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Abstract
Background: In vitro systems have inherent limitations in their ability to model whole organism
gene responses, which must be identified and appropriately considered when developing predictive
biomarkers of in vivo toxicity. Systematic comparison of in vitro and in vivo temporal gene expression
profiles were conducted to assess the ability of Hepa1c1c7 mouse hepatoma cells to model hepatic
responses in C57BL/6 mice following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

Results: Gene expression analysis and functional gene annotation indicate that Hepa1c1c7 cells
appropriately modeled the induction of xenobiotic metabolism genes in vivo. However, responses
associated with cell cycle progression and proliferation were unique to Hepa1c1c7 cells, consistent
with the cell cycle arrest effects of TCDD on rapidly dividing cells. In contrast, lipid metabolism and
immune responses, representative of whole organism effects in vivo, were not replicated in
Hepa1c1c7 cells.

Conclusion: These results identified inherent differences in TCDD-mediated gene expression
responses between these models and highlighted the limitations of in vitro systems in modeling
whole organism responses, and additionally identified potential predictive biomarkers of toxicity.

Background
Advances in microarray and related technologies continue
to revolutionize biomedical research and are being incor-
porated into toxicology and risk assessment. These tech-
nologies not only facilitate a more comprehensive
elucidation of the mechanisms of toxicity, but also sup-
port mechanistically-based quantitative risk assessment
[1-5]. In addition, these technologies are being used to

develop predictive toxicity screening assays to screen drug
candidates with adverse characteristics earlier in the devel-
opment pipeline in order to prioritize resources and max-
imize successes in clinical trials [6-8]. Comparable
screening strategies are also being proposed to rank and
prioritize commercial chemicals, natural products, and
environmental contaminants that warrant further toxico-
logical investigation. Traditionally, rodent models or sur-
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rogates for ecologically-relevant species are typically used
in regulatory testing. However, public and regulatory pres-
sure, especially in Europe, seek to minimize the use of ani-
mals in testing [9]. Similar policies in the US, such as the
ICCVAM Authorization Act of 2000, provide guidelines to
facilitate the regulatory acceptance of alternative testing
methods. These initiatives combined with the need to
assess an expanding list of drug candidates and commer-
cial chemicals for toxicity, have increased demand for the
development and implementation of high-throughput in
vitro screening assays that are predictive of toxicity in
humans and ecologically-relevant species.

Various in vitro hepatic models including the isolated per-
fused liver, precision cut liver slices, isolated primary liver
cells and a number of immortalized liver cell lines, have
been used as animal alternatives [10]. In addition to pro-
viding a renewable model, in vitro systems are a cost-effec-
tive alternative and are amenable to high-throughput
screening. These models, particularly immortalized cell
lines, also allow for more in-depth biochemical and
molecular investigations, such as over-expression, knock-
down, activation or inhibition strategies, thus further elu-
cidating mechanisms of action. However, inherent limita-
tions in the ability of cell cultures to model whole
organism responses must also be considered when identi-
fying putative biomarkers for high-throughput toxicity
screening assays, and elucidating relevant mechanisms of

toxicity that support quantitative risk assessment. Despite
several in vitro toxicogenomic reports [11-13], few have
systematically examined the ability of in vitro systems to
predict in vivo gene expression profiles in response to
chemical treatment [10,14].

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a wide-
spread environmental contaminant that elicits a number
of adverse effects including tumor promotion, teratogene-
sis, hepatotoxicity, and immunotoxicity as well as the
induction of several metabolizing enzymes [15]. Many, if
not all of these effects, are due to alterations in gene
expression mediated by the aryl hydrocarbon receptor
(AhR), a basic-helix-loop-helix-PAS (bHLH-PAS) tran-
scription factor [15,16]. Ligand binding to the cytoplas-
mic AhR complex triggers the dissociation of interacting
proteins and results in the translocation of the ligand-
bound AhR to the nucleus where it heterodimerizes with
the aryl hydrocarbon receptor nuclear translocator
(ARNT), another member of the bHLH-PAS family. The
heterodimer then binds specific DNA elements, termed
dioxin response elements (DREs), within the regulatory
regions of target genes leading to changes in expression
that ultimately result in the observed responses [17].
Although the role of AhR is well established, the gene reg-
ulatory pathways responsible for toxicity are poorly
understood and warrant further investigation to assess the

Number of genes differentially regulated (P1(t) > 0.9999 and Ifold changel > 1.5-fold) as measured by microarray analysis for the (A) time course and (B) and dose-response studies in mouse hepatoma Hepa1c1c7 cellsFigure 1
Number of genes differentially regulated (P 1(t) > 0.9999 and Ifold changel > 1.5-fold) as measured by microarray analysis for 
the (A) time course and (B) and dose-response studies in mouse hepatoma Hepa1c1c7 cells. For the time course study, cells 
were treated with 10 nM TCDD and harvested at 1, 2, 4, 8, 12, 24 or 48 hrs after treatment. Cells for the 12 hr dose-response 
study were treated with 0.001, 0.01, 0.1, 1.0, 10 and 100 nM of TCDD
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potential risks to humans and ecologically relevant spe-
cies.

Hepa1c1c7 cells and C57BL/6 mice are well-established
models routinely used to examine the mechanisms of
action of TCDD and related compounds. In this study,
TCDD-elicited temporal gene expression effects were sys-
tematically compared in order to assess the ability of
Hepa1c1c7 cells to replicate C57BL/6 hepatic tissue
responses. Our results indicate that several phase I and II
metabolizing enzyme responses are aptly reproduced.
However, many responses were model-specific and reflect
inherent in vitro and in vivo differences that must be con-
sidered in mechanistic studies and during the selection of
biomarkers for developing toxicity screening assays.

Results
In vitro microarray data analysis
Temporal gene expression profiles were assessed in
Hepa1c1c7 wild type cells following treatment with 10
nM TCDD using cDNA microarrays with 13,362 spotted
features. Empirical Bayes analysis of the in vitro time
course data identified 331 features representing 285
unique genes with a P1(t) value greater than 0.9999 at one
or more time points, and differential expression greater
than ± 1.5 fold relative to time-matched vehicle controls.
The number of differentially regulated genes gradually
increased from 1 to 24 hrs, followed by a slight decrease
at 48 hrs (Figure 1A). In vitro dose-response data per-
formed at 12 hrs with TCDD covering 6 different concen-
trations (0.001, 0.01, 0.1, 1.0, 10 and 100 nM), identified
181 features representing 155 unique genes (P1(t) >
0.9999 and an absolute fold change > 1.5 at one or more
doses; Figure 1B). Complete in vitro time course and dose-
response data are available in Additional file 1 and 2,
respectively.

As a control, the gene expression effects elicited by 10 nM
TCDD in ARNT-deficient c4 Hepa1c1c7 mutants [18]
were examined at 1 and 24 hrs (data not shown). Only
ATPase, H+ transporting, V1 subunit E-like 2 isoform 2
(Atp6v1e2) and SUMO/sentrin specific peptidase 6
(Senp6) exhibited a significant change in expression using
the same criteria (P1(t) > 0.9999 and an absolute fold
change > 1.5). Neither Atp6v1e2 nor Senp6 were among
the active genes in wild-type Hepa1c1c7 cells or in C57BL/
6 liver samples [19]. These results provide further evi-
dence that the AhR/ARNT signaling pathway mediates
TCDD-elicited gene expression responses, which are con-
sistent with in vivo microarray results with AhR knockout
mice [20].

Hierarchical clustering of the genes expressed in
Hepa1c1c7 time course indicate that 2 and 4 hrs were
most similar, as were 8 and 12 hrs, and 24 and 48 hrs,

while the 1 hr time point was segregated (Figure 2A). A
strong dose-response relationship was also evident with
clusters sequentially branching out with increasing con-
centration (Figure 2B). At 12 hrs, 117 genes were differen-
tially expressed with 112 exhibiting a dose-dependent
response. Moreover, the fold changes measured in both
the time course and dose-response studies using 10 nM
TCDD were comparable. For example, xanthine dehydro-
genase (Xdh) and NAD(P)H dehydrogenase, quinone 1
(Nqo1) were induced 2.39- and 4.89-fold respectively in
the time course and 2.93- and 4.71-fold in the dose-
response study. There is a strong correlation (R = 0.97)
between the differentially expressed genes at 12 hrs in the
time course with the differentially regulated genes in the
dose-response study at 10 nM, demonstrating the repro-
ducibility between independent studies and providing
further evidence that these genes are regulated by TCDD.

The list of temporally regulated genes was subjected to k-
means clustering using the standard correlation distance
metrics. Five k-means clusters best characterized the data-
set and identified clusters representing A) up-regulated
early and sustained, B) up-regulated intermediate and sus-
tained, C) up-regulated intermediate, D) up-regulated
immediate and E) down-regulated late (Figure 3). These
were comparable to the k-means clusters identified in
hepatic tissue of C57BL/6 mice following treatment with
30 µg/kg TCDD [19]. Although, no discernable functional
category is over-represented in any one cluster, the sus-
tained up-regulation of early (Cluster A) and intermediate
(Cluster B) responding genes include classic TCDD-
responsive genes such as cytochrome P450, family 1, sub-
family a, polypeptide 1 (Cyp1a1), Xdh and Nqo1. Many
down-regulated late genes were associated with cell cycle
regulation such as myelocytomatosis oncogene (Myc).
Additionally, targets of Myc, including cyclin D1 and orni-
thine decarboxylase (Odc1), were also down-regulated
suggesting a mechanism for cell cycle arrest [21-23], a
common in vitro response to TCDD.

Classification of gene expression responses for common 
regulated genes
Using the same filtering criteria (P1(t) > 0.9999 and an
absolute fold change > 1.5), 678 features representing 619
unique genes were differentially expressed as previously
reported in a time course study conducted in hepatic tis-
sue from C57BL/6 mice orally gavaged with 30 µg/kg
TCDD [19]. The number of responsive in vivo genes and
their temporal expression patterns closely paralleled the
results from this in vitro study. The fewest number of active
genes was observed at 2 hrs, followed by a large increase
at 4 hrs, which was sustained to 72 hrs. However, the sub-
stantial increase in expressed in vivo genes at 168 hrs was
attributed to triglyceride accumulation and immune cell
infiltration, which was not observed in Hepa1c1c7 cells.
Page 3 of 18
(page number not for citation purposes)



BMC Genomics 2006, 7:80 http://www.biomedcentral.com/1471-2164/7/80
This list of 619 of in vivo genes served as the basis for sub-
sequent comparisons against TCDD-elicited in vitro
responses.

Comparison of in vitro and in vivo differentially expressed
gene lists identified common and model specific
responses (Figure 4A). TCDD treatment resulted in a total
of 838 regulated genes in either model and with 67 com-
mon to both. TCDD elicited 218 gene expression changes
unique to Hepa1c1c7 cells while 552 genes were specific
to C57BL/6 hepatic samples. Although 67 genes were reg-
ulated in both models, not all possessed similar temporal
patterns of expression. Contingency analysis using a 2 × 2
table and the χ2 test resulted in a p-value < 0.001 (α =
0.05) illustrate a statistically significant association
between the lists of differentially regulated genes in vitro
and in vivo. Further stratification revealed genes that were
either induced in both models (class I), repressed in both
models (class II), induced in vivo while repressed in vitro
(class III), or repressed in vivo while induced in vitro (class
IV; Figure 4B). Genes regulated in a similar fashion in
both models (classes I and II) accounted for 49 of the 67
common active genes, while the remaining genes exhib-
ited divergent expression profiles (classes III and IV).
Hierarchical clustering of the temporal expression values
for the 67 overlapping genes identified the same four
classes (Figure 4C). The pattern across model and time
illustrates that the earliest time points (i.e. 1 hr in vitro and
2 hr in vivo time points) cluster together while the remain-
ing clusters branch into in vitro or in vivo clusters according
to time. These results suggest that potential biomarkers of
acute TCDD-mediated responses may best be predicted by
the immediate-early in vitro gene responses.

In vitro and in vivo induced genes (class I) include xenobi-
otic and oxidoreductase enzymes such as abhydrolase
domain containing 6 (Abhd6), Cyp1a1, dehydrogenase/
reductase (SDR family) member 3 (Dhrs3), Nqo1, pros-
taglandin-endoperoxide synthase 1 (Ptgs1), UDP-glucose
dehydrogenase (Ugdh) and Xdh (Table 1). These genes
have previously been reported to be TCDD-responsive
[19,24], with Cyp1a1 and Nqo1 being members of the
"AhR gene battery" [25]. Glutathione S-transferase, alpha
4 (Gsta4) was also induced in vitro and in vivo, 1.7- and
2.0-fold respectively, consistent with TCDD-mediated
induction of phase I and II metabolizing enzymes. Of the
35 genes responding similarly in both models, approxi-
mately 71% of were similarly up-regulated (class I) while
the remaining genes were repressed across both models
(class II). Repressed class II genes include minichromo-
some maintenance deficient 6 (Mcm6), glycerol kinase
(Gyk) and ficolin A (Fcna) (repressed 1.6-, 1.6- and 1.7-
fold in vitro, respectively). Overall, repressed genes did not
share any common discernable biological function.

Forty-two of the 67 common differentially expressed
genes were dose responsive at 12 and 24 hrs in vitro and in
vivo, respectively, further suggesting the role of the AhR in
mediating these responses. Microarray-based EC50 values
spanned at least 3 orders of magnitude ranging from 0.05
µg/kg to >150 µg/kg in vivo, and 0.00118 nM to 2.4 nM in
vitro (Table 1). Cyp1a1, the prototypical marker of TCDD
exposure, had EC50 values of 0.05 µg/kg and 0.014 nM, in
vivo and in vitro respectively, and was induced 38-fold in
both time course studies. Complete data sets for the in vivo
time course and dose-responses experiments are available
in Additional file 3 and 4.

Of the 67 overlapping genes, 18 exhibited divergent tem-
poral profiles (classes III and IV). Class III contains 12
genes induced in vivo but repressed in vitro, while 6 were
repressed in vivo and induced in vitro (class IV). Example
genes include Myc (class III) and B-cell translocation gene
2 (Btg2, class IV) which are both involved in regulating
cell cycle progression [23,26-30]. Myc was induced 3.7-
fold in vivo and repressed 2.2-fold in vitro, while Btg2 was
repressed 1.8-fold in vivo and induced 1.5-fold in vitro.

In addition to the regulated genes common to both mod-
els, 218 in vitro- and 559 in vivo-specific genes were iden-
tified. Many of the unique in vitro responses are involved
in cell cycle regulation, including cyclins D1 and B2
(Table 2). Cyclin D1, which complexes with cyclin-
dependent kinase 4 (Cdk4) to regulate the progression
from G1 to S phase [31,32], was down-regulated early and
repressed 1.7-fold to 48 hrs. Furthermore, cyclin B2 and
cell division cycle 2 homolog A (Cdc2a) which interact to
form an active kinase required for G2 promotion, were
down-regulated, 1.8-fold and 1.5-fold, respectively. In
addition to cell cycle related genes, UDP glucuronosyl-
transferase 1 family, polypeptide A2 (Ugt1a2), a phase II
metabolizing enzyme, was induced 2.8-fold in vitro, but
not significantly regulated in vivo.

Analysis of the C57BL/6 hepatic time course identified
552 unique genes that were solely regulated in vivo. This
included TCDD induced transcripts for microsomal epox-
ide hydrolase 1 (Ephx1) and carbonyl reductase 3 (Cbr3)
which both function as xenobiotic metabolizing enzymes.
Notch gene homolog 1 (Notch1) and growth arrest spe-
cific 1 (Gas1) which are both associated with develop-
ment and differentiation but serve undetermined roles in
the liver, were also induced by TCDD (Table 3). Genes
related to immune cell accumulation were also specific to
the in vivo study, coincident with immune cell accumula-
tion at 168 hr as determined by histopathological exami-
nation [19].
Page 4 of 18
(page number not for citation purposes)



BMC Genomics 2006, 7:80 http://www.biomedcentral.com/1471-2164/7/80
Comparison of basal gene expression levels in Hepa1c1c7 
cells and hepatic tissue
In order to further investigate differences in gene expres-
sion levels, Hepa1c1c7 cells and C57BL/6 liver samples
were directly compared by competitive hybridization on
the same array, to identify basal gene expression level dif-
ferences. Subsequent linear regression analysis of the
mean normalized signal intensities from the untreated
samples resulted in a correlation value of R = 0.75 (Figure
5), which is consistent with basal gene expression com-
parisons of various in vitro rat hepatic systems against
whole livers, where correlation values decreased between
liver slices (R = 0.97), primary cells (R = 0.85), BRL3A (R
= 0.3) and NRL clone 9 (R = 0.32) rat liver cell lines [10].
Overall, the correlation illustrates reasonable concord-
ance in basal gene expression levels between the two mod-
els. However, data points which deviate from the fitted
line indicate differences in the basal expression of individ-
ual genes between the Hepa1c1c7 cells and hepatic tissue
from C57BL/6 mice. Although there are differences, they

may be negligible if the TCDD-elicited responses are con-
served in vitro and in vivo. Complete microarray data for
the untreated comparisons are available in Additional file
5.

The relative basal expression of the 67 common active fea-
tures was further investigated (Figure 5). In general, class
I (i.e. induced in both models) genes fell close to the
regression line, indicating that the basal expression of
induced genes were comparable as were their in vitro and
in vivo responses to TCDD. In contrast, basal expression
levels of class III genes (i.e. induced in vivo while repressed
in vitro) were generally higher in the Hepa1c1c7 cells,
while levels in class II and IV (i.e. repressed in both mod-
els and repressed in vivo while induced in vitro, respec-
tively) genes were scattered around the fitted linear line in
Figure 5.

Hierarchical clustering of the differentially regulated gene lists for A) temporal and B) dose-response microarray studies in mouse hepatoma Hepa1c1c7 cellsFigure 2
Hierarchical clustering of the differentially regulated gene lists for A) temporal and B) dose-response microarray studies in 
mouse hepatoma Hepa1c1c7 cells. The results illustrate time and dose-dependent clustering patterns. From the A) temporal 
results, the early (2 hr and 4 hr), intermediate (8 hr and 12 hr) and late (24 hr and 48 hr) time points cluster separately while 
the 1 hr time point clusters alone. Results from the B) dose-response show that highest doses clustered together, while the 
remaining doses branched out in a dose-dependent manner
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Quantitative real-time PCR verification of microarray 
responses
In total, 14 in vitro and 24 in vivo responsive genes repre-
senting common and model-specific genes were verified
by quantitative real-time PCR (QRTPCR) (see Additional
file 6). Of the selected genes regulated in both models, all
displayed temporal patterns comparable to the microar-
ray data (Figure 6). For example, Xdh, Myc and fatty acid
binding protein (Fabp5) exhibited good agreement in
fold change and temporal expression pattern when com-
paring microarray and QRTPCR data. However, signifi-
cant data compression was evident when comparing in
vitro and in vivo Cyp1a1 induction by QRTPCR, although
in vitro and in vivo microarray induction levels were com-
parable. Previous studies suggest this is likely due to the
limited fluorescence intensity range (0 – 65,535) of
microarrays resulting in signal saturation and compres-

sion of the true magnitude of induction of transcript levels
[33,34]. Cross hybridization of homologous probes to a
given target sequence on the microarray may also be a
contributing factor, especially in comparison to other,
more gene-specific measurement techniques [35].

Discussion
Microarrays have become an invaluable tool in toxicoge-
nomics for comprehensively characterizing gene expres-
sion responses following treatment with an
environmental contaminant, commercial chemical, natu-
ral product or drug as well as for investigating complex
mixtures relevant to human and wildlife exposures. An
emerging consensus suggests that toxicogenomics will
accelerate drug development and significantly improve
quantitative risk assessments [36,37]. In addition, toxi-
cogenomics supports the development and refinement of

K-means clustering of temporally differentially regulated genes in vitroFigure 3
K-means clustering of temporally differentially regulated genes in vitro. Five k-mean clusters corresponding to (A) up-early and 
sustained, (B) up-intermediate and sustained, (C) up-regulated intermediate, (D) up-regulated immediate and (E) down-regu-
lated late. Time and expression ratio are indicated on the x- and y-axis respectively. The color of individual gene expression 
profiles reflects the expression ratio observed at 24 hrs
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Comparison of common significant in vitro and in vivo TCDD elicited time-dependent gene expression changesFigure 4
Comparison of common significant in vitro and in vivo TCDD elicited time-dependent gene expression changes. A) 285 differen-
tially regulated in vitro genes and 619 differentially regulated in vivo genes were identified, with 67 genes common to both stud-
ies. B) The temporal gene expression profiles from both studies were categorized into (I) induced in both, (II) repressed in 
both, (III) induced in vivo and repressed in vitro, and (IV) repressed in vitro and induced in vivo. C) Hierarchical clustering identi-
fied similar classification groups. Clustering across both time and model, separated samples from in vitro and in vivo, with the 
exception of the early time points from both studies (1 hr in vitro and 2 hr in vivo), which clustered together. * identifies in vitro 
time points
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Table 1: Classification of common differentially regulated temporal gene expression responses to TCDD in both in vitro and in vivo 

Accession Gene name Gene symbol Entrez Gene ID In vivo

Fold changea Time pointsb EC50c,d (µg/kg)
I) Induced both in vivo and in vitroe

BE689910 RIKEN cDNA 2310001H12 gene 2310001H12Rik 69504 2.7 2f, 168 48.02
BF226070 RIKEN cDNA 2600005C20 gene 2600005C20Rik 72462 2.1 4, 12, 18, 24f, 72, 168 2.18
AI043124 RIKEN cDNA 2810003C17 gene 2810003C17Rik 108897 1.6 12f 37.02
AW537038 expressed sequence AA959742 AA959742 98238 7.2 4, 8, 12f, 18, 24, 72, 168 1.71
W34507 abhydrolase domain containing 6 Abhd6 66082 1.7 4, 8f, 12, 18, 24, 72, 168 154.30
NM_02641
0

cell division cycle associated 5 Cdca5 67849 8.8 4, 8, 12, 18, 24, 72f, 168 ND

BG063743 craniofacial development protein 
1

Cfdp1 23837 3.6 4, 8, 12f, 18, 24, 72, 168 14.27

AA073604 procollagen, type I, alpha 1 Col1a1 12842 1.7 18, 24, 72f 0.65
NM_00999
2

cytochrome P450, family 1, 
subfamily a, polypeptide 1

Cyp1a1 13076 38.4 2, 4, 8, 12, 18, 24f, 72, 
168

0.05

BE457542 Dehydrogenase/reductase (SDR 
family) member 3

Dhrs3 20148 2.0 4, 8, 12f, 18, 72, 168 0.67

AW552715 DnaJ (Hsp40) homolog, subfamily 
B, member 11

Dnajb11 67838 1.7 12, 18, 24f,168 3.95

AK015223 dermatan sulphate proteoglycan 3 Dspg3 13516 6.2 4, 8, 12, 18, 24f, 72, 168 0.13

NM_00865
5

growth arrest and DNA-damage-
inducible 45 beta

Gadd45b 17873 4.6 2f, 4, 72 133.30

W54349 glutathione S-transferase, alpha 4 Gsta4 14860 2.0 18, 24, 72f 0.48
BG067127 interferon regulatory factor 1 Irf1 16362 1.5 168f ND
AA015278 integrin beta 1 (fibronectin 

receptor beta)
Itgb1 16412 1.6 4, 18, 24, 168f 97.23

AA041752 Jun proto-oncogene related gene 
d1

Jund1 16478 2.0 12f, 18, 24 0.99

BF538945 lectin, mannose-binding, 1 Lman1 70361 1.9 12, 72, 168f 13.49
BG066626 lipin 2 Lpin2 64898 3.0 4, 12, 24f, 72 3.13

BI440950 leucine rich repeat containing 39 Lrrc39 109245 2.9 2f, 4 49.71
AW413953 mitochondrial ribosomal protein 

L37
Mrpl37 56280 8.3 2, 4, 8f, 12, 18, 24, 72, 

168
8.77

BE623489 NAD(P)H dehydrogenase, 
quinone 1

Nqo1 18104 4.6 4, 8, 12f, 18, 24, 72, 168 1.00

NM_02655
0

PAK1 interacting protein 1 Pak1ip1 68083 3.8 4, 8, 12, 18, 24, 72f, 168 0.26

AA152754 prostaglandin-endoperoxide 
synthase 1

Ptgs1 19224 1.6 168f 1.11

BG063583 solute carrier family 20, member 
1

Slc20a1 20515 2.2 2, 4f, 8 ND

AJ223958 solute carrier family 27 (fatty acid 
transporter), member 2

Slc27a2 26458 1.9 12f, 18, 24, 72, 168 2.88
B
M
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1.7 48f 3.06

1.7 4f, 8, 12 14.69
6.4 1, 2f, 4, 8, 12, 

24, 48
18.03

6.3 2, 4f, 8, 12, 24, 
48

41.15

1.5 2, 4, 8, 12f, 48 4.33
4.2 2, 4, 8, 12, 24, 

48f
17.44

2.6 4, 8, 12, 24, 48f 34.92
1.7 1, 2f 2427.00

1.5 2f ND

-1.8 8, 12f 25.67
-1.6 8f, 12 ND

-1.7 12, 24f ND
-1.5 24f, 48 ND
-1.7 24, 48f 116.40
-1.6 24f ND
-1.5 24, 48f ND
-1.6 48f 78.29
-1.6 8f 58.04

-1.6 24, 48f ND

-1.6 8f ND

-1.7 4f 66.61
-1.6 48f ND
-2.0 8, 12f 153.90

-1.8 24f, 48 55.96
-1.7 24, 48f 25.19
-2.7 12, 24f 75.21

-1.9 8, 12f, 24 54.14

-1.5 8f 40.49

-1.5 24, 48f 88.83
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BG066820 solute carrier family 6 
(neurotransmitter transporter, 
taurine), member 6

Slc6a6 21366 1.8 4f, 12 2.48

AI592773 suppression of tumorigenicity 5 St5 76954 1.6 8, 12f 28.85
BG067168 TCDD-inducible poly(ADP-

ribose) Polymerase
Tiparp 99929 10.3 2, 4f, 12, 18, 24, 72, 168 36.49

BG065761 tumor necrosis factor, alpha-
induced protein 2

Tnfaip2 21928 5.5 2, 4f, 12, 18, 72 36.41

AA067191 UDP-glucose dehydrogenase Ugdh 22235 3.1 4, 8, 12 f, 18, 24, 72, 168 0.79
NM_01170
9

whey acidic protein Wap 22373 5.9 2, 4, 8, 12, 18, 24, 72, 
168f

0.12

BG075778 Xanthine dehydrogenase Xdh 22436 2.7 4, 8, 12f, 18, 24, 72, 168 1.24
BG073881 zinc finger protein 36, C3H type-

like 1
Zfp36l1 12192 2.2 2f ND

AA031146 zinc finger protein 672 Zfp672 319475 1.6 4f 3.09

II) Repressed both in vivo and in vitroe

BG146493 RIKEN cDNA 6330406L22 gene 6330406L22Rik 70719 -1.5 18f 0.51
AA140059 DNA methyltransferase 

(cytosine-5) 1
Dnmt1 13433 -1.9 168f ND

AI327022 ficolin A Fcna 14133 -1.6 18, 24f ND
AA288963 fibrinogen-like protein 1 Fgl1 234199 -1.9 24f ND
BE626913 GTP binding protein 6 (putative) Gtpbp6 107999 -3.4 24, 72f ND
AA275564 glycerol kinase Gyk 14933 -1.5 12f 10.2
BG070106 lipocalin 2 Lcn2 16819 -2.8 24f ND
AW049427 leucine zipper domain protein Lzf 66049 -1.6 24f ND
AA016759 minichromosome maintenance 

deficient 6
Mcm6 17219 -1.6 18f 3.34

BF011268 mitochondrial methionyl-tRNA 
formyltransferase

Mtfmt 69606 -1.8 24, 72f, 168 ND

AA683699 RNA (guanine-7-) 
methyltransferase

Rnmt 67897 -2.0 12f ND

syntrophin, gamma 1 Sntg1 71096 -1.6 24f 15.27
AA199550 syntaxin 12 Stx12 100226 -1.5 18f ND
AA047942 thymidine kinase 1 Tk1 21877 -1.7 18f, 24, 72 0.34

III) Induced in vivo and repressed in vitroe

AA122925 carbonic anhydrase 2 Car2 12349 2.4 12, 72, 168f 2.00
AI327078 coactosin-like 1 Cotl1 72042 1.6 168f ND
NM_00793
5

enhancer of polycomb homolog 1 Epc1 13831 1.6 168f 1.16

BC002008 fatty acid binding protein 5, 
epidermal

Fabp5 16592 3.9 8, 12f 2.43

NM_02632
0

growth arrest and DNA-damage- 
inducible, gamma interacting 
protein 1

Gadd45gip1 102060 1.8 168f 4.67

W11419 inhibitor of DNA binding 3 Id3 15903 1.8 168f 0.34

Table 1: Classification of common differentially regulated temporal gene expression responses to TCDD in both in vitro and in vivo 
B
M

C AA009268 myelocytomatosis oncogene Myc 17869 3.7 4, 12f, 168 5.59 -2.2 2f 148.40
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NM_01103
3

poly A binding protein, 
cytoplasmic 2

Pabpc2 18459 7.0 2f ND

REST corepressor 1 Rcor1 217864 1.9 4, 8, 18, 72, 168 3.70
BE980584 secretory granule neuroendocrine 

protein 1, 7B2 protein
Sgne1 20394 3.3 168f 0.74

AA462951 transcription factor 4 Tcf4 21413 1.6 12f, 168 5.77
AA003942 tenascin C Tnc 21923 1.6 168f 0.37

IV) Repressed in vivo and induced in vitroe

W36712 B-cell translocation gene 2, anti- 
proliferative

Btg2 12227 -1.8 18f, 24 ND

AA174215 cathepsin L Ctsl 13039 -1.6 24f, 72, 168 ND
AA419858 cysteine rich protein 61 Cyr61 16007 -1.6 2f 0.07
AW488956 polo-like kinase 3 Plk3 12795 -1.6 4f ND
BG068288 solute carrier organic anion 

transporter family, member 1b2
Slco1b2 28253 -1.7 8f, 12, 18, 24, 72, 168 ND

NM_01147
0

small proline-rich protein 2D Sprr2d 20758 -1.6 18f, 72 1.97

aMaximum absolute fold change determined by microarray analysis
bTime point where genes are differentially regulated with P1(t) > 0.9999 and |fold change| > 1.5
cEC50 valued determined from microarray results
dND = not determined from microarray results
eClassification groups as defined in Figure 4B
fTime point representing the maximum |fold change|

Table 1: Classification of common differentially regulated temporal gene expression responses to TCDD in both in vitro and in vivo 
B
M

C
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predictive in vitro high-throughput toxicity screening
assays that can be used as alternatives to traditional in vivo
testing. Ideally, in vitro high-throughput toxicity screens
can be used to rank and prioritize drug candidates, envi-
ronmental contaminants, and commercial chemicals,
which warrant further development or testing. Although
in vitro responses are assumed to reflect a subset of com-
parable in vivo responses, few studies have completed a
comprehensive and systematic comparison. This study
closely examined two well-established models, and com-
prehensively compared the TCDD-elicited gene expres-
sion to assess the predictive value of in vitro systems.

Comparative analysis of Hepa1c1c7 cell and hepatic
C57BL/6 microarray data identified 67 differentially
expressed genes co-regulated by TCDD. Four classes based
on their temporal expression patterns were identified (Fig-
ure 4B and 4C), with 42 of the 67 common regulated
genes exhibiting dose-response characteristics in both
models. In vitro EC50 values ranged from 0.001182 nM to
2.4 nM, while in vivo the values ranged from 0.05 µg/kg to
>150 µg/kg. The wide range of EC50 values illustrate the
varying sensitivity of regulated genes to TCDD in both
models.

Hepa1c1c7 cells and hepatic tissue from C57BL/6 mice
are the prototypical models used to investigate the mech-
anisms of action of TCDD and other related compounds
and both exhibited the classic induction of phase I and II
metabolizing enzymes including Cyp1a1 and Nqo1
[38,39]. Gsta4 and Xdh were also up-regulated in both
models further demonstrating Hepa1c1c7 cells as a suita-
ble model for investigating TCDD-regulated induction of
xenobiotic metabolizing genes. In addition to these genes,
the responses of Nqo1, Ugdh and Tnfaip2 were also con-
served across models and were categorized as class I genes
(similarly induced in both models; Figure 4B and 4C).
However, Gsta2 was induced in vivo while no significant
effect was detected in Hepa1c1c7 cells, and Ugt1a2 was
induced in vitro but not differentially expressed in C57BL/
6 hepatic tissue. Although many phase I and II metaboliz-
ing enzyme responses were conserved, differences exist
that may limit Hepa1c1c7 cells from accurately modeling
the full spectrum of in vivo hepatic responses elicited by
TCDD.

A direct comparison of untreated Hepa1c1c7 cells and
C57BL/6 hepatic tissue was performed to further investi-
gate innate differences between the two models. Compar-
ison of the normalized signal intensities revealed a good
correlation (R = 0.75) between in vitro and in vivo basal
expression levels (Figure 5). This illustrates that many
genes are basally expressed to similar levels in both mod-
els as illustrated by the cluster of class I (similarly induced
genes) closely surrounding the fitted line. Although a cor-

relation exists, there are still differences in basal expres-
sion which may be associated with the origins of the
models (i.e. normal hepatic tissue versus hepatoma
derived Hepa1c1c7 cells), as well as the inability of in vitro
systems to effectively model complex interactions
between different cell types (e.g. Kupffer and stellate
cells). For example, Myc, a G1 to S phase cell cycle regula-
tor [23,26-29], was repressed in vitro while being induced
in vivo and the model-specific responses may be related to
difference in basal expression levels between the two
models (Table 1). The levels of Myc transcripts in
untreated Hepa1c1c7 cells were higher relative to
untreated C57BL/6 hepatic tissue, consistent with the pro-
liferative state of the in vitro system (data not shown).
Examination of other class III genes suggests that they are
more highly expressed in vitro when compared to in vivo
(Figure 5). Consequently, differences in basal expression
may be a factor contributing to divergent in vitro – in vivo
responses. Another possible source for the model-specific
responses may be related to DNA methylation status of
the promoter region of TCDD-responsive genes in either
model. DNA methylation results in gene silencing [40,41]
and a previous study with Hepa1c1c7 has shown that
TCDD-elicited gene expression responses are influenced
by DNA methylation status [42]. The differing methyla-
tion states between the in vitro and in vivo systems may fur-
ther contribute to the model-specific gene expression
responses.

Many in vitro specific gene expression responses elicited by
TCDD were associated with cell cycle progression and cell
cycle arrest. Myc and its downstream target, cyclin D1,
which forms a kinase complex with Cdk4 [43,44] were
both repressed by TCDD. In contrast, Cdkn1a, an inhibi-
tor of cyclin-dependent kinase 2 (Cdk2)-cyclin E complex
kinase activity [43], was induced. Inactivation of the
Cdk2-cyclin E complex prevents the phosphorylation of
pRb resulting in cell cycle arrest during G1. Additionally,
the in vitro induction of Btg2 suggests an alternative mech-
anism for cell cycle arrest during the G2 phase. Constitu-
tively active BTG2 in human leukemia U937 cells, induces
G2/M cell cycle arrest by inhibiting the formation of the
cyclin B1 and Cdc2 complex, thereby inhibiting the active
kinase function of the complex [30]. Collectively, these
results corroborate and extend previous in vitro TCDD-
mediated cell cycle arrest studies [45-48].

TCDD treatment resulted in a number of divergent gene
responses across both models as represented by classes III
and IV (Figures 4B and 4C). Genes related to immune cell
accumulation, including major histocompatibility com-
plex (MHC) molecules were only observed in vivo, and are
likely a response to hepatic damage mediated by ROS or
fatty accumulation and therefore independent of direct
AhR action [19]. This is characteristic of the complex inter-
Page 11 of 18
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action between different cell types responding to liver
injury that cannot be modeled in homogenous cultures of
cells.

Pharmacokinetics may also contribute to response differ-
ences between the two models. Hepa1c1c7 cells were
directly treated, whereas in vivo, TCDD must first be deliv-
ered to the liver and targeted cells prior to eliciting its
effects. Additionally, C57BL/6 studies were able to be car-
ried out to 168 hrs following TCDD treatment, while in
vitro studies were limited to 48 hrs to minimize poten-
tially confounding effects due to cell confluency. How-
ever, early responses associated with classes I and II
(induced or repressed in both models; Figure 4B and 4C)
are well conserved and exhibit comparable levels of
induction or repression in both models. Hierarchical clus-
tering of the common active genes (Figure 4C) illustrates
gene induction occurs early while gene repression occurs
later in both models. Clustering across both time and
model revealed that gene expression profiles at 1 hr in
vitro and 2 hr in vivo were most similar. This clustering pat-
tern implies that early in vitro responses may accurately
model early in vivo gene expression effects.

Conclusion
Comparative analysis of global gene expression from
Hepa1c1c7 cells and hepatic tissue from C57BL/6 mice
identified several model-specific responses to TCDD that
should be considered when extrapolating in vitro results to
potential in vivo effects. Despite these differences, immor-
talized cells as well as other emerging in vitro systems (e.g.,

primary cells, stem cells and 3-D culture systems) provide
valuable mechanistic information that supports the fur-
ther development of high-throughput toxicity screening
assays. However, the relevance of in vitro responses
requires complementary in vivo verification. Furthermore,
comparative studies exploiting other in vitro and in vivo
systems, different structurally diverse ligands and other
relevant model species will not only corroborate the rele-
vance of the mechanisms, but will also support more
appropriate extrapolations between rodent studies and
potential effects in humans and ecologically-relevant spe-
cies.

Methods
Culture and treatment of cell lines
Hepa1c1c7 wild-type and c4 ARNT-deficient cell lines
(gifts from O. Hankinson, University of California, Los
Angeles, CA) were maintained in phenol-red free DMEM/
F12 media (Invitrogen, Carlsbad, CA) supplemented with
5% fetal bovine serum (FBS) (Hyclone, Logan, UT), 2.5
µg/mL amphotericin B (Invitrogen), 2.5 µg/mL ampho-
tericin B (Invitrogen), 50 µg/mL gentamycin (Invitrogen),
100 U/mL penicillin and 100 µg/mL streptomycin (Invit-
rogen). 1 × 106 cells were seeded into T175 culture flasks
(Sarstedt, Newton, NC) and incubated under standard
conditions (5% CO2, 37°C). Time course studies were
performed with wild-type and c4 mutant cells where both
were dosed with either 10 nM TCDD (provided by S. Safe,
Texas A&M University, College Station, TX) or DMSO
(Sigma, St. Louis, MO) vehicle and harvested at 1, 2, 4, 8,
12, 24 or 48 hrs. Additional untreated control cells were

Table 2: Examples of TCDD-elicited gene expression responses unique to Hepa1c1c7 cells

Accession Gene name Gene Symbol Entrez Gene ID Fold changea Time pointsb (hrs)

AA111722 cyclin D1 Ccnd1 12443 -1.7 4, 8, 12, 24c, 48
AA914666 cyclin-dependent 

kinase inhibitor 2B 
(p15, inhibits CDK4)

Cdkn2b 12579 2.4 4c, 8, 48

BC008247 cyclin B2 Ccnb2 12442 -1.8 24c

BG064846 cell division cycle 2 
homolog A (S. pombe)

Cdc2a 12534 -1.5 12, 24c

AA011839 minichromosome 
maintenance deficient 
2 mitotin (S. 
cerevisiae)

Mcm2 17216 -1.8 8c, 12

BG074721 minichromosome 
maintenance deficient 
7 (S. cerevisiae)

Mcm7 17220 -1.7 8, 12c, 24

AA003042 myeloblastosis 
oncogene-like 2

Mybl2 17865 -2.2 8c, 12, 24

L27122 UDP 
glucuronosyltransferas
e 1 family, polypeptide 
A2

Ugt1a2 22236 2.8 4, 8, 12c, 24, 48

aMaximum absolute fold change determined by microarray analysis
bDifferentially regulated genes with P1(t) > 0.9999 and |fold change| > 1.5
cTime point representing the maximum |fold change|
Page 12 of 18
(page number not for citation purposes)



BMC Genomics 2006, 7:80 http://www.biomedcentral.com/1471-2164/7/80
harvested at the time of dosing (i.e. 0 hrs). For the dose-
response study, wild-type cells were treated with DMSO
vehicle or 0.001, 0.01, 0.1, 1.0, 10 or 100 nM TCDD and
harvested at 12 hrs. The treatment and harvesting regimen
for cell culture studies are illustrated in Additional file 7.

Animal treatment
The handling and treatment of female C57BL/6 mice has
been previously described [19]. Briefly, immature ovariec-
tomized mice were orally gavaged with 30 µg/kg TCDD
for the time course study and sacrificed at 2, 4, 8, 12, 18,
24 72 or 168 hrs after treatment. For the dose-response
study, mice were treated with 0.001, 0.01, 0.1, 1, 10, 100
or 300 µg/kg TCDD and sacrificed 24 hrs after dosing.
Animals were sacrificed by cervical dislocation and tissue
samples were removed, weighed, flash frozen in liquid
nitrogen and stored at -80°C until further use.

RNA isolation
Cells were harvested by scraping in 2.0 mL of Trizol Rea-
gent (Invitrogen). Frozen liver samples (approximately 70
mg) were transferred to 1.0 mL of Trizol Reagent and
homogenized in a Mixer Mill 300 tissue homogenizer
(Retsch, Germany). Total RNA from each study was iso-
lated according to the manufacturer's protocol with an
additional acid phenol:chloroform extraction. Isolated
RNA was resuspended in The RNA Storage Solution
(Ambion Inc., Austin, TX), quantified (A260), and assessed
for purity by determining the A260/A280 ratio and by visual
inspection of 1.0 µg on a denaturing gel.

Microarray experimental design
Changes in gene expression were assessed using custom-
ized cDNA microarrays containing 13,362 features repre-
senting 8,284 unique genes. For the time course study,
TCDD-treated samples were compared to time-matched
vehicle controls using an independent reference design
[49]. In this design, treated Hepa1c1c7 cell or hepatic tis-

Comparison of Hepalclc7 cell and C57BL/6 hepatic tissue basal gene expressionFigure 5
Comparison of Hepalclc7 cell and C57BL/6 hepatic tissue basal gene expression. Untreated samples from Hepalclc7 cells and 
hepatic tissue from immature ovariectomized C57BL/6 mice taken at 0 hrs were competitively hybridized to the 13,362 feature 
cDNA microarray. Log2 normalized signal intensities were plotted for in vitro versus in vivo data to generate the correlation 
coefficient. The linear correlation coefficient R was 0.75 between in vitro and in vivo models
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sue samples were compared to the corresponding time-
matched vehicle control with two independent labelings
(dye swaps; Additional file 8). Four replicates of this
design were performed, each using independent cell cul-
ture samples or different animals. Dose-response changes
in gene expression were analyzed using a common refer-
ence design in which samples from TCDD-treated cells or
mice were co-hybridized with a common vehicle reference
(i.e. independent DMSO treated Hepa1c1c7 cell samples,
hepatic samples from independent sesame oil treated
C57BL/6 mice) using two independent labelings (Addi-
tional file 8). Four replicates with two independent labe-
lings were performed for both in vitro and in vivo samples.
Co-hybridizations of untreated Hepa1c1c7 cells and
hepatic tissue from C57BL/6 mice were performed to
investigate differences in basal gene expression levels
between models (Additional file 8). Four replicates were
performed with two independent labelings per sample
(dye swap).

More detailed protocols regarding the microarray assay,
including microarray preparation, labeling of the cDNA
probe, sample hybridization and washing can be
obtained from the dbZach website [50]. Briefly, polymer-
ase chain reaction (PCR) amplified cDNAs were roboti-
cally arrayed onto epoxy-coated glass slides (Schott-
Nexterion, Duryea, PA) using an Omnigrid arrayer (Gen-
eMachines, San Carlos, CA) equipped with 48 (4 × 12)
Chipmaker 2 pins (Telechem) at Michigan State Univer-

sity's Research Technology Support Facility [51]. Total
RNA (30 µg) was reverse transcribed in the presence of
Cy3- or Cy5-deoxyuridine triphosphate (dUTP) to create
fluorescence-labeled cDNA, which was purified using a
Qiagen PCR kit (Qiagen, Valencia, CA). Cy3 and Cy5 sam-
ples were mixed, vacuum dried and resuspended in 48 µL
of hybridization buffer (40% formamide, 4× SSC, 1%
sodium dodecyl sulfate [SDS]) with 20 µg polydA and 20
µg of mouse COT-1 DNA (Invitrogen) as competitor. This
probe mixture was heated at 95°C for 3 min and hybrid-
ized on the array under a 22 × 60 mm LifterSlip (Erie Sci-
entific Company, Portsmouth, NH) in a light-protected
and humidified hybridization chamber (Corning Inc.,
Corning, NY) for 18–24 hrs in a 42°C water bath. Slides
were then washed, dried by centrifugation and scanned at
635 nm (Cy5) and 532 nm (Cy3) on an Affymetrix 428
Array Scanner (Santa Clara, CA). Images were analyzed for
feature and background intensities using GenePix Pro 5.0
(Molecular Devices, Union City, CA).

Microarray data quality assurance, normalization and 
analysis
Microarray data were first passed through a quality assur-
ance protocol prior to further analysis to ensure consist-
ently high quality data throughout the dose-response and
time course studies prior to normalization and further
analysis [52]. All the collected data were then normalized
using a semi-parametric approach [53]. Empirical Bayes
analysis was used to calculate posterior probabilities

Quantitative real-time PCR verification of in vitro and in vivo microarray resultsFigure 6
Quantitative real-time PCR verification of in vitro and in vivo microarray results. The same RNA used for cDNA microarray 
analysis was examined by QRTPCR. All fold changes were calculated relative to time-matched vehicle controls. Bars (left axis) 
and line (right axis) represent data obtained by QRTPCR and cDNA microarrays, respectively. Genes are indicated by official 
gene symbols, and results are the average of four biological replicates. Classes refer to the respective classification categories 
as illustrated in Figure 4B. Error bars represent the standard error of measurement for the average fold change. *p < 0.05 for 
QRTPCR
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(P1(t) value) of activity on a per gene and time point or
dose group basis using the model-based t-value [54]. The
data were filtered using a P1(t) cutoff of 0.9999 and ± 1.5
fold change to identify the most robust changes in gene
expression and to obtain an initial subset of differentially
regulated genes for further investigation and data interpre-
tation. Subsequent analysis included agglomerative hier-
archical and k-means clustering using the standard
correlation distance metric implemented in GeneSpring

6.0 (Silicon Genetics, Redwood City, CA). Functional cat-
egorization of differentially regulated genes were mined
and statistically analyzed from Gene Ontology [55] using
GOMiner [56].

Quantitative real-time PCR analysis
For each sample, 1.0 µg of total RNA was reverse tran-
scribed by Superscript II using an anchored oligo-dT
primer as described by the manufacturer (Invitrogen). The

Table 4: Gene names and primer sequences for QRTPCR

RefSeq Gene name Gene Symbol Entrez Gene ID Forward Primer Reverse Primer Product Size (bp)

NM_007393 actin, beta, 
cytoplasmic

Actb 11461 GCTACAGCTTC
ACCACCACA

TCTCCAGGGAG
GAAGAGGAT

123

NM_009992 cytochrome P450, 
family 1, subfamily 
a, polypeptide 1

Cyp1a1 13076 AAGTGCAGATG
CGGTCTTCT

AAAGTAGGAGG
CAGGCACAA

140

NM_010634 fatty acid binding 
protein 5, 
epidermal

Fabp5 16592 TGTCATGAACA
ATGCCACCT

CTGGCAGCTAA
CTCCTGTCC

87

NM_008084 glyceraldehyde-3- 
phosphate 
dehydrogenase

Gapd 2597 GTGGACCTCAT
GGCCTACAT

TGTGAGGGAGA
TGCTCAGTG

125

NM_013556 hypoxanthine 
phosphoribosyl 
transferase

Hprt 24465 AAGCCTAAGAT
GAGCGCAAG

TTACTAGGCAG
ATGGCCACA

104

NM_010849 myelocytomatosis 
oncogene

Myc 17869 CTGTGGAGAAG
AGGCAAACC

TTGTGCTGGTG
AGTGGAGAC

127

NM_011723 xanthine 
dehydrogenase

Xdh 22436 GTCGAGGAGAT
CGAGAATGC

GGTTGTTTCCA
CTTCCTCCA

124

Table 3: Examples of TCDD-elicited gene expression responses unique to C57BL/6 hepatic tissue

Accession Gene name Gene Symbol Entrez Gene ID Fold changea Time pointsb (hrs)

AA170585 carbonic anhydrase 3 Car3 12350 -3.5 12c, 18, 24, 168
AK003232 carbonyl reductase 3 Cbr3 109857 2.2 12, 18c

AA571998 CD3 antigen, delta 
polypeptide

Cd3d 12500 -2.4 12, 18c, 24, 72, 168

BG072496 ELOVL family 
member 5, elongation 
of long chain fatty 
acids

Elovl5 68801 2.0 8, 12c, 18, 24, 72, 168

BG072453 epoxide hydrolase 1, 
microsomal

Ephx1 13222 1.9 8, 12 18, 24c

W84211 growth arrest specific 
1

Gas1 14451 -1.9 4, 8, 18, 24, 72, 168c

W41175 glycerol phosphate 
dehydrogenase 2, 
mitochondrial

Gpd2 14571 -2.3 8, 12, 18, 24, 72c, 168

W29265 glutathione S-
transferase, alpha 2 
(Yc2)

Gsta2 14858 7.2 12, 18, 24, 72c, 168

AA145865 lymphocyte antigen 6 
complex, locus A

Ly6a 110454 2.5 72, 168c

W98998 Notch gene homolog 
1 (Drosophila)

Notch1 18128 3.3 2, 4c, 8, 12, 18, 24, 72, 
168

aMaximum absolute fold change determined by microarray analysis
bDifferentially regulated genes with P1(t) > 0.9999 and |fold change| > 1.5
cTime point representing the maximum |fold change|
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cDNA (1.0 µL) was used as a template in a 30 µL PCR reac-
tion containing 0.1 µM of forward and reverse gene-spe-
cific primers designed using Primer 3 [57], 3 mM MgCl2,
1.0 mM dNTPs, 0.025 IU AmpliTaq Gold, and 1× SYBR
Green PCR buffer (Applied Biosystems, Foster City, CA).
PCR amplification was conducted in MicroAmp Optical
96-well reaction plates (Applied Biosystems) on an
Applied Biosystems PRISM 7000 Sequence Detection Sys-
tem under the following conditions: initial denaturation
and enzyme activation for 10 min at 95°C, followed by 40
cycles of 95°C for 15 s and 60°C for 1 min. A dissociation
protocol was performed to assess the specificity of the
primers and the uniformity of the PCR-generated prod-
ucts. Each plate contained duplicate standards of purified
PCR products of known template concentration covering
7 orders of magnitude to interpolate relative template
concentrations of the samples from the standard curves of
log copy number versus threshold cycle (Ct). No template
controls (NTC) were also included on each plate. Samples
with a Ct value within 2 standard deviations of the mean
Ct values for the NTCs were considered below the limits
of detection. The copy number of each unknown sample
for each gene was standardized to the geometric mean of
three house-keeping genes (β-actin, Gapd and Hprt) to
control for differences in RNA loading, quality, and cDNA
synthesis. For graphing purposes, the relative expression
levels were scaled such that the expression level of the
time-matched control group was equal to 1. Statistical
analysis was performed with SAS 8.02 (SAS Institute,
Cary, NC). Data were analyzed by analysis of variance
(ANOVA) followed by Tukey's post hoc test. Differences
between treatment groups were considered significant
when p < 0.05. Official gene names and symbols, RefSeq
and Entrez Gene IDs, forward and reverse primer
sequences, and amplicon sizes are listed in Table 4.
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