the following three
criteria: 1. the percentage of targets having a 2-fold differ-
ence (or higher) of expression measurements obtained
between each pair-wise combination of replicate slides; 2.
the distribution of inter-slide (intra-cell line) variation
measures; 3. inter-slide (intra-cell line) correlation of
expression profiles analyzed for 4 intensity quantiles. One
of the major observations from this study is that the data
from all platforms were highly reproducible. We found
that one-color platforms globally yielded lower variation
measures compared to the two-color platform of Agilent
(Fig. 1). We found the lowest number of 2-fold differences
between replicate samples from the Affymetrix data (Fig.
1A) and the lowest CVs from Amersham. Although we
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Boxplots of the distributions of the inter-slide, intra-cell line log,-ratios (y axis) calculated between cell line replicate pairs are
shown in A (white: BattP|2; yellow: Jurkat; green: MCF7, pink: REF). All pair-wise comparisons for each platform are shown.
To the right is a summary (minimum (min %) and maximum (max %)) of the relative number of targets having a fold change
superior to 2 (-1.0 > log,-ratio > |.0) between replicate samples. B shows the box plots of the distributions of the average
inter-array, intra-cell line variation measured as the coefficient of variation (CV) measured for the log, intensities (Amersham
and Affymetrix) or standard deviation (SD) of log,-ratios (Amersham (Amer.), Affymetrix (Affy.) and Agilent). To the rightis a
table of the 50t (median) and 95t percentile values obtained from different measures of variation between replicate slides (SD
of log,-ratios and CV of log,-intensities). Minimum (dotted lines) and maximum (filled lines) intra-quantile correlation of
expression values for each platform are shown in C. The values were based on log,-ratios. All correlation coefficients (Pearson
correlation coefficient plotted on the y-axis) were calculated for all pair-wise comparisons between replicates data for the
same cell line. Quantile attribution was based on the median intensities across all cell lines for a given platform where QI =
lowest 25% mean intensities targets and Q4 = the 25% highest mean intensities targets (see Methods). Color code is as fol-

lows: green: Affymetrix; red: Amersham; black: Agilent.

found higher SDs measurements of the log,-ratios for
one-color platforms compared to their corresponding CVs
this transformation did not change the overall degree of
variation relative to the two-color data obtained from Agi-
lent. As another evaluation of intra-platform precision we

calculated correlation coefficients (Pearson coefficient)
stratified by intensity quantiles (Q1 to Q4, see Methods).
A summary of the maximum (max) and minimum (min)
correlations for a given quantile are shown in Figure 1C.
We found the highest maximal level of correlation for the
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majority of targets from the Amersham data while Affyme-
trix consistently (difference between min and max)
yielded a higher correlation for lower intensities (Q1 and
Q2). The number of data points per quantile were not the
same for each platform (roughly 12.6 K, 9.9 K and 3.9 K
for Affymetrix, Agilent and Amersham, respectively), how-
ever, re-computing the correlation per quantile based on
1.6 K evenly distributed data points per quantile did not
change the results (not shown). Taken altogether these
results show that Affymetrix data was found to have a
slightly overall higher level of precision compared to the
other platforms.

Comparison of the accuracy of expression measurements

The evaluation of platform accuracy was based on the fol-
lowing criteria: 1. concordance between the expression
levels of commonly represented targets on each array type;
2. agreement in the identification of genes discriminating
the three cell lines; 3. concordance of relative expression
compared to data obtained from QRT-PCR for subset of
14 genes. The first 2 evaluations were based on the availa-
ble targets from the 3.4 K set. This 3.4 K set was specifically
chosen in order to reduce the confounding effects of mul-
tiplicity (N targets: transcript (RefSeq identifier) relation-
ship, see Methods). This approach afforded the most
straightforward study of the concordance across the differ-
ent platforms and did not favor platforms with high fea-
ture-to-target and/or target-to-transcript ratios. Moreover,
this 3.4 K set of targets is representative, at the array fea-
ture-intensity level, of overall target measurements for
each array type. Roughly 25% of the available 3.4 K targets
were attributed to each of the 4 intensity quantile bins for
each platform (quantile bins are based on all available tar-
gets, see Methods and [Additional file 2]). Expression val-
ues above the filtering thresholds were available from all
platforms for 2,218 out of the 3.4 K common targets.

Similarity in relative expression levels

Cluster analysis of log,-ratio data from all platforms
yielded clusters of samples grouped according to the three
cell lines showing a high overall correlation between the
4 platforms (high minimal intra-platform (0.96) and
inter-platform (0.72) correlation, see Fig. 2). We observed
that one of the Amersham Jurkat samples clustered
slightly apart from the other two Jurkat samples, consist-
ent with the heterogeneity in the reproducibility of the
Amersham observed in Figure 1. However, visual inspec-
tion of the array images, overall distributions of the data
(boxplots and MA plots, not shown) and the equal per-
centage of available data points (56% - 61%) for Jurkat
samples relative to the other cell line samples (53% -
62%) did not provide an explanation for this observation.

Nevertheless, we found a significant number of aberrant
target measurements unique to particular platform. Here
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the data from PX was included in order to confirm the dis-
cordance in target measurement observed for a particular
platform. We found that while most of the 2,218 targets
had a similar overall expression values between the 4 plat-
forms 965 targets were found to be discordant across the
different platforms (Fig. 3A). Of these, we found 271 tar-
gets that were discordant uniquely for either Affymetrix,
Agilent or Amersham (difference of at least 2 intensity
quantile attributions between 1 platform and the other 3).
Of the three platforms, Agilent contributed the lowest
number of discordant expression values (32) compared to
Affymetrix and Amersham (66 and 117, respectively). The
discordant targets found for Agilent were dispersed evenly
into three Agilent quantile bins (Q1, Q2 and Q3-4)
whereas 91% of the discordant targets unique to Amer-
sham in its lowest 2 intensity quantiles (Q1 and Q2) sug-
gesting a problem of sensitivity (Fig. 3B). We found that
60% of the discordant targets found for Affymetrix were in
its Q3 and Q4 quantiles suggesting a more fundamental
problem in target identification.

Differences in target availability and discordant expres-
sion values between the platforms may be related to the
differences in feature design, sequence and their place-
ment along the target transcript. Recent sequence-based
identification studies have suggested that annotations
attributed to target sequence is a non-negligible source of
discrepancy between technologies [13,28]. Using a
sequence-based identification for Affymetrix probe sets
on the HG-U133 plus 2.0 arrays Harbig et al. not only re-
named over 20,000 probe sets but flagged over 5,000
probe sets that specifically hybridize to either more than
one splice variants (multiplicity problem) or transcripts
from different loci (specificity problem). We should note
that none of the Affymetrix probe sets flagged by Harbig
et al. were among the 3.4 K set. Unfortunately, compari-
sons between the different platforms, at this level, were
not feasible as feature location and sequence information
are publicly available for only Affymetrix and Agilent.

Agreement in the identification of differentially expressed genes

Starting from all available targets out of the 3.4 K set for
each platform we performed independent ANOVA and t
test analyses. From the ANOVA analyses, we obtained
1,696, 1,727 and 1,781 significant targets (p < 0.001) for
Affymetrix, Amersham and Agilent, respectively (Table 1).
Based on all 280 possible multivariate permutations for a
given platform we found that the probability of obtaining
these results by chance if there are no real differences
between the classes was 0.00357. We found a lower per-
centage of the total amount of "ANOVA targets" (roughly
4 - 7.5%) attributed with intra-platform quantile Q1 for
all platforms. Affymetrix data yielded fewer ANOVA tar-
gets (12%) in its Q1 and Q2 bins compared to the 22%
and 32% found for Agilent 44 K and Amersham, respec-
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B Intra-platform Amersham  Affymetrix Agilent PX
BattP12 0.99, 0.99 0.98, 0.99 0.96, 0.99 0.98
Jurkat 0.96, 0.99 0.99, 0.99 0.97, 0.99 0.98
MCF7 0.98, 0.99 0.98, 0.98 0.97, 0.98 0.97
Inter-platform BattP12 Jurkat MCF7
0.76, 0.85 0.72, 0.84 0.73, 0.85

Figure 2

Clustering of all samples based on log,-ratio data of 3.4 K common transcripts is shown in A. The dendrogram shows three
major clusters of samples indicated by red (Batt P12 samples), blue (MCF7 samples) and green (Jurkat samples). Pearson corre-
lation coefficients corresponding to the maximum and minimum correlation nodes in the dendrogram shown in A (intra- and
inter-platform correlations) are given in B. Since the platforms detected a different number of targets from slide to slide, all
correlations were calculated using the maximal number of targets detected in common between each pair-wise combination

(complete, pair-wise correlation).
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A.

Common Unique
Available available Concordant Discordant discordant

Platform targets! targets? Targets 3 targets* targets®
Affymetrix 3,471 66 (1.9%)
Amersham 2,675 117 (4.3%)

2,218 1,253 965

Agilent 3,315 32 (1.0%)
PX 2,605 56 (2.1%)

Q1
[]Q2
O a3
B Q4

~q

Affymetrix (n = 66) Amersham (n = 117) Agilent (n = 32)

Figure 3

(A) Summary table of a comparison of the available targets out of the 3.4 K for each platform. ' The number of targets out the
3.4 K common set that were available for at least one sample for a given platform. 2 The number of targets out the 3.4 K com-
mon set that were commonly available for at least one sample for all platforms. 3The number of targets that were attributed
with a similar intensity quantiles nomenclature (identical or off by | quantile, see Methods) for Affymetrix, Amersham, Agilent
and PX. 4 The number of targets that were attributed with a different intensity quantile (off by 2 quantiles) for at least 2 plat-
forms. > The number of targets attributed with a different intensity quantile (off by 2 quantiles) for a given platform compared
to the other 3 platforms. (B) The fraction of uniquely discordant targets by quantile for each platform with the following color
code: white: Q1I; yellow: Q2; orange: Q3; red: Q4. The numbers indicate the number of targets that fell into that particular
quantile specifically for that particular platform and that should have fallen into another quantile based on the agreement of
quantile attribution for those targets between the other platforms.

tively. We found roughly the same percentage of ANOVA  cQ4, see Methods). Of these, approximately the same low
targets (59-60%) that had similar levels of expression for ~ proportion (roughly 2.0%) corresponded to low-express-
each respective platform (consensus quantiles cQl to  ing transcripts (a cQ inferior to cQ2.0). Overall, these

Table I: Summary of discriminating targets

Platform Total Ql Q2 cQ <cQ2
ANOVA Affymetrix 1,696 68 140 972 36
Agilent 1,781 69 325 998 34
Amersham 1,727 130 414 998 33
t test (MCF7 vs Affymetrix 1,340 54 128 740 36

Batt P12)

Agilent 1,398 48 235 744 23
Amersham 1,290 79 287 755 24

"Total" refers to the number of discriminating targets out of the 3.4 K data set that were found for each platform based on an ANOVA test of the
3 cell lines or a t test comparing MCF7 and Batt P12 samples. "Q1" and "Q2" refer to lowest 2 intra-platform intensity quantiles. "cQ" (consensus
quantile) refers to the number of discriminating targets attributed with similar expression levels across all 4 platforms. The last column refers to the
number of discriminating targets with a cQ less than 2.
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results suggest that there is a common limitation of the 3
technologies to detect differences in expression of the low-
est expressing genes.

Figure 4 summarizes the agreement or overlap of the
ANOVA targets as well as for the targets distinguishing
MCF7 and Batt P12 samples identified for the 3 platforms.
A total of 2,362 and 2,135 discriminating targets were
found for at least 1 out of the 3 platforms based on
ANOVA and t tests, respectively. While a considerable
number of targets were unique to one or two platforms we
observed that 1,096 ANOVA targets were in common
between all 3 platforms. Many of the targets correspond to
known cancer genes such as NFkB1, BUB1B, CDK?7,
CCNB2, CCND3 and CXCR4. The expression profiles of
the 1,096 common ANOVA targets were highly correlative
between the platforms. Similar to what we observed in
Figure 2, a pan-platform cluster analysis based on these
targets yielded 3 major sample clusters corresponding to
the 3 cell lines [see Additional file 5]. Within each of the
3 major cell line clusters, samples were grouped according
to platform. Cluster analysis based on the expression pro-
files of the 1,096 common ANOVA targets available in a
larger variety of tissue samples yielded biologically rele-
vant sample groups, consistent with the 3 major clusters
observed in Figure 4A.

ANOVA ttest
MCF?7 vs Batt P12 vs Jurkat

MCF7 vs BATT P12

A Yo,
I8 ¢

Figure 4

Venn diagram showing the overlap of 2,362 targets (the
union of all ANOVA targets) that were considered signifi-
cantly different in a F test (p < 0.001) between the cell lines
calculated for at least one platform (left). It must be noted
that the numbers indicating the targets unique to a platform
or common to 2 platforms include targets that may have
been filtered out by the other platform(s) during the pre-
processing. See Table 2 for a summary of platform-unique
targets that were available (not filtered) for all platforms. The
Venn diagram to the right shows the overlap of the 2,135
targets discriminating MCF7 and Batt P12 samples (p < 0.001,
union of all 3 platform results) for at least one platform.

Amersham
287

http://www.biomedcentral.com/1471-2164/7/51

Based on the ANOVA results we found the least amount
of commonality from the Amersham data (Table 2). Of
the 287 targets unique to Amersham, 171 were available
(not filtered) for all platforms, 28 of which were expressed
at high levels (not shown) and 47 yielded p values > 0.05
for both Affymetrix and Agilent. Moreover, 69% (157 out
of 228 targets) of the ANOVA targets found by Agilent and
Affymetrix yielded p values superior to 0.05 for Amer-
sham. Limiting the tests to the identification of genes that
discriminate MCF7 and Batt P12 samples we observed a
much lower number of genes (558) common to all 3 dif-
ferent platforms. We also observed a higher level of dis-
cordance with the Agilent data. Taking all tests into
consideration, we found a slightly higher level of agree-
ment (least amount of discordance) in the identification
of discriminating genes from the Affymetrix data.

Evaluation of relative expression measures compared to QRT-PCR
data

In order to address the discrepancies in accuracy men-
tioned above we analyzed 14 genes (plus one control
gene) using real-time QRT-PCR. These genes passed the
pre-processing filters in at least one out all of the samples
studied. In addition, these genes were selected based on
either 1. complete concordance (CCNB1) or discordance
between either their measured expression levels (CASP5,
CXCL10, MAPK4, RAB17, RME8 and TMPRSS5, and
WNT10B) and/or being identified as a discriminating
gene between the different platforms (ALGS8, CASPS5,
CXCL10, MAPK4, RAG2, THEM2, TMPRSS5); 2. three
genes (ERBB2, RPS6KB1, BCAS2) known to be highly
expressed in MCF7 cells [29-32]. ERBB2 and RPS6KB1
corresponded to multiple targets to a different extent for
the 3 platforms and were therefore excluded from the
overall correlation calculation between RT-PCR and array
data as well as from the all gene-wise comparison (see
below). The 14 genes covered a large dynamic range of
expression levels (maximal Ct = 37.85 (low relative level
of expression); minimal Ct = 20.60 (high relative level of
expression), see [Additional file 4] for all array data and
sample-matched QRT-PCR Ct values for the correspond-
ing genes).

Despite a high overall correlation between array and RT-
PCR data (Table 3) we found several discrepancies
between the different platforms. Based on the RT-PCR
data we detected 12 out of the 14 genes in all 4 samples (3
cell lines and the REF sample). RAG2 was out of the limit
of detection in BattP12 and MCF7 samples while detected
in Jurkat samples. RAG2 was equally filtered out for
BattP12 and MCF7 in 3 out of the 4 replicate Agilent
arrays and all of the replicate Amersham arrays, whereas
this gene was found to be a "unique ANOVA" target for
Affymetrix. CASP5 was below the level of detection in Jur-
kat but yielded high Ct values in BattP12 and MCF7 sam-
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Table 2: Summary of discordance of discriminating targets

http://www.biomedcentral.com/1471-2164/7/51

Uniquely found by a platform!

Platform total
ANOVA Affymetrix 80 (4.7%)
Agilent 112 (6.3%)
Amersham 171 (9.9%)
t test (MCF7 vs Batt P12) Affymetrix 72 (5.4%)
Agilent 222 (16%)
Amersham 190 (15%)

Uniquely not found by a platform?

p > 0.05 total p > 0.05
33 (1.9%) 145 44
24 (1.3%) 158 56
47 (2.7%) 228 157
13 (1.0%) 178 83
76 (5.4%) 266 114
66 (5.1%) 249 56

' Number of discriminating targets out of the 3.4 K set unique to platform which were available (not filtered) for all platforms (percentage relative
to the total number of discriminating targets); of those the number (and percentage) that yielded a p value superior to 0.05 for each of the 2 other
platforms. 2 The number of targets uniquely not found to be discriminating and which were available (not filtered) for that platform (including the
number of targets with a p value superior to 0.05 for that platform (percentage relative to the total of the uniquely not discriminating targets).

ples. However, for the Agilent data, CASP5 was detected
by all arrays barring one BattP12 replicate array. CASP5
was considered a low expressing gene for in all Affymetrix
arrays (Q2) and Amersham arrays (Q1). It should be
noted that the data provided by Agilent was derived from
experiments in which about 1/10 of the amount of mate-
rial was used for a hybridization (0.75 pg of cRNA com-
pared 10 pg of cRNA used by the other platforms) in
accordance with their recommended protocol. As
expected, RT-PCR values for ERBB2, RPS6KB1, BCAS2
were relatively higher in MCF7 compared to the other
samples. Similarly, all 3 platforms yielded consistently
high relative expression values for RPS6KB1 and BCAS2.
Array data for ERBB2, however, were found to be equally
inconsistent from all 3 platforms.

A gene by gene analysis of the expression relative to the
reference sample revealed a high agreement between array
data and QRT-PCR data (Table 4). This observation was
independent of the overall expression level as assessed by
the average Ct values for each gene. Here, 'agreement'
refers to the same direction of relative expression (over or
under-expressed) for a gene in a given cell line relative to

the reference sample. We found that Affymetrix yielded a
slightly higher overall score compared with the other 2
platforms. A recent paper studying the correlation
between Affymetrix HG-U133A data (normalized using
either RMA or MAS5.0) from 48 genes and QRT-PCR data
found an equally high correlation (r = 0.89) with both
methods for roughly 85% of the genes [33]. They found
poor correlations with genes that were either expressed at
low levels or those for whose probe sets were not ade-
quately designed. Based on our analysis we did not
observe an expression-level dependence on the correla-
tion between Affymetrix, Agilent and Amersham array
data and the QRT-PCR data.

We extended this analysis to an all gene pair-wise compar-
ison of relative expression levels as a function of fold
change (FC). For this, the relative expression levels
(ratios) between all pairs of genes across all 3 cell lines
from the QRT-PCR data were calculated. Values that were
filtered out by either Agilent or Amersham were not
included in the comparison and thus we did not penalize
these 2 platforms for missing values. A total of 3,321 and
3,828 combinations were considered for ratio and single

Table 3: Correlation of platform data and sample-matched QRT-PCR data

Log,-ratio vs. -AACT

log,-int vs. -ACT

Pearson p Spearman p Pearson p Spearman p
AFFYMETRIX med 0.91 0.001 0.87 0.017 0.79 0.031 0.84 0.016
max | 0.97 0.93 0.97
AMERSHAM med 0.72 0.105 0.54 0.297 0.77 0.029 0.9 0.027
max 0.92 0.88 I I
AGILENT med 0.92 0.039 0.76 0.208
max | |

Shown are median (med) and maximum (max) Pearson and Spearman rank correlation coefficients calculated from all pair-wise combinations
between all replicate arrays and for all cell lines. The median p values (p) from all of the tests are also shown. We are presenting 2 types of
comparisons depending on the type transformation used: log,-ratios platform data versus (vs.) -AACt QRT-PCR data; and log,-intensities (for the
one-color platforms) versus -ACt QRT-PCR data. Only array data points for 12 out of the 14 genes that were available for all platforms were

included in the calculations.
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Table 4: Gene by gene concordance of relative expression levels between platform data and sample-matched QRT-PCR data

QRT-PCR (avg. Ct) Affymetrix Agilent Amersham

GENE B l M B l M B l M B l M
CASP5 34.03 X 37.85 0 0 0.3 0 0 | 0.3 | 0
RAG2 X 26.36 X 0 | 0 | | | | | |
TMPRSS5 30.82 31.70 36.19 | 0.7 0 0 | | | | 0
WNTIOB 2833 28.20 27.32 | | | 0.8 0.8 | 0.7 0 |
MAPK4 25.07 29.70 26.83 | 0 0 0.3 | | 0 | |
CXCLIO 24.58 35.37 32.26 | 0.3 0 | _ _ | _ _
RPS6KBI 24.36 23.68 20.72 | | | | | | | | |
RME8 22.84 22.17 23.29 | | 0 | | 0.5 0 0.3 0
ALGS8 22.64 21.75 22.40 0 | 0.7 0 0 0 0 0 0

THEM2 22.62 22.21 22.50 | | | 0 0 0 | | 0.7
ERBB2 2261 27.45 21.51 | 0.5 | 0.8 0.6 0.9 | | |
CCNB2 22.29 20.77 21.93 0 | | 0 | 0.8 0 | |
RABI7 22.27 34.69 23.78 | | | | | | | _ |
BCAS 22.27 21.27 20.60 0 | | 0 0 | 0 | |

Score 27.5 25.5 26

The average Ct values (avg. Ct) for each of the 14 genes (the control gene ABLI is not shown) were calculated from the Ct values obtained from
all sample-matched QRT-PCR reactions per cell line (n = 3, BattP12 (B); Jurkat (J); MCF7 (M)). Lower Ct values indicate relatively higher expression
levels (see supplemental Table 3 for all Ct values obtained for all 15 genes and for each RNA aliquot). We are reporting the fraction of replicate
expression values, by gene and by cell line, from the array data that are over- (or under) expressed in agreement with -AACt QRT-PCR data
(where a score of | indicates a perfect concordance). More precisely, the score corresponds to the number of "same direction” (over or under-
expressed) expression ratios from array data and QRT-PCR data for a given gene obtained from a given cell line relative to the reference sample
divided by the total number of ratios. Data points not detected by QRT-PCR were taken into consideration into the calculation (i.e. if the gene was
not detected by QRT-PCR for a cell line the score corresponded to the number of times this data point was filtered by the platform). Dashes
indicate filtered data points for all replicate arrays for a given cell line. Fractions in bold indicate the platform yielding the highest sum of the
individual fractions for a given gene and a given cell line. Multiple platforms can yield the highest sum for a given gene. The sums of all values for a

each platform are given in the last line of the table.

intensity array data, respectively (see Methods). Each gene
pair combination was attributed to 1 out of 9 FC bin
depending on its QRT-PCR value. We then analyzed the
concordance of log,-ratio (cell line/REF) array data to -
AACt QRT-PCR data by -AACt FC bins. To optimize com-
parisons with single intensity platforms we also compared
-ACt QRT-PCR values to log,-intensity values as a function
of -ACt FC bins. Figure 5 shows box plots of the distribu-
tions of the ratios obtained from array data of the gene
pair combinations per FC bin. Although we observe a gen-
eral trend of array FC levels concordant with the QRT-PCR
data, transforming single intensity data into log2-ratios
resulted in a marked reduction in the range of array FCs
(compare Fig. 5A with D and B with E for Affymetrix and
Amersham, respectively). Based on log,-ratio array data
and -AACt data we observed a closer relationship of Agi-
lent FCs to QRT-PCR FCs (Fig 5C). We also observed that
for extreme FCs calculated based on QRT-PCR (superior
to or equal to log, FC of 5.0) 25% of the FCs obtained
from Amersham ratio data were below 0. If, however, we
base our assessment of single-intensity platforms on sin-
gle-intensity data we see a much closer correlation with
QRT-PRC data, particularly for Affymetrix which yielded a

near linear relationship with QRT-PCR data ranging from
the minimal to the maximal FC bin (Fig. 5E).

Conclusion

Our study compares the latest, state-of-the-art short and
long oligonucleotide human-microarray commercial
technologies. The results presented here were used for the
program CIT, a centralized, multi-tumor program as well
as for a similar program launched by the Canceropole Ile-
de-France (France's cancer research network) in choosing
a human genome-based microarray technological plat-
form that can meet a high-throughput demand. Therefore,
the design of the study was adapted to judge each com-
pany in the context of these types of programs. In this con-
text, our results show that all platforms yielded
reproducible and comparable data. Nevertheless, between
the 3 technologies we found that one-color platforms
were more precise while Affymetrix and Agilent were more
concordant based on the agreement of expression meas-
urements and identification of differentially expressed
genes. In addition, Affymetrix was found to have a slightly
higher sensitivity at detecting relative differences in gene
expression levels (irrespective of the magnitude of
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Figure 5

Boxplots of the distributions of all the gene pair relative expression levels calculated across all cell lines for the different plat-
forms. From a total number of 4,851 possible gene pair combinations based on the array measurements of 12 out of the 14
genes (excluding ERBB2 and RPS6KBI and data points (RAG2 and CASP5) not available from QRT-PCR) in the 3 cell lines (3
replicate arrays each) a total number of 3,321 and 3,828 combinations were considered for ratio and single intensity array data,
respectively. See [Additional file 4] for the number of possible versus available gene pair combinations for the QRT-PCR and
array data, respectively. Combinations were then attributed to one of 9 different fold-change bins based on the -AACt (for A —
C) or -ACt (D and E) values calculated from the QRT-PCR data with the following code (in bold) corresponding the following
geneA/geneB log,-ratios (x) intervals: < -5: x < -5; -3: -5 = x <-1.25; -1: -1.25 = x < -0.75; -0.5: -0.75 = x < -0.25; 0: -0.25 = x
<0.25;0.5: 0.25 = x> 1.25; 1: 0.25 = x > 1.25; 3: 1.25 = x > 5.0; > = 5: x = 5.0. For each gene pair combination we assessed
the corresponding FCs either from the (1) array log,-ratio (cell line/REF) data (Affymetrix, Amersham, and Agilent, shown in A
— C, respectively) or from (2) log,-intensities (Affymetrix and Amersham data only, shown in D and E).

change) and an overall higher level of concordance with
the QRT-PCR data.

Methods

RNA samples and number of slides analyzed per platform
Human cell lines Jurkat (T cell acute lymphoblastic leuke-
mia), MCF7 (breast cancer) were provided by INSERM
U462, Institute Universitaire d'Hematologie, Hospital
Saint Louis, Paris, France) and BattP12 (mesothelioma)
was established and kindly provided by Dr. Marie-Claude-
Jaurand (Université Paris XII, Paris, France). All cell lines
were cultured in RPMI 1640 supplemented with 10% fetal
calf serum, 10 U/ml penicillin, 100 pg/ml streptomycin

and 2 mM L-glutamine. Cells were harvested during expo-
nential phase growth and total RNAs were extracted as
previously described [34]. Universal human reference
RNA (REF, Stratagene) was recovered following manufac-
turer instructions. One hundred micrograms of each RNA
were then purified using QIAGEN (QIAGEN S.A., Court-
aboeuf, France) RNeasy mini kit, as describe in manufac-
turer's clean-up column protocol. All RNAs were
aliquoted and stored at -80°C. Aliquots of the RNAs were
analyzed by electrophoresis on a Bioanalyser 2100 (ver-
sion A.02 S1292, Agilent Technologies, Waldbronn, Ger-
many) and quantified using Nano Drop™ ND-1000
(Nyxor Biotech). Criteria for qualification was a 28 s/18 s
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ratio above 1.8, and an optical density at 260 nm and 280
nm ratio above 1.80. Between 2 - 25 ug per cell line along
with 3 - 25 ug REF RNA were then sent to each platform
(Affymetrix UK Ltd., High Wycombe, United Kingdom;
Agilent Technologies, Waldbronn, Germany; GE Health-
care (Amersham), Freiberg, Germany).

Probe labeling, array hybridizations and image analyses
Barring Agilent, all platforms use a one-color labeling
approach. Agilent arrays were co-hybridized with cell line
samples and the reference sample. Each platform fol-
lowed protocols that are publicly available at their respec-
tive web sites [35-37]. Briefly, each platform hybridized
the following material: 10 pg fragmented cRNA, Affyme-
trix; 10 pg fragmented cRNA, Amersham; 0.75 ng cRNA
labeled with Cy3 (cell line sample) and Cy5 (REF) from 3
independent labeling reaction per cell line, Agilent; 10 pg
fragmented cRNA, PX. Raw data from the following were
obtained and processed: 12 Affymetrix HG-U133 plus 2.0
GeneChip™ arrays (3 arrays per sample type independ-
ently labeled, March, 2004); 12 Agilent's "44 K whole
genome" arrays (4 arrays per cell line (3 arrays for 3 inde-
pendent labeling reactions plus one technical replicate,
June 2004); 12 Amersham CodeLink™ UniSet Human 20
K Human arrays (3 slides per sample type labeled in
batch, March, 2004); 8 PX arrays (2 slides per sample type
labeled in batch, February, 2004). A summary of the rela-
tive representation of available public data bank identifi-
ers for each array is given [see Additional file 1]. The
annotation information was supplied by each platform at
the time the experiment was conducted. Since the time of
this analysis GE Healthcare has launched a new CodeLink
Human Whole Genome Bioarray which is claimed to tar-
get roughly 45,000 well characterized human gene and
transcript targets. All raw data and associated annotations
are publicly available (acc.# E-MEXP-467) at ArrayExpress
[38].

Data filtering and normalization

Filtering information with the aim of removing data
obtained from non-viable targets (spotted or synthesized
oligonucleotide) was provided by Amersham, Agilent and
PX. Briefly, for Agilent, 20 different criteria were used to
flag a specific target based on signal/noise ratio, spot mor-
phology or homogeneity. For Amersham only spots with
intensities above the negative control threshold (20%
trim-mean of negative controls + 3 standard deviations
using the trim-mean set) were included in the analysis. PX
filtered targets based on a signal/noise threshold ratio of
3 and those called "not-detected" by their spot-detection
software. The criteria used to flag targets were not imposed
or suggested but rather derived from the respective plat-
forms. We did not receive pre-processed or filtered data
from Affymetrix. The following methods were used to
normalize each data sets: robust multi-average (RMA)

http://www.biomedcentral.com/1471-2164/7/51

normalization and expression summary [39] for Affyme-
trix HG-U133 plus 2.0 raw data; median normalization
(BRB-Array Tools v3.2 beta5.0) for Amersham CodeLink
and PX raw, filtered data; lowess non-linear normaliza-
tion [40] for Agilent raw, filtered data. Only available data
from each platform were taken into consideration in our
evaluation of platform discordance of expression meas-
urements. When necessary, all single-intensity platform
data (Affymetrix, Amersham and PX) were transformed
into log,-ratios using the median value of the universal
reference samples as the denominator.

Intensity quantile bin attribution

For each platform we attributed 1 out of 4 intra-platform
intensity quantiles (Q1, ..., Q4) to each available targets
out of all available targets per platform. The rank of the
median intensities across all 3 cell lines for all targets were
used to attribute an intensity quantile bin to a given target.
Therefore targets in first quantile (Q1) have the 25%
weakest expressed median intensities and Q4 corresponds
to the targets having 25% strongest median intensities.
We then determined the number of targets having similar
inter-platform (consensus) quantile attributions (cQ1, ...,
cQ4) between all 4 platforms. Here "similar" refers to a
situation where the minimal and maximal quantile attri-
butions to a given target doesn't differ more than 1 (e.g.
min = Q1 and max = Q2; min = Q2 and max = Q3). Using
the quantile information for each platform 1 of 7 consen-
sus quantiles (cQ, mean of the original quantile attribu-
tions) was attributed to each of these targets using the
following partitioning: cQ1 for targets with mean quantile
attributions (Qpean) between 1-1.25; cQ1.5: Qpean = 1.5
cQ2: Qpean = 1.75 - 2.25; etc.). We also determined the
number of targets having "discordant" quantile attribu-
tions unique to a given platform (min Q - max Q = 2
while "similar" for 3 out of the 4 platforms) as well as dis-
cordant between all platforms (min Q - max Q = 2 and
not similar for 3 out of the 4 platforms (see [Additional
file 2] for a list of the 3.4 K common RefSeq accession
numbers as well as the original quantile and cQ attribu-
tions).

3.4 K common data set

In order to eliminate the problem of multiplicity (1: N
and N: 1 relationships between targets and transcripts),
only non-redundant targets (one feature per target ID) in
which there was a 1 target: 1 transcript (RefSeq identifier)
correspondence represented on the slide were considered
(PX: 11,271 targets; Agilent: 10,363 targets; Amersham:
9,964; Affymetrix: 8,705 targets). Sequence-based map-
ping between the different platforms was not feasible as
oligonucleotide sequence information was not available
for each of the 4 platforms (only for Affymetrix and Agi-
lent). We used the provided representative sequence iden-
tifier (Genbank and RefSeq accession number) to map
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each oligonucleotide to an Entrez Gene identifier that was
available at the time (April 2004). We found that out of
the 6,664 unique sequence identifiers that were found in
common between the different platforms, 6,404 mapped
to Entrez Gene identifiers. Only single transcripts associ-
ated with a Entrez Gene identifiers represented only once
on the arrays (3,471 targets ("3.4 K set")) were used for
direct comparisons of relative expression measurements.
This set of 3.4 K targets were representative, at the feature-
intensity level, for each array type (25% representation in
each intensity-quantile bin (quantiles defined using all
targets for each array type).

Statistical tests

To determine the genes that discriminate the different cell
lines we performed independent ANOVA analyses (F
tests) and t tests (MCF7 versus Batt P12) for the 3 plat-
forms. All univariate t and F tests using BRB ArrayTools
(v3.2 b5) using the log, single-intensity data for Affyme-
trix and Amersham and log,-ratio data obtained for Agi-
lent. "Discriminating targets" were determined using a
nominal significance level of each univariate test of p <
0.001. The F test was based on comparing the differences
in mean log,-intensities (or log,-ratios) between the 3 cell
lines relative to the variation expected in the mean differ-
ences. Due to small sample population for each platform
we used a random variance model for the univariate tests
when distribution assumptions underlying this model
were met [41]. These assumptions were satisfied for all
platforms except for F tests conducted for the Affymetrix
data (here, we used the within class variance calculated for
each target).

Cluster analysis

For the clustering analysis shown in Figure 2, samples
were clustered using R software (v2.0.1; package class
v7.2.10) and the following parameters: complete linkage;
distant metric = 1 - Pearson correlation (the distance
measured between any two samples was calculated using
the maximal number of common targets between the two
samples). Though other inter-platform normalization
methods and clustering methods were tested (z-score,
quantile normalization), we found that only by using a
common reference sample and transforming single inten-
sity data into a log ratio enabled us to overcome the plat-
form-dependent bias and observe cross-platform cell line-
specific clusters.

Quantitative RT-PCR

Quantitative RT-PCR (QRT-PCR) reactions were per-
formed as previously described [42] for each of 15 genes
(see [Additional file 3] for gene list, sequences and posi-
tion for each primer/probe set) using the same aliquots
originally sent to each platform. Briefly, the reverse tran-
scription was performed using 4 ug RNA in a final volume
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of 80 pl. For each set of primers and probe 2 pL of cDNA
was diluted to total volume of 25 pL containing 12.5 pL
Universal Master Mix (Applied Biosystems, Foster City,
CA, USA), 0.3 uM of each primers and 0.2 uM Tagman®
probe. After initial steps for 2 min at 50°C and 10 min at
95°C, 50 cycles at 95°C for15 sec and 60°C for 1 min
were performed on an ABI Prism 7700 (Applied Biosys-
tems, Foster City, CA, USA). Primers and Tagman® probes
for the selected set of genes were chosen using Primer
Express software (Applied Biosystems, Foster City, CA,
USA) based on the primer-probe combinations prioritiz-
ing the 5' end of the transcript and in which the sense and
anti-sense primers corresponded to 2 different exons sep-
arated by an intron of at least 500 bases. This yielded sev-
eral potential combinations. The final combination for
each gene was chosen based on thermodynamic criteria.
All QRT-PCR reactions included in the analysis yielded
amplification curves with ARN above 1.0, slopes between
-3.1 and -3.8 and correlation coefficients above 0.98.
Optimisation of each reaction was based on the perform-
ance of a given primer-pair/probe combination and the
resulting standard curves from dilution series experiments
(1:10 to 1:100,000 of cDNA from samples known to
express each gene). Absence of a specific transcript in a
given cell line (eg. RAG2 transcript expression in Batt P12
and MCF?7 cells and CASP5 transcript expression in Jurkat
cells) was assessed based on an absence of amplification
in the corresponding QRT-PCR assay. For RAG2 and
CASP5 transcripts, sensitivity was experimentally deter-
mined to be at 1:10,000 dilution of Jurkat cDNA, and
1:1,000 dilution of peripheral blood mononuclear cell
(isolated from blood samples after ficoll purification)
cDNA in water, respectively. Based on this dilution series
we obtained an optimal slope (-3.68 for Rag2 and -3.43
for CASP5). Normalization of the Ct values was carried
out by subtracting the Ct values of the control gene ABL1
yielding ACt values for each gene [43]. AACt values were
then derived by subtracting each ACt by the ACt value
obtained from the same gene in the REF sample.

For each cell line, the correlation coefficient (Pearson and
Spearman) between each array data sample replicate and
the corresponding QRT-PCR data were calculated (see
Table 3), using 12 genes out of the 14 (ERBB2 and
RPS6KB1 were excluded as there was several correspond-
ing targets in the array data). The R function cor.test was
used to calculate the coefficients and associated p values.
To measure the concordance of relative expression of the
different genes and cell lines two approaches were used.
We compared the relative expression of all 14 genes in a
given cell relative the reference samples. For this, we com-
pared -AACt values for each gene in each cell line (42 data
points) to the corresponding array ratios obtained as
described above. For the all pair-wise gene-gene combina-
tion analysis (Fig. 5) we first attributed all the gene-gene
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ratios calculated across all cell lines based on the -AACt
values calculated from the QRT-PCR data to 9 fold-change
bins. From a total number of 4,851 possible gene pair
combinations based on the array measurements of 12 out
of the 14 genes (excluding ERBB2 and RPS6KB1 and data
points (RAG2 and CASP5) not available from QRT-PCR)
in the 3 cell lines (3 replicate arrays each) a total number
of 3,321 and 3,828 combinations were considered for
ratio and single intensity array data, respectively. The dis-
tribution of the array data corresponding to each set of
combinations were compared by fold change bin. [Addi-
tional file 4] gives the sample-matched Ct values as well as
for the log,-intensities for all genes from each platform.
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Additional material

Additional File 1

Description of the 3 array formats used in the comparisons. The num-
bers represent the counts made of total number of targets represented on
the respective microarrays. 1 The number of unique public sequence iden-
tifiers (ID) represented on the respective microarrays. These counts are
based on the annotation table provided at the time the experiments were
carried out (March - June, 2004 ). Control targets were excluded from the
counts.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-51-S1.xls]
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Additional File 2

Table of the of 3,471 common target set. Shown in the table for each of
the 3,471 common targets RefSeq identifiers
(CommonREFSEQ_4platform) are the HUGO gene symbol (Gene Sym-
bol) and Entrez Gene public data bank identifiers. Also given are the
intra-platform intensity quantile attribution calculated for each platform
respectively (PX Q, AFFYMETRIX.Q, AGILENT.Q, AMERSHAM.Q) as
well as the consensus quantile (cQ) calculated based on the mean quantile
attribution obtained for each platform. ANOVA targets (p < 0.001) are
indicated for each platform ("1") where "0" indicates a target not filtered
and not an ANOVA target. AMER_MCF_BATT, AFFY_MCF_BATT,
AGILENT_MCF_BATT indicates the targets that passed the p < 0.001 fil-
ter for the respective t tests comparing the MCF7 and Batt P12 samples
(see Figure 4 and Tables 1 and 2). Filtered log,-intensities are given for
each slide hybridized by each platform (PX, Affymetrix (AFFY), Amer-
sham (Amer) or the filtered log,-ratios obtained for Agilent (Agilent44K).
"NA" is shown for all empty fields corresponding to filtered data points.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-51-S2.xls]

Additional File 3

Primer/Probe information for the 15 genes analyzed by QRT-PCR.
Shown in the table are the 15 genes (Genes Names), accession number,
forward and reverse primers and probes with associated 5'-3' sequence, 5'
position and size analyzed by QRT-PCR.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-51-S3.xls]

Additional File 4

Array and QRT-PCR data for the 15 genes analyzed by QRT-PCR.
This table is divided into three sections. Section I shows the filtered log,
intensities (Affymetrix and Amersham) or log,-ratios (Agilent) for the 15
genes analyzed by QRT-PCR. RNA batches are indicated above each
table. Multiple targets were available for ERBB2 and RPSGKB1. Section
II shows Ct values for each RNA batch obtained for each of the 2 batches
(RNA batches are indicated above each table where Batch 1: green; Batch
2: pink). For sections I and II A red X is given for data points that were
either filtered out by a given platform (microarray data) or for genes that
were below the level of detection in a given cell line determined by QRT-
PCR. Section I1I shows the number of possible versus available gene pair
combinations QRT-PCR fold change bins used in Figure 5. The number
of possible gene pair combinations per fold change bin were based on the
distribution of relative expression levels calculated using the -AACt values
to compare with log,-ratio array data (cell line/reference for all 3 plat-
forms, shown in yellow) or using -ACt values to compare with log, inten-
sities (from Amersham and Affymetrix, shown in blue). Nine different
bins were created with the following code (in bold) corresponding the fol-
lowing log,-ratios (x) intervals: <-5: x < -5; -3: -5 =x<-1.25; -1: -1.25
=x<-0.75,-0.5: -0.75 = x <-0.25; 0: -0.25 = x < 0.25; 0.5: 0.25 = x
>1.25,1:025=x>1.25;3:1.25=x>5.0;, >=5:x=5.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-51-S4.xls]
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Additional File 5

Cluster analysis using the common ANOVA targets. Sample cluster
dendrograms of all 36 platforms samples alone (A) or with other data
including 66 tumor samples (B) and gene cluster dendrogram with asso-
ciated heat map based on the expression profile of 1,096 (A) common
ANOVA targets (or 925 U133A targets mapped to the 1,096 targets for
B) found between Affymetrix, Agilent and Amersham. Mapping to the
Affymetrix U133A array was based on RefSeq identifiers. Clustered sam-
ple groups corresponding to the cell line and similar tumor type are indi-
cated by colored bars. Log,-ratios were centered and color coded (below
heat map B). MCF-7 samples are represented with blue bars, BattP12 and
mesothelioma samples are represented with red bars while Jurkat and
TALL samples are represented by green bars. BattP12 is a mesothelioma
cell line and clusters with the MESO samples (red bar) which as a group
clusters with the MCF7 samples (blue bar). Jurkat is a T-cell acute lym-
phoblastic leukemia and clusters with T-ALL samples (green bar). As a
part of the CIT program we obtained raw Affymetrix HG-U133A data for
66 samples corresponding to either pooled tumors of a particular cancer
type andfor derived cell lines (unpublished data). These samples include
the universal reference RNA from Stratagene (see above). Tissues repre-
sented are as follows: B-cell acute lymphoblastic leukemia (BALL, n = 4);
colon cell line (COLO, n = 8); follicular lymphoma (FOLL, n = 4); hepa-
tocarcinoma (FOIE, n = 3); myeloblastic acute leukemia (LAM, n = 3);
epidermotrophal lymphoma (LEPI, n = 2); chronic lymphoblastic leuke-
mia (LLC, n = 1); myeloblastic chronic leukemia (LMC, n = 2); mesothe-
lioma cell line (MESO, n = 8); epithelial cells (PEAU, n = 4); lung
(POUM n = 3); T-cell acute lymphoblastic leukemia T (TALL, n = 20);
thyroid (THYR n = 4). Labeled cRNA reactions, hybridizations and image
analyses for all 66 samples were carried out at the IGBMC, Strasbourg,
France (March, 2002). Raw data was normalized and summarized
expression values were generated using RMA (described above). For all
cluster analyses, normalized intensity values were transformed into l0g,-
ratios using the reference sample as the denominator. Cluster analysis was
performed using log, ratios (ratios calculated as described above) and
DNA-Chip Analyzer (dChip) Version 1.3, with the following parameters:
distant metric = 1-pearson correlation; linkage = centroid; row standard-
ization.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-51-S5.pdf]
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