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Abstract
Background: Complex traits, which are under the influence of multiple and possibly interacting
genes, have become a subject of new statistical methodological research. One of the greatest
challenges facing human geneticists is the identification and characterization of susceptibility genes
for common multifactorial diseases and their association to different quantitative phenotypic traits.

Results: Two types of data from the same metabolic pathway were used in the analysis: categorical
measurements of 18 SNPs; and quantitative measurements of plasma levels of several steroids and
their precursors. Using the combinatorial partitioning method we tested various thresholds for
each metabolic trait and each individual SNP locus. One SNP in CYP19, 3UTR, two SNPs in CYP1B1
(R48G and A119S) and one in CYP1A1 (T461N) were significantly differently distributed between
the high and low level metabolic groups. The leave one out cross validation method showed that
6 SNPs in concert make 65% correct prediction of phenotype. Further we used pattern
recognition, computing the p-value by Monte Carlo simulation to identify sets of SNPs and
physiological characteristics such as age and weight that contribute to a given metabolic level. Since
the SNPs detected by both methods reside either in the same gene (CYP1B1) or in 3 different genes
in immediate vicinity on chromosome 15 (CYP19, CYP11 and CYP1A1) we investigated the possibility
that they form intragenic and intergenic haplotypes, which may jointly account for a higher activity in
the pathway. We identified such haplotypes associated with metabolic levels.

Conclusion: The methods reported here may enable to study multiple low-penetrance genetic
factors that together determine various quantitative phenotypic traits. Our preliminary data
suggest that several genes coding for proteins involved in a common pathway, that happen to be
located on common chromosomal areas and may form intragenic haplotypes, together account for
a higher activity of the whole pathway.
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Background
The challenge of identification and characterization of
susceptibility genes for complex multifactorial diseases is
partly due to the limitations of parametric statistical
methods for detection of gene effects that are dependent
solely or partially on interactions with other genes and
with environmental exposures [1,2]. These limitations are
reduced by non-parametric methods such as the combina-
torial partitioning method (CPM) [3], which has been
used to study the effect of many marker loci on quantita-
tive phenotypes. The focus of the method is to form sub-
sets of loci or genotypic partitions within which the trait
variability is much lower than between the partitions [3].
The loci in such a set of genotypic partitions are then
selected as candidates to influence the given trait and are
then cross-validated.

A modification of this method is the multifactor dimen-
sionality reduction (MDR) method, which has been used
to study the impact of multiple loci on categorical end-
points such as presence or absence of disease or response
to treatment. This is accomplished by reducing the dimen-
sionality of the multilocus data where genotypes from
multiple loci are pooled into high-risk and low-risk
groups, depending on whether they are more common in
affected or in unaffected individuals [4,5]. This approach is
so far limited to categorical parameters and cannot be
applied to quantitative traits. The only possible approach
to association mapping would then be to search for pat-
terns of genotypes at different loci. Pattern recognition by
machine learning techniques may then be applied to
define pattern frequencies or relationships in a data set [6].

The estradiol metabolic pathwayFigure 1
The estradiol metabolic pathway. Estradiol is synthesized from cholesterol in a series of consecutive hydroxylation relations.
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In the present study we have used a variation of the com-
binatorial partitioning method and compared that to a
pattern recognition method by the machine learning
approach to identify subsets of SNPs that may predict the
levels of metabolites in the estradiol metabolic pathway
in healthy post-menopausal women. We have chosen this
pathway since a positive correlation between estradiol
exposure and risk of breast cancer among postmenopau-
sal women has been rather well documented [7,8], and a

significant correlation between plasma estrogen levels
and subsequent risk of breast cancer development has
been repeatedly described [9-12]. Estrone is synthesized
from cholesterol in a cascade of subsequent hydroxyla-
tions [13] (Figure 1). After ovary seizure at menopause,
the peripheral aromatization of androgens, mainly
androstenedione into estrone, becomes the main source
of circulating estrogen contributing to tumor stimulation
[14]. A complex system of enzymes is responsible for

Table 1: Summary of the selected SNPs and the respective method of genotyping. Gene/SNP, rs number given when available, 
aminoacid change or UTR. Primer set: for the assyas developed for this study or otherwise as referred to original publication. Method 
of analysis: platform and assay selection.

Gene/SNP Primer set Method of analysis

CYP11A1, repeat f(5'-6-FAM-GTC-AGC-TGT-ACT-GAA-TTA-CAG-CC-3') 
r(5'-TCT-TGC-CAG-CTT-GGG-CAA-CAT-ACG-3'

Fragment analysis ABI310, (Applied 
Biosystems)

CYP17, rs 743572 f 5'-CAT-TCG-CAC-CTC-TGG-AGT-3' r 5'-GGC-TCT-
TGG-GGT-ACT-TG-3'

RLFP MspA1 (Promega),

CYP19 3'UTRSNP1, rs10046 5'-ATA TTC TGG CAA CTG TCT-3' 5'-GAG GAT GAC 
ACT ATT GGC-3'

BDT (Big Dye Terminator) sequencing ABI310 
(Applied Biosystems)

CYP19 3'UTRSNP2, rs4646 5'-GAC AGT GTG TTG AGA GCA TAC AGA-3' 5'-TTC 
TTC ACC GAC TAT TTC TC-3'

BDT (Big Dye Terminator) sequencing ABI310 
(Applied Biosystems)

CYP19 3'UTRSNP3, rs2255192 5'-CAT TGA ATC ATT GTA TGT GGT CAT-3' 5'-GGA 
AAT GGG ATG GAA ATA GAT TAC A-3'

BDT (Big Dye Terminator) sequencing ABI310 
(Applied Biosystems)

HSD-A3T, rs3138620 5'-6-FAM CAG TAC TAA AGG CCC TAT TAT CAA A-3' 5'-
AGG CTG CAG TGA GTC CAG AT-3'

Fragment analysis ABI310, (Applied 
Biosystems)

HSD-DEL, rs8191194 5'-6-FAM GTG ACC CAC GAA ACA CAG G-3' 5'-CAG 
AAG GTG AAG AAC TCA TCC A-3'

Fragment analysis on a ABI310, (Applied 
Biosystems)

CYP1B1 R48G 5'-GCACCCCTGAGTGTCACGCC-3', 5'-
TTCCAGTGCTCCGAGTAGTG-3'

RFLP, Rsr II. (Fermentas)

CYP1B1 A119S 5'-GCACCCCTGAGTGTCACGCC-3', 5'-
TTCCAGTGCTCCGAGTAGTG-3'

RLFP, NgoM IV (New England BioLabs)

CYP1B1 V432L, rs1056836 5'-CCAGCCCAACCTGCCCTATG-3' 5'-
CCAGGATGGAGATGAAGA-3'

RLFP, Eco577 (Fermentas)

CYP1A1m1 T3801C Cascorbi et [19]. See reference
CYP1A1m2 I462V, rs1048943 Cascorbi et [19]. See reference
CYP1A1mS T3205C Cascorbi et [19]. See reference
CYP1A1m4 T461N, rs1799814 Cascorbi et [19]. See reference
COMT, rs4680 Matsui et al. 2000, [20]. See reference
GSTM1 Kristensen et al 1998 [31]. See reference
GSTT1 Kristensen et al 1998[31]. See reference
GSTP1 Kristensen et al 1998[31]. See reference

Table 2: Correlation between metabolic levels of estradiol and its precursors in the plasma of healthy post-menopausal women. 
DHEA, dihydroepiandrostenedione, DHEA-SO4, dihydroepiandrostenedione sulfate, androstenedione, testosterone, E1, estrone, E2, 
estradiol, E1S, estrone- sulphate.

Metabolite DHEA DHEA-SO4 Androstenedion
e

Testosterone E1 E2 E1S

DHEA 1
DNEA-SO4 0.578 p < 0.001 1
Androstenedion
e

0.494 p < 0.001 0.606 p < 
0.0001

l

Testosterone NS NS 0.321 p < 0.001 1
E1 0.201 p < 0.034 0.285 p < 0.002 0.217 p < 0.021 NS 1
E2 NS NS NS NS 0.873 p < 

0.0001
1

E1S NS NS NS NS 0.776 p < 
0.0001

0.795 p < 
0.0001

1
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estradiol synthesis and its further metabolism: CYP17,
CYP11a, CYP19, 17 β-hydroxysteroid hydrogenase, steroid
sulfatase (STS), sulfotransferase (EST), CYP1A1, CYP1B1,
Catechol-O-methyltransferase ([15-17] (Figure 1). Polymor-
phisms in these enzymes have previously been associated
with both breast cancer risk and estradiol levels [2]. In the
present report we have studied genetic polymorphism in
all these enzymes and addressed the methodological chal-
lenge of the analysis of multiple loci 1) by free combina-
torial approaches 2) in relation to intergenic haplotype
structures within a common biochemical pathway.

Results
The levels of 9 metabolites of the estradiol pathway were
studied (Figure 1). High correlation was observed
between the levels of the different metabolites in the
plasma of healthy individuals, metabolites upstream
(DHEA, DHEA-S, androstenedione and estrone) as well as
downstream (estrone, estradiol, estrone- sulphate) in the
pathway (Table 2). Weight and body mass index signifi-
cantly correlated with the levels of estrone and estradiol,
while levels of DHEA and DHEA-S inversely correlated
with age. Testosterone levels correlated with height (Table
3).

Chi square analysis
A total of 18 SNPs in 10 genes were genotyped in 109 indi-
viduals resulting in a total of 1962 genotypes. The geno-
type distribution of the studied polymorphisms was
significantly different between the groups of individuals
with metabolic activities below and above median when
Chi square test was applied. The levels of E1 and E2 were
significantly associated with two polymorphisms in the
3'UTR of CYP19 as well as two non-synonymous substitu-
tions in the CYP1B1 -R48G and A119S (Table 4). The El
level was also associated to the T461N SNP in CYP1A1.
Several other non-significant trends were observed.

Combinatorial partitioning analysis (Mutual Information 
Score (MIS))
The metabolic groups were further re-defined by using
other thresholds than the median, using either one opti-
mal threshold, (partitioning A) or two optimal thresholds

(Partitioning B). Several moderately significant SNPs
using the optimal thresholds approach were found (all
SNPs with p-value < 0.05, Table 5). Leave one out cross
validation analysis was performed to find sets of geno-
types that jointly predict the value of the trait (high or low
levels). Estrone levels partitioned into samples with val-
ues < 68.2 pmol/l and >68.2 pmol/l revealing a maximal
difference in genotype distribution. A graphical represen-
tation (infogram) of the genotypes for each locus and this
partition is shown in Figure 2A, where each row corre-
sponds to a SNP and each column – to a sample. Figure
2B shows the stack diagram. The leave one out cross vali-
dation method showed that while one SNP can make only
~50% correct predictions of the estrone levels at this par-
tition, combining 6 SNPs, including CYP1A1m4,
CYP1B1A119S, CYP1A1m2, CYP19utr3' SNPS, GSTP1,
COMT allows 65% correct prediction (Figure 2C). Two of
the selected polymorphisms were known to be functional
at the metabolic level from previous studies in vitro. In the
case of random labels, the probability of finding a set of
SNPs that can make better prediction was found to be
0.16 based on 100 simulations.

Locus CYP11A1 was a microsatellite repeat with 10 variant
repeat length alleles. All variant alleles were categorized
together: A1/A1 (wt/wt), A1/mut, mut/mut. The QT
scores and p-values for this locus and each metabolite
were calculated and significant differences were found for
several of the metabolites. The variant allele was more fre-
quent in women with DHEA-S level>92.6 µg/dl than in
women with DHEA-S levels<92.6 µg/dl (p < 0.042). In the
two threshold analysis the significance was even higher (p
= 0.004) when comparing individuals with DHEA-S lev-
els<69.7 µg/dl to those with DHEA-S levels>92.6 µg/dl
(Figure 3A); stack diagram is shown in Figure 3B. For
estrone the p-value was 0.008 when comparing groups of
women with estrone >133 pmol/l to those with estrone<
133 pmol/l. Four women with estrone level > 133 pmol/l
have genotypes A2/A2 and A4/A4. Similar to estrone, lev-
els of estradiol were associated with the CYP11A variants
when comparing individuals with estradiol > 33 pmol/l to
those with estradiol < 33 pmol/l (p < 0.06).

Table 3: Association of estrogen and its precursors with age, height, weight and body mass index.

Metabolite Age Height Weight Body-mass index

DHEA -0.199 p < 0.036 NS NS NS
DNEA-SO4 -0.218 p < 0.021 -0.210 p < 0.026 NS NS
Androstenedione NS NS NS NS
Testosterone NS 0.300 p < 0.001 NS NS
E1 NS NS 0.258 p < 0.006 0.191 p < 0.042
E2 NS NS 0.349 p < 0.000 0.308 p < 0.001
E1S NS NS NS NS
Page 4 of 14
(page number not for citation purposes)



BMC Genomics 2006, 7:5 http://www.biomedcentral.com/1471-2164/7/5
Pattern recognition of SNPs in relation to hormone 
metabolizing enzymes
The optimal threshold of the metabolic levels was found
by multiple testing close to the median. Interactions
between set of SNPs and physical characteristics like age
and weight was identified (Fig 4A,B). Carriers of the wt
CYP1A1m1 and wt GSTT1 with age above 64 years and
with a body weight above 75 kg were more often in the
lower level group of the metabolite DHEA-SO4 (CorrMAX
0.54(49/56), P-value < 0.0001) (Figure 4A). An interac-
tion between the levels of this metabolite and age and
weight (r = 0.44, p < 0.002), also seen by the conventional
Chi square analysis (Table 2), was detected by this
method. Individuals with weight higher than 75 kg carry-
ing the wt GSTM1 had significantly higher plasma levels
of E1S, (CorrMAX 0.43(43/62), p < 0.003) (Figure 4B).

Another pattern of SNPs was found correlated to the
estrone level; the variant allele in the 5' flanking area of
CYP11 in combination with the wt GSTT1 was present
among 12 individuals with a plasma level of estrone
above 68 pmol/l, while none of the individuals with E1
plasma level below 68 pmol/l carried this combination
(CorrMAX 0.36(53/52) P-value 0.05) (Figure 4C). Indi-
viduals homozygous for the variant alleles in the HSD17β
(A3T), CYP1B1 A119S, and COMT1 had significantly
higher levels of sex hormone binding globulin, (CorrMAX
0.38(59/49) P-value 0.05) (Figure 4D). A colored info-
gram illustrating the significant differences in SNP pat-
terns above and below the different thresholds is given
below each frequency diagram.

Haplotype analysis
Since some of the SNPs detected by the above methods
reside in 3 different genes in vicinity on chromosome 15
we hypothesized that they could form common intragenic
haplotypes, which in concert might account for a higher
activity of the whole pathway. Our findings suggest that
the SNPs in CYP19, CY11 and CYP1A1 are not inherited
at random but form common haplotypes (Figure 5A).
Individuals with variant number of repeats in the micros-
atellite repeat of CYP11 were also carriers of the variant
alleles in both loci CYP1A1mi and m2 (D' 0.350 and
0.194, p < 0.001 (Bonferroni corrected) and p < 0.012,
respectively) as well as in CYP19utr3' SNP2 (D' 0.293, p <
0.001 (Bonferroni corrected) (Figure 5B). A schematic
presentation of the D' values is given in Figure 5C. High
D' values and significant LD was observed in addition
between the 3 SNPs in CYP19 and the 2 of the 4 SNPs in
CYP1A1 Carriers of the haplotype CTTATATC and
CGTA(T)C(T)ATC(A) had more often E2 levels below
median, while carriers of the TGTTT(C)ATC more often
had E2 levels above the median (p < 0.025) (Figure 5D).
The SNPs in CYP1B1 were also in strong linkage disequi-
librium forming steady haplotype blocks (Figure 6A,B).

While the haplotype CGG, containing the C allele in
CYP1B1R48G and the G alleles in CYP1B1A119S and
CYP1B1 V432L was associated with high levels of E1 and
E2, the haplotype GTC containing the alternative alleles in
locus was associated with lower than median levels (p <
0.05).

Discussion
Finding effects of groups of SNPs on metabolite levels is
complex since the effects of individual SNPs are small and
the number of possible SNP combinations is large. We
applied two different methods to help identify sets of
SNPs correlated to metabolite levels: one using direct two-
way classification based on combination of genotypes at
selected loci, and another based on leave-one-out-cross-
validation analysis. Direct classification method requires
sufficiently big sample set for meaningful evaluation of
genotype combination frequencies in groups with differ-
ent metabolite levels. In studies like this with a small
number of samples, the LOOCV method allows the eval-
uation of larger sets of SNPs, since the classifiers are con-
structed for each locus individually. In the first "pre-
screening" phase of the genotype-phenotype analysis the
metabolic levels were divided by median followed by sets
of percentiles of the trait values. Finally, instead of pre-
defining cut offs, we let the distribution of the genotypes
lead us to those cut offs with a maximal difference in allele
distribution. Interestingly, often these best thresholds
converged to the median, i.e. for estrone in both the
Mutual Information Score method as well as the pattern
recognition. Whether or not these resulting cut offs have
some physiological significance, remains to be investi-
gated.

Long term exposure to estradiol increases the risk of breast
cancer. The mechanisms responsible for this effect have
not been firmly established. The prevailing theory pro-
poses that estrogens increase the rate of cell proliferation
by stimulating estrogen receptor-mediated transcription
and thereby the number of errors occurring during DNA
replication [19,20]. An alternative hypothesis proposes
that estradiol can be metabolized to quinone derivatives,
which can react with DNA and then remove bases from
DNA through a process called depurination. Error prone
DNA repair then results in point mutations [21]. These
two processes, increased cell proliferation and genotoxic
metabolite formation, may act in an additive or synergis-
tic fashion to induce cancer. It has been suggested that
measuring total E2 concentration and SHBG concentra-
tion may be sufficient in large epidemiological studies
[12]. Our study shows that even in a small size it is suffi-
cient to monitor only few metabolites as we observed
tight correlations between them. Several genetic polymor-
phisms that may influence estradiol metabolism have
been associated with different hormone levels. A poly-
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Table 4: Statistical significance of distributions of genotypes in the listed estradiol metabolizing enzymes in below and above median levels of metabolites DHEA, 
dihydroepiandrostenedione, DHEA-SO4, dihydroepiandrostenedione sulfate, androstenedione, testosterone, E1, estrone, E2, estradiol, E1S, estrone- sulphate, SHBG, sex 
hormone binding globulin. NS – not significant.

Below and above median values

Gene/SNP DHEA DHEA-SO4 Androstenedione Testosterone E1 E2 E1S SHBG

HSD DEL 5'flanking 12 bp deletion NS NS NS NS NS NS NS NS

HSD A3T 5'flanking (AAAT)n NS NS NS p < 0.053 NS NS NS NS

CYP17 5'flanking NS NS NS NS NS NS NS NS

CYP19UTRSNP1 3'untranslated NS NS NS NS p < 0.037 p < 0.048 NS NS

CYP19UTRSNP2 3'untranslated NS NS NS NS NS NS NS NS

CYP19 UTRSNP3 3'untranslated NS NS NS p < 0.089 p < 0.014 p < 0.013 NS NS

CYP11 5'flanking NS P = 0.042 p < 0.053 NS p < 0.003* p < 0.004* NS NS

CYP1B1 R48G coding nonsynon R48G NS p < 0.082 NS NS p < 0.049 p < 0.082 p < 0.042 NS

CYP1B1 A119S coding nonsynon A119S NS NS NS NS p < 0.073 p < 0.002 NS NS

CYP1B1 V432L coding nonsynon V432L NS NS NS NS NS NS NS NS

CYP1A1 m1 3'untranslated NS NS NS NS NS NS NS NS

CYP1A1 m2 coding nonsynon I462V NS p < 0.044 NS NS NS NS NS NS

CYP1A1 m3 3'untranslated NS NS NS NS NS NS NS NS

CYP1A1 m4 coding nonsynon T461N NS NS NS NS p < 0.017 NS NS NS

COMT coding nonsynon V158M NS NS p < 0.02 NS NS NS NS NS

GSTM1 gene deletion NS NS NS NS NS NS NS NS

GSTT1 gene deletion NS NS NS NS NS NS NS NS

GSTp1 coding nonsynon NS NS NS NS NS NS NS NS

*ANOVA analysis
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morphism in CYP19, a 3-bp deletion in intron 4 (TTTA)n

= 7-3, and a base substitution in exon 3 (G – >A) have been
reported to be associated with levels of estradiol [22,23].
Genetic polymorphism in the enzymes further hydroxy-
lating estradiol and conjugating its metabolites has also
been studied. Women carrying the COMT Met/Met geno-
type had 28% higher 2-hydroxyestrone (P = 0.08) and
31% higher 16α-hydroxyestrone concentrations (P=
0.02), compared to women with the Val/Val genotype
[22].

The previous studies discussed above analyzed single loci.
In a recent breast cancer case -control study, including cat-
egorical values only (genotypes), a four-locus susceptibil-
ity model including the polymorphisms of COMT,
CYP1A1m1, CYP1B1 codon 48, and CYP1B1 codon 432
was found associated with breast cancer [2]. The four-
locus model was significant at the p = 0.001 level by per-
mutation testing bringing evidence of epistasis, or gene-
gene interaction in the case-control setting. Each genotype
at a particular locus had an influence on breast cancer dis-
ease risk dependent on the genotypes at each of the other
three loci. With that in mind, we searched the hormone
metabolic pathway for interactions between these loci
both at random, combinatorial, without regards to the
chromosomal localisation and with regards to the LD in
genes that may form common haplotype structures. Two
such domains were identified – the polymorphisms in
CYP1B1 form stable haplotype structures in Norwegian
population (Zimarina et al, submitted), and a block on
the long arm of chromosome 15 consisting of CYP11A1
gene close to the CYP1A1 (less than 1 cM) gene and
approximately 27.4 cM telomeric to the CYP19 gene.
Indeed, we found 2 haplotypes in the CYP1B1, which
were significantly overrepresented in individuals with El
and E2 levels above median. Two of the three genotypes
(R48G and V432L) were among the best predictors
according to the combinatorial partitioning method as
well. Furthermore, the same CYP1B1 haplotypes (CGG

and GTC) were associated with breast cancer risk (Zima-
rina et al, submitted). The CGG haplotype includes both
the V432 form of CYP1B1 and the R48 with higher 4-OH/
2-OH E2 metabolic ratio and affinity (Km) towards 17b-
estradiol respectively [24,25]. More unexpectedly, we
found high D' values among SNPs residing in different
genes but coding for proteins in the same metabolic path-
way. The haplotype comprising of the T allele of
CYP19utr3' SNP1, the variant number of repeats of CYP11
and the variant alleles of CYP1A1m1 and m2 we associated
with high E2 levels (above median). Upregulation of
CYP1A1 by dioxin derivatives through the Ah receptor
leads to down-regulation of CYP19 and ER. The close loca-
tion of these genes gives an attractive opportunity to study
whether they are regulated by a common regulatory unit.
The haplotype structures may vary from population to
population – hence explain the variability of the pub-
lished data on various susceptibility alleles in a number of
genes.

The fact that we manage to predict correctly 65% of the
individuals according to their metabolic levels based on
this limited selection of SNPs in healthy individuals,
make us believe that we have identified markers of estra-
diol levels in the present study. Furthermore, we found
similar combinations of SNPs as those involved in the
susceptibility combinations from the case control study
[2]. We are presently conducting a larger study of both
cases and controls with a higher SNP density to improve
our 65% prediction value. In the last stage of the prepara-
tion of this manuscript another large study of 1975 indi-
viduals was published [26] confirming our previous
initial report of an association of the polymorphism in
CYP193UTR and aromatase activity [27] and in concord-
ance with our present observation of association with
plasma levels. Here we demonstrate that the association
can be discovered in much smaller number of individuals
(109) using the multilocus data analysis.

Table 5: Searching for optimal thresholds approach to identify genotypes associated with quantitative trait (all SNPs with p-value < 
0.05). Partitioning A shows significant results for one optimal threshold (two partitions), and Partitioning B shows the results for two 
optimal thresholds (three partitions). The calculated p-values take into account the multiple search over all possible thresholds as 
described in [3].

Partitioning A Partitioning B

Metabolite SNP p-value p-value

DHEA CYP1B1 R48G NS 0.022
E1 CYP1B1 A119S 0.039 0.0045
E1S CYP1B1 A119S NS 0.043
Androstenedione CYP19 UTRSNP1 0.042 NS
DHEA-SO4 cyp1A1 m1 NS 0.010
DHEA-SO4 cyp1A1 m2 0.022 0.011
E1 cyp1A1 m4 0.042 0.028
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Conclusion
These studies provide further evidence that genetic varia-
tion may appreciably alter plasma level of sex hormone
and thus have an effect on disease risk. We describe an
approach for multilocus approach to study multiple low-
penetrance genetic factors that together determine quanti-
tative phenotypic traits.

Methods
Blood samples were collected from 109 healthy female
volunteers between 55 and 75 years of age on a regular
mammographic screening. The women enrolled had 2
consecutive negative mammograms in a period of 2 years
and were not on hormone replacement therapy (HRT).
The plasma levels of the metabolites E1, E2, E1S, DHEA,

androstenedione and testosterone were analysed as
described previously in [28]. DNA was isolated from
EDTA blood using chloroform/phenol extraction fol-
lowed by ethanol precipitation according to standard pro-
cedures using the Applied Biosystems 340A Nucleic Acid
Extractor.

Genotyping
Primer sets and methods for analysis are summarized in
Table 1 and as described in [29,30].

Statistical Analysis
Parametric method
Metabolic levels for each metabolite were divided into
below and above median and allele and genotype fre-

(A). Identification of minimal combination of SNPs for maximal prediction value of metabolic expression level of El (estrone) using leave one out cross validation analysisFigure 2
(A). Identification of minimal combination of SNPs for maximal prediction value of metabolic expression level of El (estrone) 
using leave one out cross validation analysis. Estrone levels <68.2 pmol/l and >69.2 pmol/l are best predicted by the genotypes 
in the given order (p < 0.05). Frequency distribution of the genotypes at each locus: Blue – common homozygous genotype, 
green – heterozygous, yellow – rare homozygous genotype for each locus (row) and each person (column), white- missing 
value (A). Columns under heat map labeled by '|' correspond to samples with estrone level < 68.2 pmol/l, columns labeled by '-
' correspond to sample with estrone level > 69.2 pmol/l. Columns are ordered with respect to increasing estrone level (B). 
Stacked diagrams of frequency distribution of the genotypes at each locus (C).
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quency distributions were compared using the Chi square
test.

Non-parametric methods
Combinatorial partitioning method
To relax the choice of a metabolite level percentile at
which to partition the set of samples, we seek an optimal
threshold for each metabolite and each SNP. This opti-
mality is defined by an information theoretic measure of
concordance between the partition of the sample set
according to genotypes and the partition of the sample set
defined by the two sides of a metabolite level threshold.
The methods we applied in this dataset are an adaptation
of the combinatorial approach of [3] and are briefly
described below.

Let (xi, qi), i = l,2,...,n denote the measurements for a par-
ticular pair consisting of a SNP and a quantitative variable
(metabolite level) across all patients. For any such pair we
seek a threshold t, such that the genotype frequencies in
the samples with q<t will be the most different from the
genotype frequencies in the samples with q≥t. This differ-
ence is measured by the mutual information score. The
search process itself is exhaustive, considering all possible
thresholds. More precisely, for a SNP locus L and a quan-
titative trait q, let G be a partition of the sample-set
induced by the genotypes at locus L. For a threshold t, let
Ct be a binary partition of the sample-set defined by q<t
and q≥t. The Mutual Information Score (MIS) is defined as
the difference between the entropy of the partition Ct and
the entropy of Ct conditioned on G:

MIS(Ct, G) = H(Ct) - H(Ct/G),

where H is the entropy or conditional entropy function, as

appropriate. The best threshold  for a pair (L, q) is such
that

 = maxmin(q) ≤t≤max(q)MIS(Ct, G).

The corresponding p-values were also calculated, effec-
tively counting all possible ways of partitioning the sam-

ples that would give a score better than [3].

In a parallel approach to assessing SNP-metabolite associ-
ation we tried all possible pairs of thresholds from the set
of 5th, 10th, 15th, 20th, 25th etc percentiles of the trait
values. For a pair of thresholds a and b, we considered the

partition Ca,b of the samples into samples with trait q ≤ a,

samples with a<q<b and samples with q≥b. For each such
partition, we computed the corresponding mutual infor-
mation scores MIS(Ca,b, G) and picked the pair of thresh-

t̂

MIS C Gt( , )

MIS C Gt( , )

(A). Identification of minimal combination of SNPs for maxi-mal prediction value of metabolic expression level of DHEA using leave one out cross validation analysis: women with DHEA_SO4 level>92.6 pmol/l vs women with DHEA_SO4 levels<92.6 pmol/l (p < 0.042)Figure 3
(A). Identification of minimal combination of SNPs for maxi-
mal prediction value of metabolic expression level of DHEA 
using leave one out cross validation analysis: women with 
DHEA_SO4 level>92.6 pmol/l vs women with DHEA_SO4 
levels<92.6 pmol/l (p < 0.042). Frequency distribution of the 
genotypes at each locus: Blue – common homozygous geno-
type, green – heterozygous, yellow – rare homozygous geno-
type for each locus (row) and each person (column). 
Columns labeled by '|' correspond to samples with estrone 
level < 92.6, columns labeled by '-' correspond to sample 
with estrone level > 92.6 pmol/l. (B). Stacked diagrams of fre-
quency distribution of the genotypes at each locus.
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olds ( ) that gave maximum score. The calculated p-

values take into account the multiple search over all pos-
sible thresholds as described in [3].

Further, for each SNP-trait pair, and a partition of the sam-
ple-set C defined by a single best threshold or by a pair of
best thresholds, we ran leave one out cross validation
analysis in order to find a set of SNPs such that genotypes
at these SNPs can jointly predict the classification of sam-
ples with respect to C, i.e. whether the value of the quan-
titative trait level is above or below threshold [3]. Leave

one out cross validation analysis, working with a given
subset of SNPs, S, consists of the following steps:

1. Hide a sample

2. For each SNP in the subset S, construct a classifier based
on the likelihood of each class of the partition C given the
genotypes of remaining (non hidden) samples at this
locus

ˆ, ˆa b

Pattern recognition: Search for combination of SNPs and physiological parameters associatedwith a given metabolic traitFigure 4
Pattern recognition: Search for combination of SNPs and physiological parameters associatedwith a given metabolic trait. On 
top bar diagrams illustrating the distribution of all possible combinations of traits in the metabolic groups below or a bove a 
given threshold (given in a sqare frame above each bar diagram). (A) DHEA-SO4 levels Cyp1a1m1 = mut/mut and GSTT1 = 
mut and Age>64 and Weight<75, CorrMAX 0.54(49/56) p < 0.0001, Age – Weight, CorrMAX 0.44 p < 0.002 Infogram: 
CYP1A1m1: Black = wt/wt Yellow = mut/mut Red = wt/mut; GSTT1 Black= wt/wt or wt/mut Yellow = mut/mut; Age Yellow = 
<64 Black = >64; Weight Yellow = >75 Black = <75 (B). E1 (Estrone) levels: The genotype combination CYP11 = mut and 
GSTM1 = wt is present among 12 patients with a level above 68 pmol/l, but non of the patients with a level below 68 pmol/l, 
CorrMAX 0.36(53/52) p < 0.05. (C) Estrone sulphate, GSTM1 – Weight(75 kg), CorrMAX 0.43(43/62), p < 0.003 Infogram1: -
GSTM1 Black = wt/wt or wt/mut Yellow = mut/mut; Weight Yellow = <75 Black = >75. (D) Sex hormone binding globulin, 
HSDA3T = mut/mut-CYP1B1A119S = mut/mut-comt1 = mut/mut. CorrMAX 0.38(59/49), p < 0.05 Infogram: CYP1B1A119S Red = 
wt/wt, Yellow = mut/mut, Black = wt/mut, COMT1: Red = wt/wt, Yellow = mut/mut, Black = wt/mut.
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Linkage disequilibrium between SNPs in 3 genes from the estradiol metabolising pathway situated within 1 cM on chromosome 15: CYP19, CYP11 and CYP1AFigure 5
Linkage disequilibrium between SNPs in 3 genes from the estradiol metabolising pathway situated within 1 cM on chromosome 
15: CYP19, CYP11 and CYP1A. Samples in each row, variants in columns, high frequency allele – blue, low frequency allele- yel-
low (A). LD was observed between the 3 SNPs in the 3'UTR of CYP19 and 2 SNPs in CYP1A1 and the variant allele of CYP11 
with one SNP in CYP19 and another in CYP1A1, bold in panel (B). D', R and Fisher exact test values for all 8 SNPs in this chro-
mosomal area (Site 1–8) are given in panel (B) and Fisher exact test results in colour diagram – blue approximating 0.00(C). 
Individuals carrying these haplotypes had more often estradiol levels above median (D).
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 2     6   4  -0,010  -0,676 -0,109 0,138
 2     7   5   0,003   1,000  0,077 0,440
 2     8   6  -0,002  -0,092 -0,018 1,000
 3     4   1   0,007   0,331  0,096 0,170
 3     5   2  -0,004  -1,000 -0,067 0,600
 3     6   3  -0,001  -1,000 -0,031 1,000
 3     7   4   0,000  -1,000 -0,011 1,000
 3     8   5  -0,001  -1,000 -0,037 1,000
 4     5   1   0,052   0,510  0,350 0,000***B
4    6   2   0,015   0,618  0,194 0,012*

 4     7   3  -0,001  -1,000 -0,039 1,000
 4     8   4  -0,002  -0,207 -0,026 1,000
5    6   1   0,019   0,669  0,305 0,001***B

 5     7   2  -0,001  -1,000 -0,027 1,000
 5     8   3  -0,006  -1,000 -0,088 0,364
 6     7   1   0,000  -1,000 -0,012 1,000
 6     8   2  -0,001  -1,000 -0,040 1,000
 7     8   1   0,000  -1,000 -0,015 1,000

Legend
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3. Classify the hidden sample using the sum of single-SNP
classifiers

4. Repeat steps 1–3 for each sample, and thus determine
the number of correct predictions for the subset S

Eventually, we also seek a subset S with the best perform-
ance. Several search techniques were used for finding best
subset of SNPs in order to avoid evaluating each possible
subset for each locus/trait pair. These techniques included
ordering SNPs by mutual information score and evaluat-
ing sets of top scoring SNPs, as well as performing forward
and backward sequential searches [3]. Further, we esti-
mated the probability of finding such predictive subsets of
SNPs for random labels by simulations.

Pattern recognition by the two way classification method
The problem of finding an association between groups of
individuals with metabolic levels above or below a certain
threshold, referred to as the positive and negative groups,
and combinations of genotypes at specific polymorphic
loci may be formulated as a two-way classification prob-
lem. When evaluating a specific combination of geno-
types against a particular patient record, the outcome can
be a true-positive (i.e., the individual has all the genotypes
in the given combination, and the patient is in the posi-
tive group), a true-negative (i.e., the patient does not have
the specific combination of genotypes, and the patient is
in the negative group), a false-positive (i.e., the individual
has all the genotypes the given combination, and the
patient is in the negative group) and a false-negative (i.e.

Haploptypes of 3 functional SNPs in CYP1B1, samples in each row, variants in columns, high frequency allele – blue, low fre-quency allele- yellow (A), the extent of linkage disequilibrium, D, D', R and Fisher exact test (B) and association to estradiol levels (C)Figure 6
Haploptypes of 3 functional SNPs in CYP1B1, samples in each row, variants in columns, high frequency allele – blue, low fre-
quency allele- yellow (A), the extent of linkage disequilibrium, D, D', R and Fisher exact test (B) and association to estradiol 
levels (C). The number of individuals representing each haplotype group with estrone (E1) and estradiol (E2) levels above and 
below median are given in the table (C).

   p<0.05
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the patient does not have the specific combination of gen-
otypes and the patient is in the positive group). For a two-
way classification problem, the correlation of a specific
combination of genotypes for each combination of SNPs
may be computed as

Where Ntp, Ntn, Nfn, and Nfp, denotes the number of
patient records which are respectively true-positive, true-
negative, false-negative, and false-positive. The signifi-
cance of a specific combination of polymorphisms with
correlation CorrMAX is defined as the probability of find-
ing a better, or just as good, combination of polymor-
phisms by random. This probability is referred to as the p-
value, and is computed by Monte Carlo simulation. The
steps for the Monte Carlo procedure are as described in
[31]. Briefly, for each individual record, permute the
"above" or "below" labels randomly from the same distri-
bution as in the original data. Calculate CorrMAX for the
permuted data. If CorrMAX for the permuted data is larger
than, or equal to CorrMAX from the original data, count 1;
otherwise count 0. Repeat steps 1, 2 and 3 k times. Esti-
mate the p-value, the total count for CorrMAX divided by
the total number of shuffles k. When computing CorrMAX
for the permuted data, we include all polymorphisms, not
only the polymorphisms in the combination to test the
significance of. The standard value for k(number of
repeated steps) is 2000.

Haplotype analysis
Haplotypes were estimated using PHASE2.0 software.
Linkage disequilibrium and D and D' values were calcu-
lated using DNAsp software. Significance of the linkage
disequilibrium (LD) was estimated using Fisher exact test
with Bonferoni correction for the final p-value.
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